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1 Introduction

For a > —1, let J, denote the Bessel function of order «:

T\ (1) (x/2)"
Ja(z) = (5) 20 T(a+n+1)

n=0

(a classical reference on Bessel functions is [24]).

It is well known that when we consider radial functions in R?, f(x) = g(||z|), the
Fourier transform becomes the Hankel transform of order d/2 — 1. Indeed, taking
the Hankel transform of order o, with o > —1/2, as

Hw@%=émﬂﬂh®ﬂdm0% >0,

where dwa(r) = (2°T(a + 1))71r22H dr and jo(2) = T(a + 1)(2/2)7%Ja(2), it is

~

verified that f(§) = H%,lg(HfH)-
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The Dunkl transform on the real line is both an extension of the Hankel transform
to the whole real line and a generalization of the Fourier transform. It is defined by
the identity

Fuf(y) = / (@) Ea(—iya) dpa(z),  yeR,

where .

Eo(z) = jaliz) + mjaﬂ(iz)
and dp(z) = (2% (o + 1)) 7 z|?**T! dz. The Fourier transform corresponds with
the case a = —1/2 because E_ 5(2) = €* and dp_; 5 is, up to a multiplicative factor,

the Lebesgue measure on R. This transform is related to the Dunkl operator on the
real line. The Dunkl operators on R? are differential-difference operators associated
with some finite reflection groups (cf. [7]). We consider the Dunkl operator A,
a > —1/2; associated with the reflection group Zs on R given by

L2041 (f(x) —2f(—w)> |

Maf(@) = 2 f(2)

The Dunkl kernel E, is, for « > —1/2 and A € C, the unique solution of the initial
value problem
{ Aof(z) = Af(z), z€eR,
fo =1

Very recently, many authors have been investigating the behavior of the Dunkl trans-
form with respect to several problems already studied for the Fourier transform; for
instance, multipliers [4], Paley-Wiener theorems [6], Cowling-Price’s theorem [11],
transplantation [17], Riesz transforms [18], uncertainty [21], and so on.

In the last few years there has been a great interest to the study of the spectrum
of functions i.e. the support of the transform of these functions relative to certain
integral transforms. The Paley-Wiener and Boas theorems give a characterization
of two classes of functions in terms of the behavior of their Fourier transforms. See
[5, 22] for an overview of references and details for this question.

More precisely, let f € L?(R) and f be its Fourier transform. The Paley-Wiener
theorem stated that f € L?*(R) has compact support if and only if f € L%(R) is
analytically extendable into the complex plane as an entire function of exponential
type. In [2] Bang proved another version of the Paley-Wiener theorem as follow:

Theorem 1 f has compact support [—o, o] if and only if f is infinitely differentiable,
D"f € L*(R) for any n, and

1/n

L2(R) <o

lim [ D" f|]
n—oo
It is a real-valued version of the Paley-Wiener theorem since no complexification
of f was required.
Since any function f € L?(R) can be written f = fi + fo, where f; € L?[—0, 0]
and fo € L?(I), where I = R\[—0, 0], it is natural to ask if there is any characteri-
zation of the space of all functions of the latter type (Boas problem).
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The original Boas theorem asserts that if f € L?(R), then a necessary and
sufficient condition that f vanishes almost everywhere on (—1,1) is that

~

(B(Bf))(§) = =f(&),
where B(g) is the Boas transform of a function g defined by

1 (tglx+t)—glxz—1t)
/

(Bg)(x) = — 2 sint dt,

7r
whenever the integral exists.

Recently in [12] by using the spectral theory associated with the Dunkl Laplace
operator we have characterize the class of square integrable functions vanishing in a
neighborhood of a point £ under the Dunkl transform.

In this paper, we are interested in completing our work by obtaining a Boas-
type theorem for the Dunkl transform on R, on the spaces L5 (R), p € [1, 00]. More
precisely, we prove a new characterisation for the support of the Dunkl transform
under the behaviour of L5-norms of iterated Dunkl potentials.

The structure of the paper is as follows. In §2 we state the precise notations and
give some preliminaries related to the Dunkl operator on the real line. The §3 is
devoted to characterize the support for the Dunkl transform of the function in the
Lebesgue space L5 (R) for p € [1,00], via the Dunkl potentials. Finally, in the last
section we state many versions of Roe’s theorem for A,,.

2 Preliminaries

This section gives an introduction to the harmonic analysis associated with the
Dunkl operator. Main references are [7, 8, 9, 20]. In the following we denote by

P(R) the set of polynomials on R.

C(R) the space of continuous functions on R.

C.(R) the space of continuous functions on R with compact support.
CP(R)  the space of functions of class C? on R.

CP(R the space of bounded functions of class CP.

E(R) the space of C'*°-functions on R.
S(R) the Schwartz space of rapidly decreasing functions on R.
D(R) the space of C*°-functions on R which are of compact support.
S'(R) the space of tempered distributions on R.
PW(C) the space of entire functions on C, rapidly decreasing
and of exponential type.
PW(C) the space of entire functions on C, slowly increasing
and of exponential type.
E'(R) the space of distributions on R with compact support.
Some properties of the A,, are given in the following :
For all f and g in C*(R) with at least one of them is even, we have

Aa(fg) = (Aaf)g + fAag. (1)
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For f of class C' on R with compact support and g of class C' on R, we have :

[ Aot @gt@laf e =~ [ f@)ag(@)ol e (2)
R
For every A € C, let us denote by E,(\.) the unique solution of the eigenvalue
problem
R Ch 5
£(0)=1.
Proposition 1 For alln € N, z € R and A € C, we have
|£Ea()\x)| < |z|mel BeAllel, (4)
A" -

Notations. We denote by
LA (R), 1 < p < oo, the space of measurable functions f on R satisfying

1/p
g = (/R ’f(x)’pdﬂa(x)> <oo, if1<p<oo

Ifllem) = esssup|f(x)| < oo.
zeR

For o > 3, and f € C.(R), the Dunkl transform is defined by

/f (—tAz)dpa(x), forall A € C. (5)

The inverse Fourier transform of a suitable function g on R is given by:

Fol(g)(x) = / 9(N) Ea(iA)dpia(N). (6)
R

Next, we give some properties of this transform.
i) For f in L} (R) we have

[ Fa(Olem <Ly m):- (7)
ii) For f in S(R) we have
Fa(Maf)(y) = iyFa(f)(y), forallyeR. (8)

Proposition 2 i) Plancherel formula for F,.
For all f in S(R), we have

[ r@Pdnata) = [ 170 Pdate). 9)

ii) Plancherel theorem for F,.
The Dunkl transform can be uniquely extended to an isomorphism from L2(R) onto
LE(R).
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Proposition 3 The Dunkl transform F,, is a topological isomorphism from
i) D(R) onto PW(C).
it) S(R) onto S(R).

Definition 1 Let x € R and let f € Cyp(R). For a > %1, we define the generalized
translation operator 72 by

1w = [ 1) (10)
here
Kalo,y,2)|2PoHdz i 2y #0
dpg ,(2) = diz(2) it y=0
ddy(z) if x=0

where Ko (x,y, z) is given explicitly in [4]. Moreover

supp(dps) < [ = lal = Iyl =|lal = Iyl || U || 121 = lo1 |, Il + 1o1].

Definition 2 For suitable functions f and g, we define the convolution product
[*ag by

fragla) = [ w2 Fpaldy. (1)
Remark 1 [t is clear that this convolution product is both commutative and asso-
ciative:

i) f*ag:g*af'
ii) (f*oe.g) *ah:f*a (g*ah)'

Proposition 4 i) Let f be in L2(R) and g in LL(R). Then the function f *4 g
defined almost everywhere on R by

Frag) = [ mp(g@lal e
belongs to L2(R) and we have

If *a gllzz @) < CllfllLz®)llgllLyw)-

ii) Assume that 1 < p,q,r < 0o satisfy %4—%— 1= % Then, for every f € Lh(R)
and g € LL(R), we have f *, g € L' (R), and

1S *a gllzy @) < Clf ez m)llgllze @)- (12)

Proposition 5 i) Let D,(R) be the space of smooth functions on R supported in
[—a,al. For f € Dy(R) and g € Dy(R), we have f *q g € Dayp(R) and

Falf #a 9) = Falf)(N)Falf)N). (13)
ii) For f € L2(R) and g € LL(R) we have
Falf *a 9)(A) = Falf)(N)Falf)(N). (14)
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Definition 3 i) The Dunkl transform of a distribution T in S’'(R), is defined by
(Falr), ) = (r, Fol(g)), forall p € S(R). (15)
i1) The Dunkl transform of a distribution S in E'(R) is defined by
VAeER, Fu(S)(A) = (S, Ea(—i).)). (16)
Proposition 6 The Dunkl transform F, is a topological isomorphism from
i) E'(R) onto PW(C).
ii) S'(R) onto S'(R).
Let 7 be in 8'(R). We have

Fa(Aor) = iyFa(r). (17)

3 Boas theorem for the Dunkl transform

Definition 4 Let f € S'(R). The tempered generalized function Rof is termed the
Dunkl potential of f if Ao(Rof) = f, that is

<R0fa Aa(p> = _<f7 (10>7 forall pE S(R)

Remark 2 We proceed as in [3], and using the potential theory we can characterize
the Dunkl potential for tempered distributions.

Theorem 2 Let 1 <p <oo. If R} f € LL(R) for all n € Ny, then

. n ek 1
Jim (1R f117p ) = o (18)

where

oo =inf {|¢] + € € suppFa()}.
For prove this theorem we need the following lemmas.

Lemma 1 Ifog > 0, then

supp Fo (Rgf) =supp Fo(f), mn=1,... (19)

Proof. As
ARy f)=f
we deduce that
Falf) = ()" Fa(R3S)-
Therefore,

supp Fo(f) C supp Fo (Rgf C Fa(f)U {0}
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So, to obtain (19), it is enough to show that 0 ¢ supp F, (Rgf).

We choose numbers a,b: 0 < a < b < 0p and a function h € D(R) such that
supph C (=b,b) and h(z) =1 in (—a,a). Then

supp(h]—"a( 8f)> C {O}

Suppose that supp(h}"a(Rgf)> = {O}, then there is a numbers N(n) € N such

that
N(n)

hFa (i) = 3 CiN M),
j=0

where 6/ denote the jth distributional derivative of the delta function § at 0. Hence,

N(n)

Fo (h) o REF(E) =D Ci(N(n))(—ig).

Jj=0

As R f € LA(R) and F, 1(h) € LL(R), we get F, L(h) xo R} f € LZ(R).
Therefore

Fa ' (h) *a RGf(€) = Co(N(n)), n € N.

«

Note that
Co(N(n)) = Fol(h)*a REf(E)
= Fo'(h) *a AaRGTF(€)
= Ao (Fa0) v RETLI)
= AW(Co(N(n+1))) =0.

Thus we deduce that Cy(N(n)) = 0. So hF, (Rgf) =0.
Assume now the contrary that

{0} C supp Fa (Rgf).
Then there is a function x € D(R), with supp x C (—a,a) and such that
(Fa(R5S)ix) #0.
So, as h(z) =1 for |z| < a, we get
02 (Fa(R31)ox) = (Fa(BES) hx) = hFa(R3F) ) =0,
which is impossible. Thus we have proved (19).
Lemma 2 If og > 0, then
1

1
limsup ||RG f[7p ) < e (20)

n—oo
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Proof. From (19) we have

supp Fo (R8f> C R\(—00, 00).
For any € > 0, ¢ < % we choose a function h € £(R) satisfying

o 1 if |§‘ZO’0—€
h(g)_{() if |¢] < og— 2e.

Let x be an arbitrary element in S(R). Then it follow from (21) that

(REfX) = (Fa %R"fg 100)

= (FalRES),hFH (X))
= (Ryf ( ')
Therefore,
(Ro f,x) = (Ro f.),
where
o= Fa(hF00).
We put
= Fa(ME )
Then ¢, € S(R) and
|<f7 Qpn>| = |<Aanf @n)’
= [(RGf, AGen)]
= [RG/, <P>|

Combining (22) and (23), we get

(&)

[(Ro £, 0| = [{F,n)| = [(f5 X *a Fal en

)l

Therefore, we have

h(€)
é‘n

18 flluz ey = sup (£ X ta Fal220))
{xes®: g est}

h(£)

IN

3

{XES(R): HXHLg(R)Sl
Ol 1z ey |1 Fa ) 1 vy

IN

Hence

h(€)

lim sup || R? f||Lp < limsup [|Fo(—~ )HEL(R)-

n—0o0 n—0o0 §

sup 1112z @)l X *a Fal(—2

Nza )

49

(21)

(22)

(23)
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Using the continuity for the Dunkl transform on S(R), we prove that

ZGNTR

li o n : 2
imsup 17 (e )y ) < e (26)
Combining (25) and (26), we get

1 R <!
lgljgpﬂ ofHLp(R) > m
and then (20) by letting £ — 0.
Lemma 3 If og > 0, then
tim inf [R5 7y ) > — (27)
0 L% (R) = 0_0
Proof. From the definition of og, there exists a function x € D(R) such that
suppx C {5 cog—e < [€] < oo —i—a} and (Fo(f),x) #0.
Therefore,
0 [{f0l = ARG, X))l
= (R f, Asx)|
< HRngL” yAGXI | (m)- (28)
So )
lim inf 2
lnniloré HR fHLP R) - thllpHAaXHLq ( 9)

We proceed as above we prove that
hmsupHA XHLq <og+e.
So by (29) we obtain
. . n l
i a5 12wy =

and then (27).
Proof. of Theorem 2.
We divide our proof into two cases.
Case 1. g = 0. We have & € suppF,(f). Hence, for any ¢ > 0 there is a function
X € D(R) such that suppx C (—e,¢) such that (F,(f),x) # 0. Arguing as above

we obtain 1
hmlnf||R fHLp(]R >
limsup |[AGX| ILq

n—o0

m\»a



Boas and Roe theorems for the Dunkl transform on the real line 51

Therefore .
S nel|n _
lim inf [ R f[[ 7p gy = oo
So we always have
1 1
. n el = 1
Jm RGNz ) = 5y

Case 2. 0y > 0. Combining (20) and (27), we arrive to (18).

Remark 3 We have proved the analogues of the Theorem 2 for the hypergeometric
Fourier transform and for the Opdam-Cherednik transform (see [15, 16]).

4 Roe’s theorem associated with the Dunkl operator A,

In [19] Roe proved that if a doubly-infinite sequence (f;);cz of functions on
R satisfies % = fjy1 and [fj(z)] < M for all j = 0,£1,£2,... and = € R, then
fo(z) = asin(z + b) where a and b are real constants.

In this section we state many versions of the Roe’s theorem associated for the
Dunkl operator on the real line. These versions are proved in the context of the
Dunkl-type operator, which is more general than the Dunkl operator in real line.

(See [13]).
Theorem 3 Suppose P(§) = Zan§" is real-valued and let {f;}>°,, be a sequence
of complezx-valued functions on FLR so that
Vi€Z, [fit1=P(=ila)fj.
(i) Let a > 0, R > 0, and assume that {f;}>, satisfies
|f(@)] < MR (1 + |a])*, (30)
where (M;);jez satisfies the sublinear growth condition

M.
lim —,ljl =

Jj—o0 i

0. (31)

Then f = f+ + f— where P(—iA,)f+ = Rf+ and P(—ilA,)f- = —Rf_.
If R (or —R) is not in the range of P then fi =0 (or f— =0).
(i) If we replace (31) with

lim —7 =0, (32)

for all j > 0, then the span of (f;); is finite dimensional. Moreover, fo = fy + f—,
where, for some integer N , (P(—iAy) — R)Nfr =0 and (P(—iAy) + R)Nf_ = 0.
Thus f+ (or f— ) is a generalized eigenfunction of P(—il,) with eigenvalue R (or
—R).
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Theorem 4 Suppose P(§) = Zanﬁn is a non-constant polynomial with complex
n
coefficients. Let {f;}°% be a sequence of complez-valued functions on R so that
Vji€Z, [fi+1=P(—il)f;.

1) Let a > 0 and let R > 0. Assume that for all ¢ > 0, there exist constants
N € Ny and C > 0, such that

Ve eR, |fo(x)] < CR™1+ &)™ 1 + |z|)Y (33)

1s satisfied for all m € Z. Then

N

Ve eR, folx)= Z ZC()\J)

AESR §=0

L B 34
— W (1€1),
dgi (g:A
for constants c¢(\,j) € C, N € N and Sg := {§ eER: P = R}.
2) Let a > 0 and let R > 0 and assume that {f;}°%, satisfies

|fi(@)] < MR (1 + |a])*, (35)

where (M;)jez satisfies the subpotential growth condition

for some m > 0.
We have
(i) If P'(\p) # 0, for all \p, € Sg, then N < m in (34).
In particular, if m = 1, then

Ve eR, folx)= Z e (x), where I () = c(Ap) Ea(iXpz).
ApESR

(ii) If Sr consists of one point \g and m = 1 in (36), then P(—iA,)fo = P(Xo) fo-

Remark 4 The previous theorem is the analogue for the Theorems 1 and 6 of [1].

5 Open Problem

The first purpose of the future work is to characterize the Dunkl potential for tem-
pered distributions.
The second purpose is to prove the analogous of Theorem 2 for the generalized
Fourier transforms.
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