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Abstract

In this paper, we introduced the classes M. (m,n, ¢,1;7) and V}(m,
n,,;7), L = {0,1} consisting of harmonic univalent functions f =
h+4q. We studied the coefficients estimate, distortion theorem, ex-
treme points, convexr combination and family of integral operators.
Also, we established some results concerning the convolution. In
proving our results certain conditions on the coefficients of ¢ and
1 are considered which lead various well-known results proved ear-
lzer.
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1 Introduction
A continuous complex-valued function f = u+iv defined in a simply connected

domain I is said to be harmonic in D if both u and v are real harmonic in
D, that is u,v satisfy, respectively, the Laplace equations. It follows that
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every analytic function is a complex-valued harmonic function. In any simply
connected domain D, we can write f = h + g, where h and ¢ are analytic in
D. We call h the analytic part and g the co-analytic part of f. A necessary
and sufficient condition for f to be locally univalent and sense-preserving in D
is that |h/(2)| > |¢'(2)], z € D (see[5]).

Denote by Sy the class of functions f = h+ g that are harmonic univalent
and sense-preserving in the unit disk U = {z : |z| < 1} for which f(0) =
f2(0) =1 =0. Then for f = h+g € Sy we may express the analytic functions
h and g as

hz) =2+ apz", 9(2) =D b2*, b < L. (1)
k=2 k=1

We, note that Sy reduces to the class of normalized analytic functions if
the co-analytic part of f is identically zero; that is ¢ = 0, then

f(z) = z—i—Zakzk. (2)

In 1984 Clunie and Sheil-Small [5] investigated the class Sy as well as its
geometric subclasses and some coefficient bounds for functions in Sy were

obtained. Also, various subclasses of Sy were investigated by several authors
(see [1], [2], [3], [7] and [13]).

Definition 1.1 A function f(z) € Sy is said to be in the class of har-
monic starlike functions of order o denote by S, («) if it satisfies the following
condition 9

20 (arg(f(rew))) > o

which 1s equivalent to the condition

. {zh'(z) ~2¢(2)

W(z)+g'(2) }ZO" O<a<lzel)

Definition 1.2 A function f(z) € Sy is said to be in the class of har-
monic convex functions of order a denote by Ky (a) if it satisfies the following

condition 5 5
9 O 6
50 (arg (86f(7”6 ))) >

which is equivalent to the condition

Qh// 2 / 2 4!
Re 1+Z (2) + zg(z)_ﬂg(z) >a, (0<a<l;zel).
zh(2) — zg'(2)
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The classes Sj;(«) and Kp(«) were introduced and studied by Jahangiri [9].
From the above conditions, we see that

f(z) € Ky(a) <= z2f'(2) € Sj(a).

A necessary condition for a function f(z) = h + g, where h(z) and g(z) are of
the form (1) belong to the classes S};(«) and Kpy(«)

> (k—a |ak|+z (k+a)|be] <1—a= f(2) € S5(a),
k=2 k=1

and
> k(k = a)lar] + Y (k4 )bl <1-a = f(2) € Ky(a).
k=2 k=1

For 1 <y <4/3 and z € U, Porwal and Dixit [14] introduced and studied
the classes My () of harmonic functions f = h + g of the form (1) satisfying
the condition

0 — Re 2z (2) — z¢'(2) B
%(argf(z))_R { h(Z)—I—ﬁ }Sf% ( GU),

and Ly () the class of harmonic functions of the form (1) satisfying the con-
dition

9, 9, R 220" (2) + 229/ (2) + 22¢"(2) .
5 {m’g <89f< ))}—R {1+ W) -9 }S% (z € U).

Further, let Vyz and Uy be the subclasses of Sy consisting of functions of

the form . .
2)=z+ 3 laglz" = |bil7, (3)
k=2 k=1
and - .
D=2+ a2+ bl (4)
k=2 k=1
respectively.

Let Vy(y) = My(y) N Vy, and Uy(y) = Ly(v) N Uy. A necessary and
sufficient condition for a function f(z) is of the form (3) belongs to the classes
V() and

> (k- wak|+2k:+v|bk|<v—1 (5)
k=2 k=1
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where 1 < < 3 [14].
A necessary and sufficient condition for a function f(z) is of the form (4)
belongs to the classes Uy (y) and

> k(k = lal + > k(k+ )bl <v -1, (6)

k=1

where 1 < v < 3 [14]. We note that for g = 0 the classes My(y) = M(v),
Lu(vy) = L(y), Vu(y) = V(y) and Ug(y) = U(7) were studied in [18].

For f = h + g with h and g are of the form (1), the modified differential
Salagean operator D™ for n € Ny = N U {0}, is given by

D"f(z) = D"h(z) + (=1)"D"g(2), (7)
where -
D"h(z) =z + Z k"ay2", D"g(z) = Z k"by, 2",
k=1

Sharma et al. [15] define a generalized class S&(m,n, ¢,1;a) of functions
f =h+7g € Sy satisfying for [ € {0, 1}, the condition

%{U%@H¢@%H—DWUWM@*MQ}>&7
D*h(z) + (~1)"Dg(2)

where m,n € Nog,m > n,0 < a < 1, ¢(2) = 2z + > 0y, Bez” and ¢(z) =
z 4 Y 00, k2" are analytic in U with the conditions By, g > 1.

Further denote by T'S%, (m,n, ¢,v; ), a subclass of St (m,n, ¢,1;a) con-
sisting of functions f = h + g € Sy such that h and g are of the form

2=z = Y lal, g(z) = (D)™ bR <10 (8)
k=2 K1

It is interesting to note that by specializing the parameters m,n,[l and the
functions ¢ and 1) we obtain the following known subclasses of Sy studied
earlier.

(i) Sy(m,n, %, &) = Sy(m,n;«) and TSy (m, n, %, =) = TSy(m, n; @)
studied by [19].

(if) SY(n + 1,n, %=, Z5a) = Sp(n;a) and TSY(n + 1,0, £, Z55a) =
TSy (n; ) studied by [10].

(iii) S%(1,0, 1%, %55a) = Sj(«) and TSY(1,0, £, %5 )= TSy (a) stud-

ied by [9] .
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(iv) S%(2,1, %, % a) = Ku(a) and TSP (2,1, 1%, %55 a) = TK g(a) stud-
ied by [9].

(v) Su(0,0,0,4;0) = Su(¢, ¢ a) and TS (0,0, ¢, ¢ ) = TSy (0,0, 6, ¢50) =
TSu(¢, v, ) studied by [8].

(Vl) SO( ’ 71 z’l Zuo) KH7TSO( ) 71 271 Zao) TKH7SO(]- 071 21— 270)_

S, and TS% (1,0 TS, studied by [16] and [17].

' 1—2 z’l z’ )

Using the operator D", we define a generalized class MY (m,n, ¢,v; ) of
functions f = h + g € Sy satisfying for [ € {0, 1}, the condition

. {pmh() $(z) + (=1)"*'Dmg <Z>*W>}g% (9)

Drh(z) + (=1)"D"g(2)

where m, n € NO, m>n,1<vy<3 and ¢(2) = 2+ Y10, Bz’ and ¥(z) =
z+ Zk:Q piz* are analytic in U Wlth the conditions [y, pp > 1.

Further denote by V},(m,n,¢,1;7), a subclass of M4 (m,n, $,1;7) con-
sisting of functions f = h + g € Sy such that h and g are of the form

2)=z+> a2, g(z) = (=)™ jbele¥, bl <1 (10)
k=2 k=1

It is interesting to note that by specializing the parameters m,n,[ and the
functions ¢ and ¢ we obtain the following known subclasses of Sy studied
earlier.

(i) Vﬁ(lv[O,]ﬁ,ﬁ;v) = Vi(y) and M§ (1,0, %, 25:7) = My(y) studied
by [14].

(ii) V32,1, %, %57) = V() and Mj(2,1, 1%, ;) = Mg(y) studied
by [14].

In the present paper, we prove a number of coefficients estimate, distortion
theorem, extreme points, a family of integral operators, convolution properties
and convex combination for functions in ML, (m, n, ¢, ;) and V},(m, n, ¢, ;)
under certain conditions on the coefficients of ¢ and 1.

2 Coefficients Estimate

In this section, we studies a sufficient coefficient condition for functions in
ML, (m,n, ¢,;v) under certain conditions on the coefficients of ¢ and ).
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Theorem 2.1 Let f(z) = h(z) + g(z), where h and g are given by (1) and
satisfy the condition

> (Bek™ — vk ax| + Z (k™ — (=)™ kM b <y — 1, (11)
k=2 k=1

where

for k> 2. (12)

1e€{0,1}, me Nne Ny, m>n, Bg,ue > 1, k> 1,1 <~ <4/3. Then f(2)
is sense-preserving, harmonic univalent in U and f(z) € MY (m,n, ¢, ;7).

Proof. To show that f is sense-preserving in U.

1—|—Zk‘|ak]zk ' Zmakw > 1—Zkz|ak]
o em m+l n

>1—zﬂk >3 e

> Z k|bg| > Z kbt > 14 (2)).
k=1 k=1

7' (2)] =

vk"

|b|

To show that f is univalent in U, suppose z1, 29 € U such that z; # 2z, then
we have

9(21) — g(22)
h(z1) — h(z2)
220:1 bk(Z§ - Zf)
(22 — 21) + 2o3ls aw(af — 25)
leil k|bk|

1— ZZO:Q klax|
o B
1—- 20:2 @Ck;n%m

>1—
|a|

Now, we show that f € MY (4,1, m,n;v). We only need to show that if (11)
holds then the condition (9) is satisfied, then we want to proof that

D ()0 () DTGERE
D h(z) (- Dg(z)
Drh(E) ()" D g () (E)
e o i CO Y

<1, zeU.
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D™h(z) x ¢(2) + (=1)™HDmg(z) * (2)
Drh(z) + (=1)"D"g(z)
_ i (Bek™ = B ar2® + 3 (k™ — (1) TR )by 2t
24> o kragzE 4+ (1) Y0 knbgzk ’
D™h(z) * ¢(z) + (1) D™g(z) * 1(2)
Dh(z) + (=1)"D"g(z)
_ ozt Yo, Brk™agz® 4 (=)™ S0 k™ by 2 _(2y—1)
24> gy kragzF 4+ (1) Y0 knbgzk

2= 25+ (BT — (27— DR S (—)™ = (—1)7(2 — Dkt
Z+ Dol krapa + (1) 300 kbt ’

- (2y—-1)

we have

D™h(2)x¢(2)+(=1)™ D™ g(2)xy(2) _ 1
Dmh(z)+(=1)"D"g(z)

Dmh(2)*$(2)+(=1)mH D™ g(z)*p(z)
Drh(z) (=17 D7g(=) —(2v-1)
S oney [Bek™ = K fa| + 3700 [(=1)™ k™ — (=1)"k"| |by |

20y = 1) = 2 [Bek™ — (2y = DR ar] = 2202 [(=1)™ k™ — (=1)"(2y — Dk [be|

The last expression is bounded above by 1, if

Z Bkk’m kn |ak| + Z| m+l Wk — (—1)nkn||bk|
k=2 k=1
v =1) = Y [Bk™ — (2 — DE")|ax| - Z| D™ k™ = (=1)"(2y — DE"|[bx],
which is equivalent to
> [Bk™ — vk x| + Z k™ = (1) E b <y =10 (13)
k=2 k=1

But (13) is true by hypothesis and then Theorem 2.1 is proved.
Sharpness of the coefficient inequality (11) can be seen by the function

—1
_z—{_Zﬁk _ ka +Z kkm_ m+l n knyk'zk’

where [ € {0,1}, m € Nyn € No,m > n, B, > 1, k> 1,1 < v < 4/3 and

220:2 || + 220:1 lye| = 1.

In the following theorem, it is shown that the condition (11) is also neces-
sary for function f(z) given by (10) belong to the class V},(m,n, ¢, ¥; 7).
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Theorem 2.2 let f(z) be given by (10), then f(z) € Vi(m,n,¢,¢;v) if
and only if

D (Bek™ = k" ak] + > (k™ = (=)™ AR b <y =10 (14)
k=2 k=1

Proof. Since V) (m,n, ¢, ;) € MY (m,n, $,1;7), we only need to prove the
only if part of the theorem. To prove the only if, let f(z) € V},(m,n, ¢,v;7)
then we have

R { D™h(z) * () + (=)™ D7g(=) * (2) } <.
Drh(z) + (—1)"Drg(z)

- (2 + Dope s EMapz®) « (2 + D0y Bez®) + (1) T2 (3000 k™ by 2F) = (2 + D o0 pkz®) <4
Z4+ > gy kMagzk + (—1)ntmHN kb |2F n

This is equivalent to

{ (v = 1)z = 0o [Bik™ — vk™]|ag|zF — (—1)2m 203000 k™ — (—1)m+l_”7k"]|bkzk}
R = L > 0.
2t S,k ag] 2k + (= 1)t S kb [zF

The above condition must hold for all values of z € U, so that on taking z =r < 1,
the above inequality reduces to

(v = 1) = YR Bkk™ — k" |aglr 1 = 3702 [uk™ — (=)™ =y k"] by |rh !
1+ ZZ.;Q k:”|ak|7‘k*1 + (_1)n+m+l "30:1 kn|bk|rk71

> 0.

(15)
If the condition (11) does not hold then the numerator of (15) is negative for
r and sufficintly close to 1. This contradicts the required condition for f(z) €
Véj(m, n, ¢,1;7y). This complete the proof of Theorem 2.2.

Remark 2.3

(i) Putting ¢ =9 = =, 1=0,m =1,n =0 in Theorem 2.1, we obtain the result

1—27

obtained in [14 Theorem 2.1.J;

(ii) Putting ¢ =19 = 2=, 1 =0,m = 2,n =1 in Theorem 2.1, we obtain the result

1—2°

obtained in [14 Theorem 2.4.].

3 Distortion Theorem

Now, we give the distortion theorem for functions in V), (m,n, ¢,v;~), which yield
a covering result for V4 (m,n, ¢, ;7).
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Theorem 3.1 Let f = h+g with h and g are of the form (10) belongs to the class
Vi (m,n, é,;7) for functions ¢ and 1 with non-decreasing sequences {Bx}, {1}

satisfying B, i, > Bo, k > 2, and Ay < Bk™ — k", By < ppk™ — (—1)mHnygn
for k> 2, C =min{Ag, Ba}. Then for |z| =r < 1, we have
—1[, 1—(=1mH=ny ]
L R e R I ES T
and l
—1 [, 1= (=1)mtny
L e I 2| L

The equalities in (16) and (17) are attained for the functions f(z) given by

1 1= (=1 ]
f(z):(1+|b1|)§+7ryc 1-— ( 31 /y|b1| 32,
and .
O T R e,
R R Y L e
where |by| < 1—(—17)%7%1“—”7

Proof. Let f € V}(m,n, ¢,1;7v) then on taking the absolute value of f, we get for
|zl =r <1

IF)] < )]+ (3] <r+ ) laplr® + )bl ] <1
k=2 k=1
= (14 o))+ (arl + [be])r*
k=2
< @+l +r2Y (arl + [be])
k=2
r2(y —1) > C C
< (14 |bi])r + |a| + ———[bx|
o C kzzz('y—l) (7—1)’
7’2 -1 o0 kMo A kn Emo— (—1 m-+l—n Ln
— 1T 1
-1 — (=1 m+l—n
< e+ O CUTE
—1 1— (—1)mtin
< (1+yb1\)r+70 [1— ( 21 Loy | 2,

which proves the assertion (16) of Theorem 3.1. The proof of the assertion (17) is
similar, thus, we omit it.
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Corollary 3.2 Let the function f(z) given by (10) be in the class Vi, (m,n, ¢, ;7),
where |b1] < 1_(_17)%”}“_“7 and Ay < Bpk™ — vk", Bp < ppk™ — (—=1)™ Tk for
k> 2, C =min{Ag, Bo}. Then for |z| =r < 1, we have

{w w| < (1 - 7; 1> + (1 — (_ngrlnv — 1> |b1|} C f(U).

4 Extreme Points

Theorem 4.1 Let f(z) be given by (10). Then f(z) € clcoVéI(m,n, o, 0;7) if
and only if

= (wehi(2) + yrgr(2)), (18)
k=1
where
hi(z) = z,
—1
he() =2+ g (k2 2),
o) =2+ — O s,

pi — (T

where xj, > 0, yr, > 0 and Y 7 | (xx + yx) = 1. In particular, the extreme points of
Vi(m,n, é,;7) are {hy} and {gi}, respectively.

Proof. Suppose that

= (@rhi(2) + yrgr(2))-

k=1
Then
(=)™ (y — 1)yz"
Z = Z+Z[3kkm_ kn Tkz +Zﬂkkm_( )m+l ”’}/k‘”
Since
o0 o0
kM — -1 Em — (—1)mtl-naypn -1
e L B L e L T
— -1 k™ —nk p 71 prk™ = (=1) vk
o0 o0
=> o+ Y pp=1-2 <1
k=2 k=1

Thus, f(2) € clcoVi(m,n, ¢, ;7).
Conversely, assume that f(z) € clcoV(m,n, ¢,1;7). Set

_ Bk — k"

Clal, (O<@p<Lh>2),
"y_
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and »
Emo— (—1)ymtl-nagn
g =" (W _)1 Polol,  (O<w <L k>1),

where 21 =1— 3 1252 — Y pey Yk Therefore,

flz) = z—i—Z\ak\z + ( m“Zwk\z

o) m+l =k
B (v — Dz
= Z+;Bkk’m S Tkz +Zukk‘m— 1)mH—ny g
= z+ Z(hk(z) —2)zi+ ) _(9k(2) — 2)yk
k=2 k=1
= =z (1—2%—2%) +th(2)xk+zgk(z)?/k
k=2 k=1 k=2 k=1

This completes the proof of Theorem 4.1.

5 A family of integral operators

In this section, we examine a closure property of the class VIl{(m, n, ¢, ;) under
the generalized Bernardi-Libera Livingston integral operator (see [4], [11] and [12]).
Bernardi defined the integral operator J. by

c+1
ZC

Jo(f) = /Oztc-lfu)dt, (f € Vh(m.n,é,457), ¢ > —1).

Now, we define the Bernardi integral operator J.(f) on the class Sy of harmonic
univalent functions of the form (1) as follows:|[6]

Jc(f) = ']c(h) +m

c+1 L c+1
C+nanzn—|—nz: bp2™.

Theorem 5.1 Let the function f(z) defined by (10) be in the class Vi (m,n, ¢,1;7)
and ¢ be a real number such that ¢ > —1, then the function F(z) defined by

1 [? 1
F(z):c+ /tc1h(1t)dzt+(—1)’”“0+

C C
z 0 z

/z teg(t)dt, (c> —1), (19)
0

also belongs to the class Vi (m,n, ¢,1;7).
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Proof. Let the function f(z) be defined by (10), then from the representation (19)
of F(z), it follows that

F(z —Z+Z|Ck|2 + ( m+lZ]nk|zk

k=2

c+1 c+1
|kl (c+k> lax| and |n] < +k;> b

Therefore, we have

where

o Bk — pck™ )m“ "k
S0 Sk SR,
=
o0
Brk™ — k™ (¢ —|— 1 k™ mtl=nagn fe 41
P il + Z —= 1)
pt ¥ — c+
0 ki km 1)mH—n~ fn
k=2

since f(2) € Vi (m,n,$,v;7). Hence F(z) € V};(m,n,$,1;). This completes the
proof of Theorem 5.1.

6 convex combinations

The convex combination properties of the class V}{(m,n,qb,@/};v) is given in the
following theorem.

Theorem 6.1 The class V},(m,n, @,1;7) is closed under convex combination.

Proof. For j = 1,2, ..., suppose that f; € V};(m,n,$,;~) where f;(z) is given by

f —z+Z|a]k|z —l— m+lZ’bjk|Z

Then, by Theorem 2.1, we have

k Emo_— (— m+l—n L

For >322,t; =1, 0 <t; < 1, the convex combination of f;(z) may be written as

>t fi(2) —z+ZZt|a]k\z+ m*’ZZuwz
j=1

k=2 j=1 k=1 j=1
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Now
m4l— n Lk e

Zﬁkk o Zt [ k""zﬂkk _)1 th’bj,k|
k=1 j=1

00 00 m+l NA, LT
=Yt (Z Bkk ! akHZMkk ) ok \%;k!)

j=1 k=2
<1

we have Z;’il tjfj(z) € V}[(mﬂ% b, ;7).

Theorem 6.2 If f € VI{I(m,n, ¢,1;7y) then, f is convex in the disc

| (-1~ ) S
< T ) R

Proof. If f € Vi (m,n,¢,1;v) and let 0 < r < 1 be fixed. Then r~!f(rz) €
Vi (m,n, ¢,1;7) and we have

o0

Z (lak| + [bx)r" " =

k(lag| + [bx]) (kr" 1)

WE

=2 k=2

o0 ™M — ~kn kMo (—1 m+l—n Lk

k=2 v

< 11—k
provided
_ 1— b
krrk ! S m+l—n
1 - ”?#Ibﬂ

which is true if

| (L= b))y = 1) S
St o e LR

7 Convolution properties

For harmonic functions

—z—i-Z\ak\z +( mHZ]b | 2%,

and

F(z) —z—I—Z|Ak|z +( m+lZ|Bk|z

k=2
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we define the convolution of f and F as
(f*F)(z) = f(2) * F(2) —Z+Z|ak||Ak|+ m+lZ|bk\|Bk!Z
k=2

In the following theorem we examine the convolution properties of the class V}I(m n, ¢, ;7).

Theorem 7.1 If f € V}I(m,n, ¢,1;7) and F € V}{(m,n,qﬁ,w;v) then
f*F e Vi(m,n,¢,¢;7).

Proof. let
flz) = z+Z|ak]z +( WHZ\b |2¥,
F(z) = z+Z|Aklz +( m“Z!B 2.

k=2

Then, by Theorem 2.1, we have

k fm m+l—n kn
Lm Lm m+l My o0
EZm E:M )1 il < 1

so for f * I, we may write

> kM _ A kn & Emo— (—1 m+l—n L
> M|%Ak| +> He L) T b By

k=2 k=1 -1
o
,Bk;km Hkk )m-i—l—n,ykn
< bl < 1.
< kEZ ak| + E —1 |bk| <

Thus f * F € Vi (m,n, ¢,9;7).

Theorem 7.2 Let fj(z) = z + Y poq lag |25 + (=1)™ TS0, |bi ;2% be in the
class Vfl(m,n, o, a) forall (j =1,2,...,p), then (fixfox..xfp)(2) € V}{(m, n,o,1;0)
where
(278 — 2) [Ty oy — 1)

= T I 28— 27ay) + 20 [Py (ay — 1) (20)

Proof. We use the principle of mathematical induction in our proof. Let fi(z) = z+
Do lak, 1|25 (= 1) ST [bra |2 and fo(2) = 243000, k| F+(=1)™H 3202 (b o2
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be in the class V};(m,n, ¢,1;a1) and VY, (m, n, ¢,v; as), respectively. Then by The-
orem 2.1, we have

i (Brk™ — a1k™)|ag 1| . i (k™ — (=)™ k™) by 4 |

<1

k=2 a1 —1 k=1 ap —1

oo o

Emo_ Ln A | m+l—n ™) b
Z (Br k™ )|a | +Z (11k (-1) aok™)|b 2| <1
P as — 1 Pt as — 1
We need to find the largest § such that
Bkk Mkk ( )erl n§En
Z |am||am|+2 o (21)
k=1

Then

2 293
> (Brk™ — ark™)|ag 1| = (Brk™ — agk™)|ag 2|
LX%W ) (e

2 293
i Lz:l (\/(Mkk;m — (B:Hllnalk”)ka) ; (\/(Mk»km — (2:+l1na2k”)bk,2) ] <1

(22)

thus, by applying Cauchy-Schwarz inequality, we have

[ (Brk™ — ark™) (Brk™ — ask™)|ag 1| ak.2|
2 (a1 —1)(a2 — 1)

2 2-1/2

Brk™ — a1k™)|ag 1] (Bek™ — agk™)|ag 2|
< 3 i )

as —1
k=2 =2 2

° (Hkkm _ (_1)m+l—na1kn)(ukkm _ (_1)m+l—na2kn)
Z\/ (a1 = 1)(e2 = 1)

2-1/2

ag — 1
k=1 P 2

o (prkm — (— 1)m+l no k™) by 1| (prkm — (—1)m+l_”a2k")]bk’2\
|30 (st b

(23)
Then, we get

N [(Bek™ — ankn)(Brk™ — ask™)
Z (a1 —1)(a2 — 1)

m o_ m—+l—n n m _ (_1\m+l—n n
+Z (k™ — (1) k™) (k™ — (—1) k™) by 1|[bk,2| <1,

(a1 =1)(2 = 1)
(24)
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then, we get
i (Brk™ — Z (Brk™ — a1 k™) (Brk™ — ck™)|ay 1||ak 2|
=2 0~ (a1 = 1)(az — 1)
— (k™ — (—1)m+l "5k”)!bk,1!|bk,2|
0—1
k=1
- i (k™ — (=1)m o k) (k™ — (—1)mHmagk?) by 1| b o
- P (041 — 1)(042 — 1) ’
(25)
that is, if

51 (a1 — 1)(az — 1) [ar1012]

(Nkzkm _ (_1)m+l—n5kn) |b ) | - (Nkkm _ (_1)m+lfna1k,n)(lukk,m _ (_1)m+lfna2kn)
5—1 Fo1Tk21 = (a1 — 1)(ag — 1)

(Bik™ = OK") lag1ak.2| < \/<Bkkm — k™) (Bk™ — azk”)

|br, 1082,
(26)

hence that,
5=1  [(Bek™ — arkm)(Bekm — azk®)
<
\/W— ﬁkkm_ékn\/ (a1 —1)(ag — 1)

k,19k2] > ,Ukkm _ (_1)m+l—n5kn (@1 _ 1)(041 — 1) .

(27)
We know that
(Bek™ — ark™) (Brk™ — agk™)
<1
Z 041 — 1)( _ 1) ‘a’k,lak,2| =
(upk™ — (=1)mH=na k) (upk™ — (=1)mH-nagkm)
babro| < 1,
Z (a1 — 1)(2 — 1) |bg, 10k 2| <
then
\/|a7a (1 = 1)(ag — 1)
A (Bek™ — a1 k™) (Brk™ — azk™)’
(28)

(a1 —1)(en — 1)
br1b < )
\/|k17k2 \/ m+l nalkn)('ukkm _ (_1)m+l—na2kn)
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Consequently, from Egs. (27) and (28) we obtain

(@ -V -1)  _ @-1  [Bkm k) (Bekm — agk)
(Bek™ — a1k™)(Bek™ak™) = (Bpk™ — Jk™) (1 —1)(az — 1) ’

(a1 —1)(az — 1)
(Nk:km _ (71)m+lfna1kn>(lukkm _ (71)m+lfna2kn)

(5 _ 1) \/(Mkzkm _ (_1)m+lfna1kn)(,ukkm _ (_1)m+lfna2kn) '

= (upkm — (=1)mHEngkm) (1 —1)(az — 1)
Then we see that
5> (Bek™ — a1 k™) (Brk™ — agk™) + Brk™ (a1 — 1)(az2 — 1)
= (Brk™ = ark™)(Brk™ — agk™) + k™ (a1 — 1)(az — 1)
(k™ — (1) 2 k™) (k™ — (1) " agk™) + pk™ (a1 — 1)(az — 1)

O e — (D) o) (g — (— 1) a5k + kn(ar — T)(as — 1)
(29)
then
(1 — 1)(ag — 1)(Bpk™ — k™) _
021+ [ﬂkk‘m — 041]{7”] [ﬁkkm — agk”] + k"(al — 1)(0[2 — 1) o C(k),
5> 14 (k™ — k™) (o1 —1)(ag — 1)

- (k™ — (=1)mH=nag k| [ppk™ — (—1)"H=agkn] + (—1)m =7k (o — 1)(ap — 1) = (k).
(30)

since ((k) for k > 2 and n(k) for k > 1 are increasing, then (fi*f2)(2) € Vi (m,n, ¢, ;)
where

(a1 — 1)(ag — 1)(522™ —27)

(822 — @12"][822™ — @22"] + 27(a1 — 1) (a2 — 1)
Next, we suppose that (fi % fo*...% fp)(z) € V}{(m, n, ¢, ;) then
(822" = 2") [T5_ (ay — 1)

biB22m — ay2n] + 20 TT8 (ay — 1)
we show that (f1 * fo % ... ¥ fo11)(2) € Vi (m,n, ¢,1;6) then

(822 —2") (v — 1)(apt1 — 1)
(822 — y27][B22™ — ap127] + 27(y — 1) (ap+1 — 1)

§=1+

y=1+

§=1+

since ptl
_ (822" — 2") [Tjci (@ — 1)
(v —1D(apy1 — 1) = :?:1(522"1 — 2n) + 27 H§=1(04j -1
(8227 = 21 [T}21 (52" — ;2")
G=1 (822 — ;27) + 20 [[f_y (o — 1)’

(B22™ —72")(By" — ap12") =

we have "
N (822" = 2" [T5Z (e — 1)
1251 (B22™ — 0;27) + 27 [ (o — 1)
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Theorem 7.3 Let fj(z) = z + Y 50y lax j|2% + (=1)™ S |br ;2% be in the
class Vﬁ(m,n,qﬁ,w; a) forall (j =1,2,...,p) then (fixfax..xfp)(2) € Vé(m, n, ¢, 1;0)

where
(822" — 2")(ar = 1)P

=1
0= 1H gom — oo + 27(a — 1)

(31)

8 Inclusion Results

To prove our next theorem, we need to the following lemma.

Lemma 8.1 [15] Let f = h + g be given by (8), then f € TSk (m,n, ¢, ;) if
and only if

> (Bek™ — k™)l +Z k™ — (=1)™H k™) by <1 — o
k=2 k=1

wherel € {0,1}, me N, ne Ny, m>n, Bp, e > 1, k>1,0< a < 1.

Theorem 8.2 Let f € Vi (m,n, ¢,v;7), then f € T'SY(m,n,¢,¢; (4 —37)/(3 -
27)).

Proof. Since f € VIl{(m,n, ®,1;7), then by Theorem 2.1, we have

o

S — ARl + 3 (k™ — (1) ] <y 1
k=2 k=1

To show that f(z) € T'SL(m,n, ¢,v; (4 — 37)/(3 — 2)) by Lemma 8.1, we have to
show that

= 4 37 4 — 3y 4—3y
km kn km_ m4l—n 2T Empl <1 —
;5 |a|+];Mk -1) 32 )[br| < 3 9

where 0 < % < 1. For this, it is sufficient to prove that

Bik™ — ykn Bk — 5k

— > o (k=2,3,4,...),
7=l 1-55
— l-n4=3
_1 - 1 4_37 Y ( - b ?"')7
v T3y

or equivalently 2(y — 1)Bgk™ — 4(y — 1)k™ > 0, and 2(y — 1) pgpk™ — 4(—1)" =" (4 —
1)k™ > 0, which is true and the theorem is proved.
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9

Open problem

The authors suggest to study the properties of the same classes M}I(m,n, b, 10;7)
and V},(m, n, ¢,v;~) by using different operators and discuss Theorem 7.2.

Acknowledgement: The authors express their sincerest thanks to the referee for
his useful comments.
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