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1 Introduction

We consider the family of (A, ε) operators on R :

TA,εf(x) =
d

dx
f(x) +

A′(x)

A(x)
(
f(x)− f(−x)

2
)− ερf(−x), (1)

where ε ∈ R,
A(x) = |x|2kB(x), k > 0, (2)

B being a positive C∞ even function on R, with B(0) = 1, and ρ ≥ 0.
We suppose in addition that the function A satisfies the following conditions:

i) For all x ≥ 0, A(x) is increasing and lim
x→∞

A(x) =∞.
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ii) For all x > 0,
A′(x)

A(x)
is decreasing and lim

x→∞

A′(x)

A(x)
= 2ρ.

iii) There exists a constant δ > 0 such that for all x ∈ [x0,∞), x0 > 0, we have

A′(x)

A(x)
= 2ρ+ e−δxD(x),

where D is a C∞-function, bounded together with its derivatives.

For {
A(x) = |x|2k, k ≥ 0
ε arbitrary

we have the differential-difference operator

Tkf(x) =
d

dx
f(x) +

2k

x
{f(x)− f(−x)},

which is refereed to as the Dunkl operator on R (see [11]).

For  A(x) = (sinh |x|)2k(coshx)2k
′
, k ≥ k′ ≥ 0, k 6= 0

ρ = k + k′

ε = 0,

we have the differential-difference operator

Tk,k′f(x) =
d

dx
f(x) + (k coth(x) + k′ tanh(x)){f(x)− f(−x)},

which is refereed to as the Jacobi-Dunkl operator (see [10, 6]).

For  A(x) = (sinh |x|)2k(coshx)2k
′
, k ≥ k′ ≥ 0, k 6= 0

ρ = k + k′

ε = 1,

(3)

we have the differential-difference operator

Tk,k′f(x) =
d

dx
f(x) + (k coth(x) + k′ tanh(x)){f(x)− f(−x)} − ρf(−x), (4)

which is refereed to as the Jacobi-Cherednik operator (see [13]).

For ε = 0, we have the differential-difference operator

TA,0f(x) =
d

dx
f(x) +

A′(x)

A(x)
(
f(x)− f(−x)

2
), (5)

which is refereed to as the Dunkl type operator (see [18, 24]).

For ε = 1, we have the differential-difference operator

TA,1f(x) =
d

dx
f(x) +

A′(x)

A(x)
(
f(x)− f(−x)

2
)− ρf(−x), (6)
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which is refereed to as the Cherednik type operator (see [19]).

In [5] the authors provides a new harmonic analysis on the real line corresponding
to the differential-difference operators TA,ε.

The purpose of the present paper is twofold. On one hand, we want to improve
and generalize many results presented in [4, 16, 17].

On the other hand we want to prove a new characterisation for the spectrum of
the Opdam-Cherednik transform under the generalized potential function.

We note that the subject of the spectral theorems was studied for many other
integral transforms, for examples (cf. [1, 2, 3, 7, 9, 15, 16, 17, 20, 25]).

The remaining part of the paper is organized as follows. In §2 we recall the
main results about the harmonic analysis associated with the family of differential-
difference operators TA,ε. The §3 is devoted to characterize the functions in the
generalized Schwartz spaces such that their generalized Fourier transform vanishes
outside a polynomial domain. In §4, we prove new versions of real Paley-Wiener
theorems associated with the generalized Fourier transform. The §5 is devoted to
characterize the support for the Opdam-Cherednik transform of the function in the
Lebesgue space LpA(R) for p ∈ [1, 2), via the generalized potential function. In §6
we study the generalized tempered distributions with spectral gaps. Finally, in the
last section we prove many versions of Roe’s theorem for TA,ε.

2 Preliminaries

This section gives an introduction to the harmonic analysis associated with the
family of operators TA,ε. The main reference is [5].

2.1 The eigenfunction of the operator TA,ε

We consider the operators TA,ε given by the relation (1). To present the eigenfunc-
tions ΦA,ε(λ, .), λ ∈ C, of TA,ε satisfying the condition ΦA,ε(λ, 0) = 1, we consider
first the eigenfunction ϕλ, λ ∈ C, of the second order singular differential operator
L on (0,∞)

L =
d2

dx2
+
A′(x)

A(x)

d

dx
.

The function ϕλ, λ ∈ C, is the unique analytic solution of the differential equation{
Lu(x) = −(λ2 + ρ2)u(x),
u(0) = 1, u′(0) = 0.

(7)

We denote also by ϕλ the even function on R equal to ϕλ on [0,∞).

For every λ ∈ C, let us denote by ΦA,ε(λ, .) the unique solution of the eigenvalue
problem {

TA,ε f(x) = iλf(x),
f(0) = 1.

(8)
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It is given for all λ ∈ C, by

∀ x ∈ R,ΦA,ε(λ, x) =


ϕµε(x) + 1

iλ−ερ
d
dxϕµε(x), if iλ 6= ερ,

1 + 2ερ sgn(x)
A(x)

∫ |x|
0

A(t)dt, if λ = iερ,

where µ2ε = λ2 + (ε2 − 1)%2.

For λ 6= −iερ, we can write it in the form

∀ x ∈ R,ΦA,ε(λ, x) = ϕµε(x) + sgn(x)
iλ+ ερ

A(x)

∫ |x|
0

ϕµε(z)A(z)dz.

It possesses the following properties:

i) For every x ∈ R, the function λ→ ΦA,ε(λ, x) is entire on C.

ii) We assume that ε ∈ [−1, 1]. There exists a positive constant M such that for
all x ∈ R and for all λ ∈ R, with |λ| ≥

√
1− ε2%

|ΦA,ε(λ, x)| ≤M(1 + |x|)(1 +
√
λ2 + ρ2)e−ρ|x|.

iii) For all x ∈ R\{0} and λ ∈ C, the function ΦA,ε(λ, x) admits the Laplace type
integral representation

ΦA,ε(λ, x) =

∫ |x|
−|x|

K(x, y)eiλydy, (9)

where K(x, .) is a continuous function on (−|x|, |x|), with support in [−|x|, |x|].

We proceed as [24], we prove the following:

Proposition 1 We assume that ε ∈ [−1, 1]. Let p be polynomial of degree m. Then
there exists a positive constant C such that for all λ ∈ R, with |λ| ≥

√
1− ε2% and

for all x ∈ R, we have

|p( ∂
∂λ

)ΦA,ε(λ, x)| ≤ C(1 + |λ|)(1 + |x|)m+2e−%|x|. (10)

We finish this subsection by giving another version of Leibnitz formula.

Proposition 2 ([5]). We assume that ε ∈ [−1, 1]. Let p be polynomial of degree m.
Then there exists a positive constant C such that for all λ ∈ R, and for all x ∈ R,
we have

|p( ∂
∂λ

)ΦA,ε(λ, x)| ≤ C(1 + |λ|)(1 + |x|)m+2e−%(1−
√
1−ε2)|x|. (11)
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2.2 Generalized Fourier transform

We denote by
LpA(R), 1 ≤ p ≤ ∞, the space of measurable functions f on R satisfying

‖f‖LpA(R) =

(∫
R
|f(x)|pA(x)dx

)1/p

<∞, if 1 ≤ p <∞

‖f‖L∞
A (R) = ess sup

x∈R
|f(x)| <∞.

S(R) the Schwartz space of rapidly decreasing functions on R.
Se(R) (resp. So(R)) the subspace of S(R) consisting of even (resp. odd) functions.

D(R) the space of C∞-functions on R which are of compact support.
S2ε (R), ε ∈ [−1, 1], the space of C∞-functions on R such that for all m,n ∈ N

qn,m(f) := sup
x∈R

e%(1+
√
1−ε2)|x|(1 + x2)m| d

n

dxn
f(x)| <∞.

The topology of S2ε (R) is defined by the semi-norms qn,m, m,n ∈ N.
S2ε,e(R) (resp. S2ε,o(R)) the subspace of S2ε (R) consisting of even (resp. odd)

functions.
For f ∈ L1

A(R), the generalized Fourier transform is defined by

FTA,ε (f)(λ) =

∫
R
f(x)ΦA,ε(λ,−x)A(x)dx, for all λ ∈ C. (12)

Proposition 3 ([5]). For λ ∈ C and g ∈ L1
A(R), we have

FTA,ε (g)(λ) = 2FL (ge)(µε) + 2(ε%+ iλ)FL (Jgo)(µε), (13)

where J is the integral operator defined by

Jf(x) =

∫ x

−∞
f(t)dt, x ∈ R, (14)

ge (resp. go) denotes the even (resp. odd) part of g, and FL stands for the Fourier
transform related to the differential operator L, defined on S2ε,e(R) by

FL(f)(λ) =

∫ ∞
0

f(x)ϕλ(x)A(x)dx, λ ∈ R,

ϕλ being the eigenfunction of L as defined by (7).

Proposition 4 ([5]). For all f ∈ D(R),

F−1TA,ε(f)(x) =

∫
R
f(λ)ΦA,ε(λ, x)dσε(λ), (15)

where

dσε(λ) = (1− ε%
iλ

)
|λ|√

λ2 − (1− ε2)%2|c(
√
λ2 − (1− ε2)%2)|2

1R\(−
√
1−ε2%,

√
1−ε2%)(λ)dλ,

(16)
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with c is a continuous function on (0,∞) such that

|c(s)|−2 ∼
{
C1s

2k as s→∞
C2s

2 as s→ 0,
(17)

for some C1, C2 ∈ R+.

Remark 1 1) For ε = 1, A(x) = (sinh |x|)2k(coshx)2k
′
, k ≥ k′ ≥ 0 and k 6= 0, we

have

dσ1(λ) = (1− %

iλ
)

dλ

|c(λ)|2

where

c (λ) :=
2ρ−iλΓ(k + 1

2)Γ(iλ)

Γ(12(ρ+ iλ))Γ(12(k − k′ + 1 + iλ))
, λ ∈ C\iN.

2) For ε = 0, A(x) = (sinh |x|)2k(coshx)2k
′
, k ≥ k′ ≥ 0 and k 6= 0, we have

dσ0(λ) =
dλ√

λ2 − %2|c(
√
λ2 − %2)|2

1R\[−%,%](λ)dλ,

where

c (λ) :=
2ρ−iλΓ(k + 1

2)Γ(iλ)

Γ(12(ρ+ iλ))Γ(12(k − k′ + 1 + iλ))
, λ ∈ C\iN.

Proposition 5 ([5]). i) Plancherel formula for FTA,ε. For all f, g in S2ε (R) we
have ∫

R
f(x)g(−x)A (x) dx =

∫
R
FTA,ε(f)(ξ)FTA,ε(g)(ξ)dσε(ξ). (18)

3 Spectrum theorems of functions for the generalized
Fourier transform

We begin by the following definition.

Definition 1 Let u be a distribution on R and P a polynomial on R with complex
coefficients. Then we let

R(P, u) = sup
{
|P (y)| : y ∈ suppu

}
∈ [0,∞],

where by convention R(P, u) = 0 if u = 0.

Theorem 1 Let P be a non-constant polynomial. For any function f ∈ S2ε (R) the
following relation holds

lim
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A (R) = R(P,FTA,ε(f)). (19)
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For prove this theorem we need the following key propositions.

Proposition 6 ([5]) The generalized Fourier transform FTA,ε is a bijection from
S2ε (R) to S(R).

Proposition 7 (i) Let f ∈ S2ε (R) and g a nice function. Then∫
R
TA,εf(x)g(−x)A(x)dx =

∫
R
f(x)TA,εg(−x)A(x)dx. (20)

(ii) For f ∈ S2ε (R)

FTA,ε (TA,εf) (y) = iyFTA,εf(y), for all y ∈ R. (21)

(iii) For f ∈ S2ε (R)

FTA,ε (4A,ε f)(y) = −y2FTA,ε (f)(y), for all y ∈ R, (22)

where 4A,ε is the generalized Laplace operator on R given by

∀x ∈ R, 4A,ε f(x) := T 2
A,εf(x). (23)

Proof. Let f ∈ S2ε (R) and g a nice function, and consider the bracket

〈f, g〉 =

∫
R
f(x)g(−x)A(x)dx.

First, we have

〈f ′, g〉 =

∫
R
f ′(x)g(−x)A(x)dx = −

∫
R
f(x)

d

dx
[g(−x)A(x)]dx

= −
∫
R
f(x)g(−x)A′(x)dx+

∫
R
f(x)g′(−x)A(x)dx

= 〈f, g′〉+ 〈f, gA′

A 〉

since A′(x)
A(x) is odd.

Second, we have

〈12
A′

A (f − f̆), g〉 =

∫
R

A′(x)

A(x)

(f(x)− f(−x)

2

)
g(−x)A(x)dx =

∫
R

(f(x)− f(−x)

2

)
g(−x)A′(x)dx

= 1
2

∫
R

(
A′(x)f(x)g(−x)−A′(x)f(−x)g(−x)

)
dx

= 1
2

∫
R

(
A′(x)f(x)g(−x)−A′(−x)f(x)g(x)

)
dx

= 1
2

∫
R

(
A′(x)f(x)g(−x) +A′(x)f(x)g(x)

)
dx

= 1
2

∫
R
A′(x)f(x)

(
g(−x) + g(x)

)
dx

=

∫
R

A′(x)

A(x)
f(x)

(g(x) + g(−x)

2

)
A(x)dx

= −〈f, 12
A′

A (g + ğ)〉
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again using that A′(x)
A(x) is odd.

Finally,

〈(−ε%f̆), g〉 = −ε%
∫
R
f(−x)g(−x)A(x)dx

= −ε%
∫
R
f(x)g(x)A(x)dx

= 〈f, (−ε%ğ)〉.

All together, this gives

〈TA,εf, g〉 = 〈f ′ + 1
2
A′

A (f − f̆)− ε%f̆ , g〉
= 〈f, g′ + gA

′

A −
1
2
A′

A (g + ğ)− ε%ğ〉
= 〈f, g′ + 1

2
A′

A (g − ğ)− ε%ğ〉
= 〈f, TA,εg〉.

Assertion (ii) follows by substituting in (20) g by ΦA,ε(λ, .). Assertion (iii) is imme-
diately from (ii).

Remark 2 The results in this proposition improve [[5], Lemma 3.1 and Lemma
8.10].

Proposition 8 Let P be a polynomial and f ∈ S2ε (R). Then in the extended positive
real numbers

lim sup
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≤ R(P,FTA,ε(f)). (24)

Proof. Suppose firstly that R(P,FTA,ε(f)) = 0. Then FTA,ε(f) = 0, and hence
from Proposition 6, f = 0. Thus (24) is immediately.

Moreover, the inequality (24), is clear when R(P,FTA,ε(f)) = ∞. So we can
assume that

0 < R(P,FTA,ε(f)) <∞.

Hölder’s inequality gives

||f ||2L2
A(R)

=

∫
R

(1+x2)−1(1+x2)|f(x)|2A (x)dx ≤ C sup
x∈R

e2%(1+
√
1−ε2)|x|(1+x2)2m|f(x)|2,

(25)
for m ≥ 1. Thus

||f ||L2
A(R)

≤ C sup
x∈R

e%(1+
√
1−ε2)|x|(1 + x2)m|f(x)|.

Consequently for all n ∈ N, we deduce that

||Pn(−iTA,ε)f ||L2
A(R)

≤ C supx∈R e
%(1+

√
1−ε2)|x|(1 + x2)m|Pn(−iTA,ε)f(x)|

≤ C supx∈R e
%(1+

√
1−ε2)|x|(1 + x2)m

∣∣∣[F−1TA,ε(Pn(ξ)FTA,ε(f)(x)
)]∣∣∣.
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Using the continuity of F−1TA,ε we can show that

||Pn(−iTA,ε)f ||L2
A(R)

≤ C sup
ξ∈R

∑
0≤l,j≤M

(1 + ξ2)j
∣∣∣ dl
dξl

[
Pn(ξ)FTA,ε(f)(ξ)

]∣∣∣, (26)

with positive constant C and integer M , independent of n. Using Leibniz’s rule we
deduce that

||Pn(−iTA,ε)f ||L2
A(R)

≤ CnM sup
y∈suppFTA,ε (f)

|P (y)|n−M ,

with C is a constant independent of n. Hence, from the previous inequalities we
obtain

lim sup
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≤ sup
y∈suppFTA,ε (f)

|P (y)| = R(P,FTA,ε(f)).

Proposition 9 Let P be a polynomial. Suppose that Pn(−iTA,ε)f ∈ L2
A(R) for all

n ∈ N0. Then in the extended positive real numbers

lim inf
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≥ R(P,FTA,ε(f)). (27)

Proof. Fix ξ0 ∈ suppFTA,ε(f). We can assume that |P (ξ0)| 6= 0. We will show that

lim inf
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≥ |P (ξ0)| − ε,

for any fixed ε > 0 such that 0 < 2ε < |P (ξ0)|.
To this end, choose and fix χ ∈ D(R) such that 〈FTA,ε(f), χ〉 6= 0, and

suppχ ⊂
{
ξ ∈ R : |P (ξ0)| − ε < |P (ξ)| < |P (ξ0)|+ ε

}
.

For n ∈ N, let χn(ξ) = P−n(ξ)χ(ξ). On the follow we want to estimate ||F−1TA,ε(χn)||L2
A(R)

.
Indeed as the above we have

||F−1TA,ε(χn)||L2
A(R)

≤ C supx∈R e
%(1+

√
1−ε2)|x|(1 + x2)m|F−1TA,ε(χn)(x)|

≤ C supx∈R e
%(1+

√
1−ε2)|x|(1 + x2)m

∣∣∣[F−1TA,ε(P−n(ξ)χ
)

(x)
]∣∣∣,

with m ≥ 1. Using the continuity of F−1TA,ε we can show that

||F−1TA,ε(χn)||L2
A(R)

≤ C sup
ξ∈R

∑
0≤l,j≤M

(1 + ξ2)j
∣∣∣ dl
dξl

[
P−n(ξ)χ(ξ)

]∣∣∣, (28)

with positive constant C and integer M , independent of n. Using Leibniz’s rule we
deduce that

||F−1TA,ε(χn)||L2
A(R)

≤ CnM (|P (ξ0)| − ε)−n.
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As

〈FTA,ε(f), χ〉 = 〈FTA,ε(f), Pn(ξ)χn〉 = 〈Pn(ξ)FTA,ε(f), χn〉 = 〈(Pn(−iTA,ε)f),F−1TA,ε(χn)〉.

Hence, from the Hölder inequality we obtain

|〈FTA,ε(f), χ〉| ≤ C||Pn(−iTA,ε)f ||L2
A(R)
||F−1TA,ε(χn)||L2

A(R)
≤ CnM (|P (ξ0)|−ε)−n||Pn(−iTA,ε)f ||L2

A(R)
.

Since |〈FTA,ε(f), χ〉| > 0, we deduce that

lim inf
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≥ |P (ξ0)| − ε.

Thus

lim inf
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≥ sup
y∈suppFTA,ε (f)

|P (y)| = R(P,FTA,ε(f)).

Proof of Theorem 1. Putting Proposition 8 and Proposition 9 together, we get
the result.

Definition 2 Let P be a non-constant polynomial, we define the polynomial domain
Up by

Up :=
{
x ∈ R : |P (x)| ≤ 1

}
.

We have the following result.

Corollary 1 Let f ∈ S2ε (R), ε ∈ [−1, 1]. The generalized Fourier transform FTA,ε(f)
vanishes outside a domain UP , if and only if,

lim sup
n→∞

||Pn(−iTA,ε)f ||
1
n

L2
A(R)

≤ 1. (29)

Remark 3 If we take P (y) = −y2, then P (−iTA,ε) = 4A,ε, and Theorem 1 and
Corollary 1 characterize functions such that the support of their generalized Fourier
transform is [−1, 1].

4 Characterization of the functions which their general-
ized Fourier transform has the support inside or out-
side intervals

Notations. We denote by

S ′2ε(R), ε ∈ [−1, 1], the space of generalized temperate distributions on R, it is
the dual space of S2ε (R).

E ′(R) the space of distributions on R with compact support.
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Definition 3 i) The generalized Fourier transform of a distribution τ in S ′2ε(R) is
defined by

〈FTA,ε(τ), φ〉 = 〈τ,F−1TA,ε(φ)〉, for all φ ∈ S(R). (30)

ii) The inverse of the generalized Fourier transform of a distribution τ in E ′(R)
is defined by

∀x ∈ R, F−1TA,ε(τ)(x) = 〈τλ,Φλ,ε(x)〉. (31)

From the Proposition 7 it is easy to obtain the following:

Corollary 2 The generalized Fourier transform FTA,ε is a topological isomorphism

from S ′2 (R) onto S ′(R). Moreover, for all τ ∈ S ′2ε(R), we have

FTA,ε(TA,ε τ) = iyFTA,ε(τ) (32)

and

FTA,ε(4A,ε τ) = −y2FTA,ε(τ). (33)

Theorem 2 Let u ∈ E(R) ∩ S ′2ε(R), ε ∈ [−1, 1]. Then the support of FTA,ε(u) is

contained in the compact Vr,ε :=
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| ≤ r

}
for a

polynomial P and a constant r ≥ 0, if, and only if, for each R > r, there exist
NR ∈ N0 and a positive constant C(R) such that

|Pn(−iTA,ε)(u)(x)| ≤ C(R)Rn(1 + |x|)NRe−%|x|, (34)

for all n ∈ N and x ∈ R.

Proof. Assume that support of FTA,ε(u) is contained in the compact Vr,ε. Let
R > r and let η ∈ (0, R − r). We choose χ ∈ D(R) such that χ ≡ 1 on an open
neighborhood of support of FTA,ε(u), and χ ≡ 0 outside VR− η

3
,ε. As FTA,ε(u) is of

order N , there exists a positive constant C such that for all x ∈ R

|Pn(−iTA,ε)(u)(x)| =
∣∣∣F−1TA,ε(Pn(ξ)FTA,ε(u)

)
(x)
∣∣∣

=
∣∣∣F−1TA,ε(χ(ξ)Pn(ξ)FTA,ε(u)

)
(x)
∣∣∣

= |〈χ(ξ)Pn(ξ)FTA,ε(u)(ξ),ΦA,ε(ξ, x)〉|
= |〈FTA,ε(u)(ξ), χ(ξ)Pn(ξ)ΦA,ε(ξ, x)〉|
≤ C sup|ξ|≥

√
1−ε2%

∑
0≤j≤N

∣∣∣Dj
(
χ(ξ)Pn(ξ)ΦA,ε(ξ, x)

)∣∣∣.
Thus from the Leibniz formula (10) we obtain that

∀n ∈ N0, |Pn(−iTA,ε)(u)(x)| ≤ C1(R)nN (R−η
3

)n(1+|x|)N+2e−%|x| ≤ C2(R)Rn(1+|x|)N+2e−%|x|.

Conversely we assume that we have (34).
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Suppose ξ0 ∈ R is fixed and such that |ξ0| ≥
√

1− ε2%, and |P (ξ0)| ≥ R+ η, for
some η > 0. Choose and fix χ ∈ D(R) such that

suppχ ⊂
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| ≥ R+

η

3

}
.

For n ∈ N, we introduce the function χn defined by χn(ξ) = P−n(ξ)χ(ξ). We have

〈FTA,ε(u), χ〉 = 〈FTA,ε(u), Pn(ξ)χn〉 = 〈Pn(ξ)FTA,ε(u), χn〉
= 〈FTA,ε(Pn(−iTA,ε)u), χn〉
= 〈

(
e%|x|(1 + |x|)−NPn(−iTA,ε)u

)
, e−%|x|(1 + |x|)NF−1TA,ε(χn)〉.

Hence, from the Hölder inequality we obtain

|〈FTA,ε(u), χ〉| ≤ ||e%|x|(1+|x|)−NPn(−iTA,ε)u||L∞
A (R)||e−%|x|(1+|x|)NF−1TA,ε(χn)||L1

A(R)
.

We proceed as in Proposition 9, we prove that

||e−%|x|(1 + |x|)NF−1TA,ε(χn)||L1
A(R)

≤ CnM (R+
η

3
)−n.

Thus

|〈FTA,ε(u), χ〉| ≤ C(R)nM
( R

R+ η
3

)n
.

Hence we deduce 〈FTA,ε(u), χ〉 = 0, which implies that ξ0 /∈ supp FTA,ε(u). Thus
support of FTA,ε(u) is contained in the compact Vr,ε.

We proceed as the above theorem, we use the same ideas and steps and the
Leibnitz formula (11), we prove the following result.

Theorem 3 Let u ∈ E(R) ∩ S ′2ε(R), ε ∈ [−1, 1]. Then the support of FTA,ε(u) is

contained in the compact Vr,1 :=
{
ξ ∈ R : |P (ξ)| ≤ r

}
for a polynomial P and a

constant r ≥ 0, if, and only if, for each R > r, there exist NR ∈ N0 and a positive
constant C(R) such that

|Pn(−iTA,ε)(u)(x)| ≤ C(R)Rn(1 + |x|)NRe−%(1−
√
1−ε2)|x|, (35)

for all n ∈ N and x ∈ R.

Notations. Let ε ∈ [−1, 1] and r > 0, we denote by

Br,ε :=
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| < r

}
, Sr,ε :=

{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| = r

}
.

Theorem 4 Let u = u0 ∈ E(R)∩S ′2ε(R), and consider the infinite series {u−n}n∈N
of generalized tempered distributions defined as u−n+1 = P (−iTA,ε)un, for a polyno-
mial P and for all n ∈ N. Let r > 0. Assume, for all R ∈ (0, r) there exist constants
NR ∈ N0 and C(R) > 0, such that

∀x ∈ R, |u−n(x)| ≤ C(R)R−n(1 + |x|)NRe−%|x|, (36)

for all n ∈ N. Then suppFTA,ε(u) ∩Br,ε = ∅.
On the other hand, if suppFTA,ε(u) ∩ Br,ε = ∅ and suppFTA,ε(u) is compact, then
(36) holds, for all R ∈ (0, r).
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Proof. Assume that we have (36). For a fixed R ∈ (0, r) let η > 0. Choose and fix
χ ∈ D(R) such that

suppχ ⊂
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| ≤ R− η

3

}
,

and put χn = Pn(ξ)χ. We have

〈FTA,ε(u), χ〉 = 〈FTA,ε(u), P−n(ξ)χn〉 = 〈P−n(ξ)FTA,ε(u), χn〉
= 〈FTA,ε(u−n), χn〉
= 〈

(
e%|x|(1 + |x|)−Nu−n

)
, e−%|x|(1 + |x|)NF−1TA,ε(χn)〉.

Hence, from the Hölder inequality we obtain

|〈FTA,ε(u), χ〉| ≤ ||e%|x|(1 + |x|)−Nu−n||L∞
A (R)||e−%|x|(1 + |x|)NF−1TA,ε(χn)||L1

A(R)
.

We proceed as in Proposition 9, we prove that

||e−%|x|(1 + |x|)NF−1TA,ε(χn)||L1
A(R)

≤ CnM (R− η

3
)n.

Thus

∀n ∈ N, |〈FTA,ε(u), χ〉| ≤ C(R)nM
(R− η

3

R

)n
.

Thus we deduce 〈FTA,ε(u), χ〉 = 0, which implies that suppFTA,ε(u) ∩Br,ε = ∅.
Assume that suppFTA,ε(u)∩Br,ε = ∅ and suppFTA,ε(u) is compact. Let R ∈ (0, r)

and let η ∈ (0, r −R). Choose χ ∈ D(R) such that χ ≡ 1 on an open neighborhood
of support of FTA,ε(u), and χ ≡ 0 on VR+ η

3
,ε. As u = Pn(−iTA,ε)u−n, we have

|u−n(x)| =
∣∣∣F−1TA,ε(P−n(ξ)FTA,ε(u)

)
(x)
∣∣∣

=
∣∣∣F−1TA,ε(χ(ξ)P−n(ξ)FTA,ε(u)

)
(x)
∣∣∣

= |〈χ(ξ)P−n(ξ)FTA,ε(u)(ξ),ΦA,ε(ξ, x)〉|
= |〈FTA,ε(u)(ξ), χ(ξ)P−n(ξ)ΦA,ε(ξ, x)〉|
≤ C sup

|ξ|≥
√
1−ε2%

∑
0≤j≤N

∣∣∣Dj
(
χ(ξ)P−n(ξ)ΦA,ε(ξ, x)

)∣∣∣.
Thus from the Leibniz formula (10) we obtain that

∀n ∈ N0, |u−n(x)| ≤ C1(R)nN (R+
η

3
)−n(1+|x|)N+2e−%|x| ≤ C2(R)R−n(1+|x|)N+2e−%|x|.

We proceed as the above theorem, we use the same ideas and steps and the
Leibnitz formula (11), we prove the following result.

Theorem 5 Let u = u0 ∈ E(R)∩S ′2ε(R), and consider the infinite series {u−n}n∈N
of generalized tempered distributions defined as u−n+1 = P (−iTA,ε)un, for a polyno-
mial P and for all n ∈ N. Let r > 0. Assume, for all R ∈ (0, r) there exist constants
NR ∈ N0 and C(R) > 0, such that

∀x ∈ R, |u−n(x)| ≤ C(R)R−n(1 + |x|)NRe−%(1−
√
1−ε2)|x|, (37)
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for all n ∈ N. Then suppFTA,ε(u) ∩Br,1 = ∅.
On the other hand, if suppFTA,ε(u) ∩ Br,1 = ∅ and suppFTA,ε(u) is compact, then
(37) holds, for all R ∈ (0, r).

Combining Theorem 2 and Theorem 4 together, we get

Corollary 3 Let u = u0 ∈ E(R)∩S ′2ε(R), ε ∈ [−1, 1], and consider the infinite series
{un}n∈Z of generalized tempered distributions defined as un+1 = P (−iTA,ε)un, for
a polynomial P and for all n ∈ Z. Let R > 0. Then suppFTA,ε(u) is contained in
SR,ε, if and only if for all η > 0, there exist constants Nη ∈ N0 and Cη > 0, such
that

∀x ∈ R, |un(x)| ≤ CηRn(1 + η)|n|(1 + |x|)Nηe−%|x| (38)

for all n ∈ Z.

Combining Theorem 3 and Theorem 5 together, we get

Corollary 4 Let u = u0 ∈ E(R)∩S ′2ε(R), ε ∈ [−1, 1], and consider the infinite series
{un}n∈Z of generalized tempered distributions defined as un+1 = P (−iTA,ε)un, for
a polynomial P and for all n ∈ Z. Let R > 0. Then suppFTA,ε(u) is contained in
SR,1, if and only if for all η > 0, there exist constants Nη ∈ N0 and Cη > 0, such
that

∀x ∈ R, |un(x)| ≤ CηRn(1 + η)|n|(1 + |x|)Nηe−%(1−
√
1−ε2)|x| (39)

for all n ∈ Z.

Remark 4 Theorem 4 and Corollary 3 are the analogue of the new real Paley-
Wiener theorems for the Fourier transform, proved by Andersen (see [2]).

5 Characterisation for the spectrum of the Opdam-Cherednik
transform on LpA(R) via the generalized potential func-
tion

In this section, we assume that ε = 1, and A(x) = (sinh |x|)2k(coshx)2k
′
, k ≥ k′ ≥ 0

and k 6= 0. In this case the generalized Fourier transform is the Opdam-Cherednik
transform on R.

Definition 4 Let f ∈ S ′2ε(R). The tempered generalized function R0f is termed the
generalized potential of f if −4A,ε(R0f) = f , that is

〈R0f,4A,εϕ〉 = −〈f, ϕ〉, for all ϕ ∈ S2ε (R).

Theorem 6 Let 1 ≤ p < 2 and Rn0f ∈ L
p
A(R) for all n ∈ N0. If 0 /∈ suppFTA,ε

(
Rn0f

)
for all n ∈ N, then

lim
n→∞

||Rn0f ||
1
n

LpA(R)
=

1

σ20
, (40)

where
σ0 = inf

{
|ξ| : ξ ∈ suppFTA,ε(f)

}
.
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For prove this theorem we need the following lemmas.

Lemma 1 If σ0 > 0, then

suppFTA,ε
(
Rn0f

)
= suppFTA,ε(f), n = 1, .... (41)

Proof. As

(−4A,ε)
n(Rn0f) = f

we deduce that

FTA,ε(f) = ξ2nFTA,ε
(
Rn0f

)
.

Therefore,

suppFTA,ε(f) ⊂ suppFTA,ε
(
Rn0f

)
⊂ FTA,ε(f) ∪

{
0
}
.

So, to obtain (41), it is enough to use the hypothesis 0 /∈ suppFTA,ε
(
Rn0f

)
.

Lemma 2 If σ0 > 0, then

lim sup
n→∞

||Rn0f ||
1
n

LpA(R)
≤ 1

σ20
. (42)

Proof. From (41) we have

suppFTA,ε
(
Rn0f

)
⊂ R\(−σ0, σ0). (43)

For any η > 0, η < σ0
2 we choose an even function h ∈ E(R) satisfying

h(ξ) =

{
1 if |ξ| ≥ σ0 − η
0 if |ξ| < σ0 − 2η.

Let χ be an arbitrary element in S2ε (R). Then it follow from (43) that

〈Rn0f, χ〉 = 〈FTA,ε
(
Rn0f

)
,FTA,ε(χ)〉

= 〈FTA,ε
(
Rn0f

)
, hFTA,ε(χ)〉

= 〈Rn0f, (FTA,ε)−1
(
hFTA,ε(χ)

)
〉.

Therefore,

〈Rn0f, χ〉 = 〈Rn0f, ϕ〉, (44)

where

ϕ = (FTA,ε)
−1
(
hFTA,ε(χ)

)
.

We put

ϕn = (FTA,ε)
−1
(h(ξ)

ξ2n
FTA,ε(χ)

)
.
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Then ϕn ∈ S2ε (R) and

|〈f, ϕn〉| = |〈(−4A,ε)
nRn0f, ϕn〉|

= |〈Rn0f, (−4A,ε)
nϕn〉|

= |〈Rn0f, ϕ〉|.
(45)

Combining (44) and (45), we get

|〈Rn0f, χ〉| = |〈f, ϕn〉| = |〈f, χ ∗k (FTA,ε)
−1
(h(ξ)

ξ2n

)
〉|, (46)

where ∗k is the generalized convolution associated with the Jacobi-Cherednik oper-
ator. Therefore, we have

||Rn0f ||LpA(R) = sup{
χ∈S2ε (R): ||χ||

L2
A

(R)≤1
} ∣∣∣〈f, χ ∗k (FTA,ε)

−1
(h(ξ)

ξ2n

)
〉
∣∣∣

≤ sup{
χ∈S2ε (R): ||χ||

L2
A

(R)≤1
} ||f ||LpA(R)||χ ∗k (FTA,ε)

−1
(h(ξ)

ξ2n

)
||LqA(R)

≤ ||f ||LpA(R)||(FTA,ε)
−1
(
h(ξ)
ξ2n

)
||L2

A(R)
.

Hence

lim sup
n→∞

||Rn0f ||
1
n

LpA(R)
≤ lim sup

n→∞
||(FTA,ε)

−1
(h(ξ)

ξ2n

)
||

1
n

L2
A(R)

. (47)

We put

µ = σ0 − 2η.

Using the Parseval identity we can show that

lim sup
n→∞

||(FTA,ε)
−1
(h(ξ)

ξ2n

)
||

1
n

L2
A(R)

≤ 1

µ2
. (48)

Combining (47) and (48), we get

lim sup
n→∞

||Rn0f ||
1
n

LpA(R)
≤ 1

(σ0 − 2η)2

and then (42) by letting η → 0.

Lemma 3 If σ0 > 0, then

lim inf
n→∞

||Rn0f ||
1
n

LpA(R)
≥ 1

σ20
. (49)

Proof. Without loss of generality we may assume that

σ0 = inf
{
ξ ∈ R+ : ξ ∈ suppFTA,ε(f)

}
.
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Hence, there exists a function χ ∈ D(R) such that

suppχ ⊂
{
ξ : σ0 − η < |ξ| < σ0 + η

}
and 〈FTA,ε(f), χ〉 6= 0.

Therefore,

0 6= |〈f,F−1TA,ε(χ)〉| = |〈(−4A,ε)
nRn0f,F−1TA,ε(χ)〉|

= |〈Rn0f, (−4A,ε)
nF−1TA,ε(χ)〉|

≤ ||Rn0f ||LpA(R)||(−4A,ε)
nF−1TA,ε(χ)||LqA(R). (50)

So

lim inf
n→∞

||Rn0f ||
1
n

LpA(R)
≥ 1

lim sup
n→∞

||(−4A,ε)
nF−1TA,ε(χ)||LqA(R)

. (51)

We proceed as [17], we prove that

lim sup
n→∞

||(−4A,ε)
nF−1TA,ε(χ)||

1
n

LqA(R)
≤ (σ0 + η)2.

So by (51) we obtain

lim inf
n→∞

||Rn0f ||
1
n

LpA(R)
≥ 1

(σ0 + η)2
, η > 0,

and then (49).
Proof of Theorem 6. We divide our proof into two cases.
Case 1. σ0 = 0. We have ξ0 ∈ suppFTA,ε(f). Hence, for any η > 0 there is a
function χ ∈ D(R) such that suppχ ⊂ (−η, η) such that 〈FTA,ε(f), χ〉 6= 0. Arguing
as above we obtain

lim inf
n→∞

||Rn0f ||
1
n

LpA(R)
≥ 1

lim sup
n→∞

||(−4A,ε)
nF−1TA,ε(χ)||

1
n

LqA(R)

≥ 1

η2
.

Therefore

lim inf
n→∞

||Rn0f ||
1
n

LpA(R)
=∞.

So we always have

lim
n→∞

||Rn0f ||
1
n

LpA(R)
=

1

σ20
.

Case 2. If σ0 > 0. Combining (42) and (49), we arrive to (40).

6 Real Paley-Wiener theorems for the generalized Fourier
transform on S ′2ε(R)

Let u ∈ S ′2ε(R), ε ∈ [−1, 1]. We put

Γu := inf
{
r ∈ (0,∞] : supp(FTA,ε(u)) ⊂ [−r, r]

}
.
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Theorem 7 Let u ∈ S ′2ε(R). Then the support of FTA,ε(u) is included in [−M,M ],
M > 0, if and only if for all R > M we have

lim
n→∞

R−2n4n
A,εu = 0, in S ′2ε(R).

Proof. Let u ∈ S ′2ε(R) and M > 0 such that

lim
n→∞

R−2n4n
A,εu = 0, for all R > M.

Let ϕ ∈ D(R) satisfy supp(ϕ) ⊂ [−M,M ]c. We have to prove that

〈FTA,ε(u), ϕ〉 = 0.

Let r > M satisfy ϕ(x) = 0 for all x ∈ [−r, r] and R ∈ (M, r). Then for all n ∈ N
the function x−2nϕ is in D(R) and we can write

〈FTA,ε(u), ϕ〉 = 〈(−x2)nR−2nFTA,ε(u), (−x2)−nR2nϕ〉,

and by formula (33), we have

〈FTA,ε(u), ϕ〉 = 〈FTA,ε(R
−2n4n

A,ε(u)), (−x2)−nR2nϕ〉.

The hypothesis implies that FTA,ε(R−2n4n
A,ε(u))→ 0 in S ′(R). Moreover from the

Leibniz formula we deduce that (−x2)−nR2nϕ → 0 in S(R). So using the Banach-
Steinhaus theorem we prove that

〈FTA,ε(u), ϕ〉 = 0.

Conversely, let u ∈ S ′2ε(R) and M > 0 such that suppFTA,ε(u) ⊂ [−M,M ]. We
are going to prove that for all R > M

lim
n→∞

R−2n4n
A,εu = 0, in S ′2ε(R).

LetM < R and choose % ∈ (M,R) and ψ ∈ D(R) satisfying ψ ≡ 1 on a neighborhood
of [−M,M ] and ψ(x) = 0 for all x /∈ [−%, %]. Then for all ϕ ∈ D(R) we have

〈FTA,ε(u), ϕ〉 = 〈FTA,ε(u), ψϕ〉,

and then
〈FTA,ε(R

−2n4n
A,ε(u)), ϕ〉 = 〈FTA,ε(u), (−x2)nR−2nψϕ〉.

Finally we deduce the result by using the fact that (−x2)nR−2nψϕ→ 0 in S(R).

Corollary 5 From the previous theorem we obtain

Γu = inf
{
R > 0 : lim

n→∞
R−2n4n

A,εu = 0, in S ′2ε(R)
}
.

Let u ∈ S ′2ε(R). We put γu := sup
{
r ∈ [0,∞) : supp(FTA,ε(u)) ⊂ (−r, r)c

}
.
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Theorem 8 Let u ∈ S ′2ε(R) such that (−x2)−nFTA,ε(u) ∈ S ′(R) for all n ∈ N.

Let un = F−1TA,ε
(

(−x2)−nFTA,ε(u)
)

. Then the support of FTA,ε(u) is included in

(−M,M)c, M > 0, if and only if for all R < M we have

lim
n→∞

R2nun = 0, in S ′2ε(R).

Proof. Let u ∈ S ′2ε(R) and M > 0 such that

lim
n→∞

R2nun = 0, for all R < M.

Let ϕ ∈ D(R) satisfy supp(ϕ) ⊂ (−M,M). We want to prove that

〈FTA,ε(u), ϕ〉 = 0.

Let r ∈ (0,M) such that suppϕ ⊂ (−r, r) and R ∈ (r,M). Then for all n ∈ N the
function x2nϕ is in D(R) and we can write

〈FTA,ε(u), ϕ〉 =
〈
(−x2)−nR2nFTA,ε(u), (−x2)nR−2nϕ

〉
=
〈
FTA,ε(R

2nun), (−x2)nR−2nϕ
〉
.

The hypothesis implies that FTA,ε(R2nun)→ 0 in S ′(R). Moreover from the Leibniz
formula we deduce that (−x2)nR−2nϕ→ 0 in S(R). So using the Banach-Steinhaus
theorem we prove that

〈FTA,ε(u), ϕ〉 = 0.

Conversely, let u ∈ S ′2ε(R) and M > 0 such that suppFTA,ε(u) ⊂ (−M,M)c. We
are going to prove that for all R < M

lim
n→∞

R2nun = 0, in S ′2ε(R).

Let M > R and choose % ∈ (R,M) and ψ ∈ D(R) satisfying ψ(x) ≡ 1 for |x| ≥ M+%
2

and ψ(x) = 0 for all |x| ≤ %. Then for all ϕ ∈ D(R) we have

〈FTA,ε(u), ϕ〉 = 〈FTA,ε(u), ψϕ〉,

and then

〈FTA,ε(R
nun), ϕ〉 = 〈FTA,ε(u), (−x2)−nR2nψϕ〉.

Finally we deduce the result by using the fact that (−x2)−nR2nψϕ→ 0 in S(R).

Corollary 6 From the previous theorem we obtain

γu = sup
{
R > 0, lim

n→∞
R2nun = 0, in S ′2ε(R)

}
.
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7 Roe’s theorem associated with type family of opera-
tors TA,ε

In [21] Roe proved that if a doubly-infinite sequence (fj)j∈Z of functions on

R satisfies
dfj
dx = fj+1 and |fj(x)| ≤ M for all j = 0,±1,±2, ... and x ∈ R, then

f0(x) = a sin(x+ b) where a and b are real constants.
The purpose of this section is to generalize this theorem for the operators TA,ε.

Theorem 9 Suppose P (ξ) =
∑
n

anξ
n is real-valued and let {fj}∞−∞ be a sequence

of complex-valued functions on R so that

∀ j ∈ Z, fj+1 = P (−iTA,ε)fj .

(i) Let a ≥ 0, R > 0, and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)ae−%|x|, (52)

where (Mj)j∈Z satisfies the sublinear growth condition

lim
j→∞

M|j|

j
= 0. (53)

Then f = f+ + f− where P (−iTA,ε)f+ = Rf+ and P (−iTA,ε)f− = −Rf−.
If R (or −R) is not in the range of P then f+ = 0 (or f− = 0).

(ii) If we replace (53) with

lim
j→∞

M|j|

(1 + ε)|j|
= 0, (54)

for all j > 0, then the span of (fj)j is finite dimensional. Moreover, f0 = f+ + f−,
where, for some integer N , (P (−iTA,ε)−R)Nf+ = 0 and (P (−iTA,ε) +R)Nf− = 0.
Thus f+ (or f− ) is a generalized eigenfunction of P (−iTA,ε) with eigenvalue R (or
−R).

In order to prove Theorem 9 we need the following lemmas:

Lemma 4 Let (fj)j∈Z is be a sequence of functions on R satisfying

fj+1 = P (−iTA,ε)fj , (55)

|fj(x)| ≤MjR
j(1 + |x|)ae−%|x|, (56)

and

lim
j→∞

M|j|

(1 + ε)|j|
= 0, (57)

for all ε > 0, then

supp(FTA,ε(f0)) ⊂ SR,ε :=
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| = R

}
.
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Proof. First we show that FTA,ε(f0) is supported in{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| ≤ R

}
.

To do this we need to show that

〈FTA,ε(f0), φ〉 = 0

if φ ∈ D(R) and supp(φ) ∩
{
ξ : |P (ξ)| ≤ R

}
= ∅. Since supp(φ) is compact, there

is some r < 1
R so that 1

|P (ξ)| ≤ r, for all ξ ∈ supp(φ). Then

〈FTA,ε(f0), φ〉 = 〈P jFTA,ε(f0),
φ
P j
〉

= 〈FTA,ε
(
P j(−iTA,ε)f0

)
, φ
P j
〉

= 〈P j(−iTA,ε)f0,F−1TA,ε(
φ
P j

)〉.

Choose an integer m with 2m ≥ 2a + 2. A calculation, using the hypothesis of the
lemma and Cauchy-Schwartz inequality, implies

|〈FTA,ε(f0), φ〉| ≤
∫
R
|P j(−iTA,ε)f0(x)||F−1TA,ε(

φ

P j
)(x)|A(x)dx

≤ CMjR
j supx∈R |e%|x|(1 + x2)mF−1TA,ε(

φ
P j

)(x)]|.

Using the continuity of F−1TA,ε and the fact that φ is supported in
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| ≥ R + η

}
for some fixed η > 0, it is not hard to prove that

the right-hand side of this goes to zero as j → ∞ and so 〈FTA,ε(f0), φ〉 = 0. To

complete the proof we need to show that FTA,ε(f0) is also supported in
{
ξ ∈ R :

|ξ| ≥
√

1− ε2% and |P (ξ)| ≥ R
}

, which means 〈FTA,ε(f0), φ〉 = 0 if φ is supported

in
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and |P (ξ)| ≤ R

}
. Here we use (55) to obtain

〈FTA,ε(f0), φ〉 = 〈FTA,ε(f−j), P
jφ〉

and the argument proceeds as before.

Lemma 5 We assume that −R is not a value of P (ξ). There exists an integer N
such that

(P (ξ)−R)N+1FTA,ε(f0) = 0. (58)

Proof. Using Lemma 4 and proceeding as in [14], we prove the result.

Lemma 6 ([8]). Let X be a finite dimensional complex vector space, and let Λ :
X → X be a linear map with eigenvalues λ1, ..., λp. Then X = X1 ⊕ ...⊕Xp, where
Xj = ker((Λ− λj)N ) and dimX = N .
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Proof of Theorem 9
We want to prove (i). Inverting the generalized Fourier transform in (58) yields

that
(P (−iTA,ε)−R)N+1f0 = 0. (59)

This equation implies

span
{
f0, f1, f2, ...

}
= span

{
f0, P (−iTA,ε)f0, ..., PN (−iTA,ε)f0

}
.

We shall now show that we can take N = 0 in (59). If not then (P (−iTA,ε)−R)f0 6=
0. Let p be the largest positive integer so that (P (−iTA,ε) − R)pf0 6= 0. Clearly
p ≤ N. Thus

f := (P (−iTA,ε)−R)p−1f0 ∈ span
{
f0, f1, ..., fN

}
will satisfy

(P (−iTA,ε)−R)2f = 0 and (P (−iTA,ε)−R)f 6= 0. (60)

Write
f = a0f0 + ...+ aNfN ,

for constants a0, ..., aN . Then

P j(−iTA,ε)f = a0fj + ...+ aNfN+j .

If
Cj = |a0|R0Mj + ...+ |aN |RNMj+N ,

then this and (52) imply

|P j(−iTA,ε)f(x)| ≤ CjRj(1 + |x|)ae−%|x|. (61)

By (53) these satisfy the sublinear growth condition

lim
j→∞

Cj
j

= 0. (62)

An induction using (60) implies for j ≥ 2 that

P j(−iTA,ε)f = Rj−1jP (−iTA,ε)f −Rj(j − 1)f = Rj−1j(P (−iTA,ε)−R)f +Rjf.

Thus

|(P (−iTA,ε)−R)f(x)| ≤ 1

jRj−1
|P j(−iTA,ε)f(x)|+R|f(x)|

j
≤ CjR

j
(1+|x|)ae−%|x|+R|f(x)|

j
.

Letting j → ∞ and using (62) implies (P (−iTA,ε) − R)f = 0. But this contradicts
(60). Consequently, N = 0 in (59). This completes the proof in the case that −R is
not in the range of P .
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In the case that R is not in the range of P we apply the same argument to
−P (−iTA,ε) to conclude P (−iTA,ε)f0 = −Rf0.
In the general case, let L = P 2(−iTA,ε). Then FTA,ε(Lf)(ξ) = P 2(ξ)FTA,ε(f)(ξ).
Lf2p = f2(p+1) and P 2(ξ) 6= −R. Thus we can (as before) conclude, for the sequence
(f2p)p∈Z that

Lf0 = P 2(−iTA,ε)f0 = R2f0.

Set f+ = 1
2(f0 + 1

RP (−iTA,ε)f0) and f− = 1
2(f0 − 1

RP (−iTA,ε)f0).
Then f = f+ + f−, P (−iTA,ε)f+ = Rf+ and P (−iTA,ε)f− = −Rf−. This completes
the proof of (i).

Now we want to prove (ii).
We first prove (ii) under the assumption that P (ξ) 6= −R. Using the growth condition
(54) and Lemma 6, we may still conclude that

supp(FTA,ε(f0)) ⊂ SR,ε :=
{
ξ ∈ R : |ξ| ≥

√
1− ε2% and P (ξ) = R

}
.

But then, as before, we can conclude that (59) holds. But this is enough to complete
the proof in this case. A similar argument shows that if P (ξ) 6= R, then (P (−iTA,ε)+
R)Nf0 = 0.
In the general case we again let L = P 2(−iTA,ε) and P0 = P 2. Then P0(ξ) 6= −R
and the span of (f2j)j is finite dimensional. The map P (−iTA,ε) takes the span of
(f2j)j onto the span of (f2j+1)j . Thus X is finite dimensional. Any f ∈ X will have
supp(f) inside the set defined by P (ξ) = ±R. From this it is not hard to show the
only possible eigenvalues of P (−iTA,ε) restricted to X are R and −R. The result
now follows from the last lemma.

Remark 5 (i) If we take P (y) = −y2, then P (−iTA,ε) = 4A,ε and Theorem 9 give
4A,εf0 = −Rf0. This characterizes eigenfunctions f of generalized Laplace operator

4A,ε with polynomial growth in terms of the size of the powers 4j
A,εf , −∞ < j <∞.

(ii) The previous theorem generalizes and improves the version presented in [4,
16, 17].

Theorem 10 Let ε ∈ [−1, 1]. Suppose P (ξ) =
∑
n

anξ
n is a non-constant polyno-

mial with complex coefficients. Let {fj}∞−∞ be a sequence of complex-valued functions
on R so that

∀ j ∈ Z, fj+1 = P (−iTA,ε)fj .

1) Let a ≥ 0 and let R > 0. Assume that for all η > 0, there exist constants
N ∈ N0 and C > 0, such that

∀x ∈ R, |fn(x)| ≤ CRn(1 + η)|n|(1 + |x|)Ne−%|x| (63)

is satisfied for all n ∈ Z. Then

f0 =
∑

λ∈SR,ε

N∑
j=0

c(λ, j)
dj

dξj |ξ=λ
ΦA,ε(ξ, .), (64)
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for constants c(λ, j) ∈ C and N ∈ N.
2) Let a ≥ 0 and let R > 0 and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)ae−%|x|, (65)

where (Mj)j∈Z satisfies the subpotential growth condition

lim
j→∞

M|j|

jm
= 0, (66)

for some m ≥ 0.
We have
(i) If P ′(λp) 6= 0, for all λp ∈ SR,ε, then N < m in (64).
In particular, if m = 1, then

f0 =
∑

λp∈SR,ε

fλp , where fλp = c(λp)ΦA,ε(λp, .)

(ii) If SR,ε consists of one point λ0 and m = 1 in (66), then

P (−iTA,ε)f0 = P (λ0)f0.

Proof. 1) Assume that {fj}∞−∞ satisfies (63). Then Corollary 3 implies that the sup-
port of FTA,ε(f0) is contained in the finite set SR,ε. A standard result in distribution
theory, see e.g., [[22], Theorem 6.25], infers that

FTA,ε(f0) =
∑

λ∈SR,ε

∑
0≤j≤N

c(λ, j)δ
(j)
λ

for constants c(λ, j) ∈ C, and some integer N . Here δjξ denotes the jth distributional
derivative of the delta function δξ at ξ.

The result follows with f0 = F−1TA,ε
(∑

λ∈SR,ε
∑

0≤j≤N c(λ, j)δ
(j)
λ

)
.

We want to prove 2) (i). For n ≥ 0, we have

〈fn, χ〉 = 〈FTA,ε(f0), P
n(λ)FTA,ε(χ)〉,

for any χ ∈ S2ε (R). Fix λp ∈ SR,ε such that P ′(λp) 6= 0 and let Np be the order of
FTA,ε(f) at λp. Choose χ ∈ S2ε (R) such that FTA,ε(χ) = 1 in a small neighborhood
of λp, and FTA,ε(χ) = 0 around the points VR,ε\{λp}. Then, for n > Np

〈fn, χ〉 = 〈FTA,ε(f0), Pn(λ)FTA,ε(χ)〉 = 〈
∑

0≤j≤Np

(
c(λp, j)δ

(j)
λp

)
, Pn(λ)FTA,ε(χ)〉

= c(λp, Np)n
NpPn−Np(λp)(P

′(λp))
Np + ...

plus lower order terms in n. Since |〈fn, χ〉| ≤ CMnR
n for a constant C > 0, by (65),

we have c(λp, Np) = 0 for Np ≥ m by(66).
If we assume that m = 1, then Np = 0 and condition (66) implies that the

condition (39) is satisfied. Thus from the above, Eq. (64) becomes

f0 =
∑

λp∈SR,ε

fλp , where fλp = c(λp)ΦA,ε(λp, .)
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for a constant c(λp) ∈ C.
We want to prove 2) (ii). Indeed, as in the above and from the assumptions on

{fj}∞−∞ we prove that

(P (−iTA,ε)− P (λ0))
N+1f0 = 0. (67)

This equation implies

span
{
f0, f1, f2, ...

}
= span

{
f0, P (−iTA,ε)f0, ..., PN (−iTA,ε)f0

}
.

We shall now show that we can take N = 0 in (67).
If not then (P (−iTA,ε)− P (λ0))f0 6= 0. Let p be the largest positive integer so that
(P (−iTA,ε)− P (λ0))

pf0 6= 0. Clearly p ≤ N. Thus

f := (P (−iTA,ε)− P (λ0))
p−1f0 ∈ span

{
f0, f1, ..., fN

}
will satisfy

(P (−iTA,ε)− P (λ0))
2f = 0 and (P (−iTA,ε)− P (λ0))f 6= 0. (68)

Write
f = a0f0 + ...+ aNfN ,

for constants a0, ..., aN . Then

P j(−iTA,ε)f = a0fj + ...+ aNfN+j .

If we put
Cj := |a0|R0Mj + ...+ |aN |RNMj+N ,

then by (65) we obtain

|P j(−iTA,ε)f(x)| ≤ CjRj(1 + |x|)ae−%|x|. (69)

By (66) Cj satisfies the sublinear growth condition

lim
j→∞

Cj
j

= 0. (70)

An induction using (68) implies for j ≥ 2 that

P j(−iTA,ε)f = jP (λ0)
j−1P (−iTA,ε)f−(j−1)P (λ0)

jf = jP (λ0)
j−1(P (−iTA,ε)−P (λ0))f+P (λ0)

jf.

Thus

|(P (−iTA,ε)−P (λ0))f(x)| ≤ 1

jRj−1
|P j(−iTA,ε)f(x)|+R|f(x)|

j
≤ CjR

j
(1+|x|)ae−%|x|+R|f(x)|

j
.

Letting j → ∞ and using (70) implies (P (−iTA,ε) − P (λ0))f = 0. But this contra-
dicts (68). Consequently, N = 0 in (67). This completes the proof.

We proceed as the above theorem, we use the same ideas and steps and the
Corollary 4, we prove the following result
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Theorem 11 Let ε ∈ [−1, 1]. Suppose P (ξ) =
∑
n

anξ
n is a non-constant polyno-

mial with complex coefficients. Let {fj}∞−∞ be a sequence of complex-valued functions
on R so that

∀ j ∈ Z, fj+1 = P (−iTA,ε)fj .

1) Let a ≥ 0 and let R > 0. Assume that for all η > 0, there exist constants
N ∈ N0 and C > 0, such that

∀x ∈ R, |fn(x)| ≤ CRn(1 + η)|n|(1 + |x|)Ne−%(1−
√
1−ε2)|x| (71)

is satisfied for all n ∈ Z. Then

f0 =
∑

λ∈SR,1

N∑
j=0

c(λ, j)
dj

dξj |ξ=λ
ΦA,ε(ξ, .), (72)

for constants c(λ, j) ∈ C and N ∈ N.

2) Let a ≥ 0 and let R > 0 and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)ae−%(1−

√
1−ε2)|x|, (73)

where (Mj)j∈Z satisfies the subpotential growth condition

lim
j→∞

M|j|

jm
= 0, (74)

for some m ≥ 0.

We have

(i) If P ′(λp) 6= 0, for all λp ∈ SR,1, then N < m in (72).

In particular, if m = 1, then

f0 =
∑

λp∈SR,1

fλp , where fλp = c(λp)ΦA,ε(λp, .)

(ii) If SR,1 consists of one point λ0 and m = 1 in (74), then

P (−iTA,ε)f0 = P (λ0)f0.

Remark 6 (i) I studied the analogue of the results presented in this paper in the
cadre of the Dunkl transform, Jacobi-Dunkl transform and the Opdam-Cherednik
transform.

(ii) In a forthcoming paper, we study the characterisation for the spectrum of
other generalized Fourier transforms via the generalized potential function.

(iii) The previous theorem is the analogue for the Theorems 1 and 6 of [2].
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8 Open Problem

I conjecture that the condition 0 /∈ suppFTA,ε
(
Rn0f

)
for all n ∈ N in the theorem 6

is not necessary.
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