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Abstract

We consider the harmonic analysis associated with the Heckman-
Opdam theory on RY. Through this theory, we have defined and
studied in [4], generalized wavelet transform on R?. In this paper,
we prove a Calderon type reproducing formula, which gives rise to
new representation for L% (RY)Y-functions.
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1 Introduction

Calderén’s reproducing formula was originally used in the so-called Calderén-
Zygmund theory of singular integral operators (see [1]). Besides other appli-
cations in decomposition of certain function spaces (see [3]), the Calderén’s
formula was proved to be a powerful tool for recovering any L?- function f
from its wavelet transform ®,(f) (see [2]), given for a scale a > 0 and position
b € R4, as follows: For g € L?(R%) a classical wavelet, we have

Q,(f)(a,b) = » f(2)Gap(2)dz, (a,b) € ]0, +oo[xR?, (1.1)
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where g, is the wavelet defined by
Gap(®) = Toga(z), o € RY (1.2)

with g, the function given by

() = 9(5). (1.3
Which satisfies
F(ga)(A) = Flg)(a)), X eR?, (1.4)

where F is the classical Fourier transform on R? and 7, b € R?, the classical
translation operator defined by

Tog(x) = g(b—x), =€ R% (1.5)

From [6], Calder6n’s reproducing formula is expressed in this way:

1 [T da
@ = [ ([ D@ hgsean’, (16)
gJo R a
strongly in L?*(R?), where C, is the constant given for almost all A € R?, by
oo da
¢, = [ IFaeP. (1.7
0
and which satisfies
0<Cy < +o0. (1.8)

In [5][7], Heckman and Opdam have developed a harmonic analysis as-
sociated to the Cherednik operators on R? which generalizes the harmonic
analysis on symmetric spaces called the Heckman-Opdam theory on R

We have studied in [4], generalized wavelets and the generalized wavelet
transform on R? associated to the Heckman-Opdam theory. In this paper, we
prove a Calderén’s reproducing formula for this generalized wavelet transform.

2 Harmonic analysis associated to the Heckman-
Opdam theory on R?

In this section, we cite basic results of the harmonic analysis associated to the
Heckman-Opdam theory on R%. More details can be found in [9][10].

We consider R? with the standard basis {e;; = 1,2,...,d} and the inner
product (., .) for which this basis is orthonormal. We extend this inner product
to a complex bilinear form on C¢.
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2.1 The root system, the multiplicity function and the
Cherednik operators

Let o € RA\{0} and & =

;. We denote by
o]

ro(z) =2 — (0, 2)a, x€RY, (2.1)

the reflection in the hyperplan H, C R? orthogonal to .

A finite set R € R4\{0} is called a root system if R N Ra = {+a} and
roR =R, for all @« € R. For a given root system R, the reflections r,,a € R,
generate a finite group W C O(d), called the reflection group associated with
R. For a given 3 € R? which belongs to no hyperplane H,,ao € R, we fix the
positive subsystem R, = {a € R, {(a, ) > 0}. Then for each a € R, either
a € Ry or —a € Ry. We denote by RY, the set of positive indivisible roots.
Let

at ={z e R VacR,(az) >0} (2.2)

be the positive Weyl chamber. We denote by a* its closure.
Let also Rfeg = RN\U,er H, be the set of regular elements in R?.

A function k : R — [0, +o00o[ on the root system R is called a multiplicity
function, if it is invariant under the action of the reflection group W. We

introduce the index
Y=9R) =Y k). (2.3)

aER 4+

Moreover, let Aj be the weight function

e o
VeeR, Ax)= ][] |2$1nh<§,x>|2k( ), (2.4)

aER 4

which is W-invariant.

The Cherednik operators Tj,j = 1,2,...,d, on R? associated with the re-
flection group W and the multiplicity function k, are defined for f of class C*
on R? and x € R¢ by

reg

T, f(x) = ; @)+ 3 O ) fan)) - ), (25)

acRy

where

pj = % Z k(a)a?, and o/ = {a,e;). (2.6)

aER 4

In the case k(a) = 0, for all & € Ry, the operators T}, 5 = 1,2, ...d, reduce to
the corresponding partial derivatives. We suppose in the following that k # 0.
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The Cherednik operators form a commutative system of differential-difference
operators.

For f of class C' on R? with compact support and g of class C' on R?, we
have for j =1,2,...,d :

/R VLt (2)g(z)Ap(z)dr = — » f@)(T; + Sj)g(x) Aw(z)dz, (2.7)
with
VzeR:S =) k(o (2.8)

2.2 The Opdam-Cherednik kernel and the Heckman-
Opdam hypergeometric function

We denote by Gy, A € C¢, the eigenfunction of the operators Tj,j = 1,2, ..., d.
It is the unique analytic function on R which satisfies the differential-difference
system

T}G)\(ZL‘) :Z)\]G)\(ZL‘), j = 1,2,...7d,l’€Rd, (2 9)
GA(0) =1. '
It is called the Opdam-Cherednik kernel.
We consider the function F) defined by
VzeRY Fy( 7 Z G (wz) (2.10)

This function is the unique analytic function on R?, which satisfies the differ-
ential system

for all W-invariant polynomials p on C? and p(T) = p(T1,T5, ..., T).
The function Fy(z) called the Heckman-Opdam hypergeometric function,
is W-invariant both in A and z. (For more properties of F see [§]).

2.3 The Hypergeometric Fourier transform

Notations. We denote by

- E(RHW the space of C*-functions on R? which are W-invariant.

- D(RH)W the space of C*-functions on R? with compact support and
W-invariant.

- S(RHW the space of W-invariant functions from the classical Schwartz
space S(R?).
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The spaces E(RH)W | DRHW et E(RHW are equipped with their classical
topologies.

- So(RHW the space of C*°-functions on R? which are W-invariant, and
such that for all /,n € N,

Pen(f) = Sup (L + =) (Fo(x)) D" f(x)] < +oo, (2.12)

where

BRI :
D= o p= (1, pia) €Nl =) i
=1

Its topology is defined by the semi-norms py,,, ¢,n € N.
- PW,(CHW a > 0, the space of entire functions g on C¢, which are
W-invariant and satisfying

Vm €N, qm(g) = sup (1 + [A[)™e~ 1™ |g(N)] < +o0. (2.13)
AeCd

The topology of PW,(C?) is defined by the semi-norms ¢,,, m € N.
We set

PW(CHYW = Uysg PW,(CHWY. (2.14)
This space is called the Paley-Wiener space. It is equipped with the inductive
limit topology.

Definition 1 The hypergeometric Fourier transform H"W is defined for f in
DRYW (resp. Sy(RY)W) by

VAe CLHY ()N = g flz)F_y(x)Ag(z)dx. (2.15)

Remark 1 We have also the relation

VAeCLHY (YN = | f(2)Fa(—2)Ap(z)dz. (2.16)

R4

Proposition 1 For all f in D(RHW (resp. So(RHW), we have the following
relations

VA e RLHY(HN) = HY ()N, (2.17)
YA ERLHY (N =HY (F)(=N), (2.18)
where f is the function defined by

VzeRY  f(z) = f(—z).
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Theorem 1
i) The hypergeometric Fourier transform H" is a topological isomorphism from
o DERHYW onto PW(CHW.
o S (RHYW onto S(RH)W.
i) A function f belongs to D(R)W with supp f C B(0,a) the closed ball of
center 0 and radius a > 0, if and only if its hypergeometric Fourier transform
HY(f) belongs to PW,(CHW.

iti) The inverse transform (HW)™! is given by
VazeRY (HY) M) (z) = / h(A) Fa(2)C (\)dA, (2.19)
R4

where

CIEV(A) = Co|ck<)‘)’727 (220)

with ¢, a positive constant chosen in such a way that C}¥ (—p) =1, and

)
k(3))

T((iX, &) + Lk(
() = ]] T((iA, &) + k(a) +

aER 4+

(2.21)

a
2
1
2

with the convention that k(5) =0 if § ¢ R.

Remark 2 The function C}¥ is continuous on R and satisfies the estimate
VA eRLICY (M) < const.(14||A]), (2.22)

for some s > 0.

Notations. We denote by
- L) (R, 1 < p < o0, the space of measurable functions f on R
which are W-invariant and satisfying

1/p
s = ([ 1@ Aa)in) " < o0, 1<p<+o

HfHAk,oo = esssup ’f(x)’ < +00.
zCRd

- Low (RH)W, 1 < p < oo, the space of measurable functions f on R
k
which are W-invariant and satisfying
oW 1/p
£l = (L FOIPCEN)ax) ™ < oo, 1 <p < oo,

[flley o = ess sup [f(A)] < +o0.
€
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Theorem 2
i) (Plancherel formulas). For all f,g in Li\k (RHYW  we have

Rdf(x)@flk(%)dw: HY (HVHY (9)(NCT (VdA, (2.23)

Rd
and
1/ lanz = IR (llew o- (2.24)
ii) (Plancherel theorem). The hypergeometric Fourier transform HY extends

uniquely to an isometric isomorphism from L2 (RY)W onto L2y (RT)W.
k

Corollary 1 For all f in L (R)™ such that H" (f) belongs to Ll (RY)YW,
k

we have the inversion formula

fx)y= | HY(HN)Er(2)CY (N)dN, ae. xR, (2.25)

R4
2.4 The hypergeometric translation operator and the
hypergeometric convolution product

Definition 2 The hypergeometric translation operator T,V x € RY, is defined
on L% (RHY by

HY (T ()X = Ea()HY ()N, AeR™ (2.26)

Proposition 2
i) For all f in L% (RH)W, we have

I (Nllage < W2 fllage: (2.27)
i) For all f in L% (R)Y, we have

T (f)y) = lim Fx(@)Ex(y)H" (H(NCT (A,

where B(0,n) is the closed ball of center 0 and radius n. The limit is in

L4, (RHW.

ii) For all f in L% (RD)W such that H" (f) belongs to Ly (RH)W and x € RY,
k

we have

T (y) = /Rd Ex@)Exm)H" (HNCGT (NN, ae. yeRL (2.28)
w) For all f in L2 (R)Y, we have
TN =T (Ny), wyeR’, (2.29)

and

T (D) =T, (fx), z.yeR™ (2.30)
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Definition 3 The hypergeometric convolution product fxyw g of the functions
f,g in D(RHW (resp. So(RHW) is defined by

VaeRY fayw g(z) = y T (1) (=y)g(y) Ax(y)dy. (2.31)

Proposition 3 Let f be in L%, (R))" and g in LYy (R)W. Then, the function
f *yw g defined all most everywhere on R? by

fw g(a) = g T () (=y)g(y)Ax(y)dy, (2.32)

belongs to Lilk (RHW | and we have

1 *300 gllage < W2 fllagzllgllac (2.33)

and
HY (f rqw g) = HY () HY (9). (2.34)

Proposition 4 Let f and g be in Li‘k(Rd)W. Then, the function [ xyw g
belongs to L% (RYW if and only if the function HW (f). 1" (g) is in L, (RD)W,
and we have

HY(f 0 g) = HY () H (9), (2.35)

in the L?-case.

3 Calderén’s reproducing formula

3.1 Generalized wavelets and the generalized wavelet
transform on R?

Definition 4 We say that a function g in Lilk (RHW is a generalized wavelet
on R?, if there exists a constant C, such that

i) 0 < Cy < +00.

i) For almost all A € R, we have

oo a
G [ MY @@nPs (3)

Example 1 Lett > 0. We consider the function g defined by

Va € Rda g(l’) = _E?/EXV(:E%
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where L)Y is the Heckman-Opdam Laplacian defined for a function f on R? of
class C? and W -invariant, by

d
Lyf=> T/ (3.2)
j=1

It has the following form : For x € Rreg

@)V fa).0) + Il ),

Ly f(z) Z k() coth(

aER 4

where A and ¥V are respectively the Laplacian and the gradient on R?, and
EY .t >0, the heat kernel given by

Ve e R EY(z) = / e~ MNP By (2)C (A)dA. (3.3)
R4
By using (2.9),(2.10),(3.2),(3.3), we obtain
vz e RY, g(x) :/ [|A[| 2 CUINIEHIEI) By (el ().
Rd

The function g belongs to So(RYW and we have
VA ERY, HY(g)(\) = [|A|[Ze UINPHIAIP)

For A € R\{0}, we have

+oo da
¢, = [ @y
0 a
2 2 +oo 2 2
- t|p||/ [[A[[fe=2te NP g3 g,
0

By change of variables we obtain, for almost all A € R%:

_ 2
o—2tl1ol

Co="5p
Definition 5 We define the function l;; on |0, +oo[ by

W) = sp G P
AeR\ {0} |C ()\)| AeRAN {0} |Ck(§)|

where C}V and ¢y the functions given by the relations (2.20),(2.21).



54 A. Hassini, R. Maalaoui and K. Trimeéche

Remark 3 When k(a) € N, for all « € R, the function I has the follouwing
form

)° +
k(@)= sup ] H(L_11<>\,d))2+(§k(%)

AERI\ {0}
It satisfies the estimates
i) If a € [1,400[
0 < lp(a) < a*,
with y defined by the relation (2.5).
it) If a €]0, 1]
0<l(a) < [] ko).

aER

Theorem 3 Leta > 0 and g a generalized wavelet on RY in L2 (R)W. Then,
i) The function X — H"™ (g)(aX) belongs to L2y (RY)"Y, and we have
k

[ @ anrel i < Sl 35)

where Iy is the function given by the relation (3.4).
it) There exists a function g, in L% (RY)Y such that

HY (ga)(N) = H" (9)(aX), X eRY, (3.6)
and we have (@)
a

lgul2 2 < S5 g1y o (37)

Proposition 5 Let g be a generalized wavelet on R? in Li‘k (RHW. Then, for
a>0 and b € R?, the function

gas(x) = T,V galz), ©€R, (3.8)
is a generalized wavelet on R? in L2 (R)W, and we have
Cou < IWICy. (39)

Definition 6 The generalized wavelet transform ®, on R? is defined, for f in
L%, (RY)Y, by

®y(f)(a,b) = Rdf(x)ga,b(ﬂi)Ak(x)d% (a,b) €]0, +-00[xR". (3.10)

We can also write it in the form

O,y(f)(a,b) = [ 3w Ga(b), (3.11)
where f is the function defined by

f(2) = f(~2), xR
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3.2 Calderén’s reproducing formula

Theorem 4 (Calderdn’s formula). Let g be a generalized wavelet in Li\k (RHW
such that H" (g) belongs to L5, (R)W. Then, for f in L% (R)Y and

k
0 <e<d<—+oo, the function

10 () //Rd (@, 0)gap(r)Ar(b )db—, z € RY, (3.12)

belongs to Li‘k (RHW | and satisfies

lim || — flla,2 = 0. (3.13)

e—0,0—400

To prove this theorem we need the following Lemmas.

Lemma 1 Let g be the generalized wavelet satisfying the conditions of Theo-
rem 4 and f in L% (RH)W. Then,

i) The functions (f xyw Ga) and (f *yw Ga) *pw ga are in L% (RNW, and we
have

W aw Ga) #w 9a)(N) = HY(H) VMY (9) (NP, AeRE (3.14)

ii) We have

10f 20w Ga) #30v Gallae < IHY (OIew 11wz (3.15)
Proof
i) From the relations (2.17)(2.18) and Proposition 4 we have
HY(Foor T = HY(F o ()
= H(NENHY (G2) (=)
= HY(NHNHY (gu) (=)
Thus,

HY ((f 900 7)) (V) = HY (HOVHY (92) (V). (3.16)
On the other hand, we put

2(x) = (f #pw T) (z), 7 € RY
Thus,

W((f 530w Ga) 50w 9a)(A) = HY(Z 530w ga)(N), A € R
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By using Proposition 4, we deduce that the function Z belongs to Li‘k (RHW
and we have

HY(Z 230w 9a)(N) = HY(Z)NH" (9a)(N), A € R™ (3.17)

We deduce (3.14) from (3.16),(3.17).

ii) From the i) we have
[ (g ) OFCE A= [ OV () IE ()

Then, from the Plancherel formula (2.24) and the fact that H" (g,) belongs to
L5y (RD)W, we obtain
k

[1( #30w Ga) *30w gallare < IHY (9a)Bw ol f1Lac2:
We deduce the result from the relation (3.6).

Lemma 2 Let g be the generalized wavelet satisfying the conditions of Theo-
rem 4. Then, the function K.s defined by

1 /[° w yda d
Kes(A) == | [H" (9)(N)["—, AR, (3.18)
Cy Je a
satisfies, for almost all X € R%:
0< K.;(\) <1, (3.19)
and
6_}@1%12%0 K.s(\) =1. (3.20)
Proof
From the relation (3.1), for almost all A € R?, we have
1 [t da
K< o [ Y aES =1.
gJo a

On the other hand, for almost all A € R?, we have

lim K. 5(\) = 1.

e—0,0—~+00

This completes the proof.
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Lemma 3 We consider the functions f and g satisfying the conditions of
Theorem 4. Then the function f° defined by the relation (3.12) belongs to
L2 (RYW and satisfies

TN = HY (H NV Es(N), A eR, (3.21)
where K. ;5 is the function given by the relation (5.18).
Proof

- We prove first, that the function f° belongs to L% (R%)W
From Definition 6, Proposition 5 and the relation (2.30) we have

& | LUse mom eoana.  62)

But, from the relation (2.32) we have

/R (Fraw Ga) OV T (92) (0)AR(B)dD = | (F sagw 3a) (O) T (9) () Aw(b) b

= (f *uw Ga) *2w ga().

T

Then,
1 [0 . - da
fo(x) = 5/ (f *yw Ga) *yw go(z)—. (3.23)
g Je a
By using Holder’s inequality for the measure d“ , we get
. ,da
@ < g [ 1 o ) v P
So, by applying Fubini-Tonelli’s theorem, we obtain
5 5
da . - da
L@ < ([ [ 1o @l Ao T
From the Plancherel formula (2.24) and the relation (3.14), we deduce that
©9 (2)[2 * da W 2 [° W sda, Ly
|f " Ak (z)dz < —( —) [ AHTDEC] THT (9a) (N —)C" (A)dA.
Cg e a R4 € a

On the other hand, from the relations (3.1),(3.6), we have

[ B0 < Y
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Thus,

1, (°d
/Rd 10 ()P Ay ()d < 5</€ "I @y o1 (DIl

g

and the Plancherel formula (2.24) implies

. 1, (°da
[ @A < 2 SO @)y 1R < o
R4 g Je @ k
Then, f° belongs to L%, (R*)W.

- We prove now the relation (3.21). Let ¢ in S(R?)". From Theorem 1.i), the
function (H")™1(¢) is in So(RH)W. From the relation (3.23), we have

Jia £ @) (HY) (@) (2) Ap(@)d

= [ [ T i soow gua) YHY ) (0)() o)
o (3.24)
We consider
o Jga T2 %a2w Ga) 0w ga(@)(HW) 71 () ()| A () dar e
= [ UL 1 o g s @) ) @) Al )
o (3.25)

By applying Hoélder’s inequality to the second member, we get

e S U 1F 2w Ta) 30w ga(@)I|(HY) 1 () ()| A () dar] 22

1[0 - W1 da
<& | I 0w Ga) e galla2ll(H7) ™ (W)l
g Je a

From the relation (3.15) and the Plancherel formula (2.24), we obtain

e U 1 30 o) a0 ga@)||(H) 71 () ()| A () der] 2

1, (°da W
<& O T @lley soll¥llew 2l f a2 < +o0.
g €

Then, from Fubini theorem, the second member of the relation (3.24) can also
be written in the form

da

6
& [ L e 5 0 @) AT 320
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But, by using the Plancherel formula (2.24) and the relation (3.14), the relation
(3.26) is equal to

& [ e woroer .

By applying Fubini-Tonelli’s theorem and next Fubini’s theorem to this inte-
gral, it takes the form

RO [ Y @I FEwe W= [ Y (DOEMeC (i

R4
(3.27)
On the other hand, by applying the Plancherel formula (2.24) to the first
member of the relation (3.24), we get

Rd

HY(FO) NN (A)d. (3.28)

Rd

From the relations (3.27),(3.28), we obtain for all ¢ in S(R%)W

/Rd(HW(fe"s)(A) = HY (N E (AN (N)dA = 0.
Thus
HY(fO)N) =HY (N Kes(A), A eR™

Proof of Theorem 3.2
From Lemma 3, the function f“° belongs to L% (R)". By using the Plancherel
formula (2.24) and Lemma 3, we obtain

17 = fllace = [ VG = HOVECL ()i
— [ DO — DECE ()ax
= [T 0PI = KR (3

But from Lemma 2, for almost all A € R?, we have

lim  [HY (NP = Kes(V)F =0,

e—0,0—~+00

and

HY (P = Kes (WP < 4HY (NP,
with [HY (f)(A)|* in Ly (RY)W. So, the relation (3.13) follows from the dom-
k

inated convergence theorem.
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Open Problem

The purpose of the future work is to generalize the Calderén’s reproducing
formula for the generalized wavelet on R associated to the Heckman-Opdam
theory on functions spaces other than L% (RY)W.

k
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