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Abstract
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1 Introduction

Calderón’s reproducing formula was originally used in the so-called Calderón-
Zygmund theory of singular integral operators (see [1]). Besides other appli-
cations in decomposition of certain function spaces (see [3]), the Calderón’s
formula was proved to be a powerful tool for recovering any L2- function f
from its wavelet transform Φg(f) (see [2]), given for a scale a > 0 and position
b ∈ Rd, as follows: For g ∈ L2(Rd) a classical wavelet, we have

Φg(f)(a, b) =

∫
Rd

f(x)ga,b(x)dx, (a, b) ∈ ]0,+∞[×Rd, (1.1)
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where ga,b is the wavelet defined by

ga,b(x) = Tbga(x), x ∈ Rd, (1.2)

with ga the function given by

ga(x) =
1

ad
g(
x

a
). (1.3)

Which satisfies
F(ga)(λ) = F(g)(aλ), λ ∈ Rd, (1.4)

where F is the classical Fourier transform on Rd and Tb, b ∈ Rd, the classical
translation operator defined by

Tbg(x) = g(b− x), x ∈ Rd. (1.5)

From [6], Calderón’s reproducing formula is expressed in this way:

f(x) =
1

Cg

∫ +∞

0

(

∫
Rd

Φg(f)(a, b)ga,b(x)dx)
da

a
, (1.6)

strongly in L2(Rd), where Cg is the constant given for almost all λ ∈ Rd, by

Cg =

∫ +∞

0

|F(g)(aλ)|2da
a
, (1.7)

and which satisfies
0 < Cg < +∞. (1.8)

In [5][7], Heckman and Opdam have developed a harmonic analysis as-
sociated to the Cherednik operators on Rd, which generalizes the harmonic
analysis on symmetric spaces called the Heckman-Opdam theory on Rd.

We have studied in [4], generalized wavelets and the generalized wavelet
transform on Rd associated to the Heckman-Opdam theory. In this paper, we
prove a Calderón’s reproducing formula for this generalized wavelet transform.

2 Harmonic analysis associated to the Heckman-

Opdam theory on Rd

In this section, we cite basic results of the harmonic analysis associated to the
Heckman-Opdam theory on Rd. More details can be found in [9][10].

We consider Rd with the standard basis {ei, i = 1, 2, ..., d} and the inner
product 〈., .〉 for which this basis is orthonormal. We extend this inner product
to a complex bilinear form on Cd.
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2.1 The root system, the multiplicity function and the
Cherednik operators

Let α ∈ Rd\{0} and α̌ =
2

‖α‖2
α. We denote by

rα(x) = x− 〈α̌, x〉α, x ∈ Rd, (2.1)

the reflection in the hyperplan Hα ⊂ Rd orthogonal to α.
A finite set R ⊂ Rd\{0} is called a root system if R ∩ Rα = {±α} and

rαR = R, for all α ∈ R. For a given root system R, the reflections rα, α ∈ R,
generate a finite group W ⊂ O(d), called the reflection group associated with
R. For a given β ∈ Rd which belongs to no hyperplane Hα,α ∈ R, we fix the
positive subsystem R+ = {α ∈ R, 〈α, β〉 > 0}. Then for each α ∈ R, either
α ∈ R+ or −α ∈ R+. We denote by R0

+, the set of positive indivisible roots.
Let

a+ = {x ∈ Rd,∀ α ∈ R, 〈α, x〉 > 0} (2.2)

be the positive Weyl chamber. We denote by a+ its closure.
Let also Rd

reg = Rd\∪α∈RHα be the set of regular elements in Rd.
A function k : R → [0,+∞[ on the root system R is called a multiplicity

function, if it is invariant under the action of the reflection group W . We
introduce the index

γ = γ(R) =
∑
α∈R+

k(α). (2.3)

Moreover, let Ak be the weight function

∀ x ∈ Rd, Ak(x) =
∏
α∈R+

|2 sinh〈α
2
, x〉|2k(α), (2.4)

which is W -invariant.

The Cherednik operators Tj, j = 1, 2, ..., d, on Rd associated with the re-
flection group W and the multiplicity function k, are defined for f of class C1

on Rd and x ∈ Rd
reg by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x), (2.5)

where

ρj =
1

2

∑
α∈R+

k(α)αj, and αj = 〈α, ej〉. (2.6)

In the case k(α) = 0, for all α ∈ R+, the operators Tj, j = 1, 2, ...d, reduce to
the corresponding partial derivatives. We suppose in the following that k 6= 0.
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The Cherednik operators form a commutative system of differential-difference
operators.

For f of class C1 on Rd with compact support and g of class C1 on Rd, we
have for j = 1, 2, ..., d :∫

Rd

Tjf(x)g(x)Ak(x)dx = −
∫
Rd

f(x)(Tj + Sj)g(x)Ak(x)dx, (2.7)

with

∀ x ∈ Rd, Sjg(x) =
∑
α∈R+

k(α)αjg(rαx). (2.8)

2.2 The Opdam-Cherednik kernel and the Heckman-
Opdam hypergeometric function

We denote by Gλ, λ ∈ Cd, the eigenfunction of the operators Tj, j = 1, 2, ..., d.
It is the unique analytic function on Rd which satisfies the differential-difference
system {

TjGλ(x) = iλjGλ(x), j = 1, 2, ..., d, x ∈ Rd,
Gλ(0) = 1.

(2.9)

It is called the Opdam-Cherednik kernel.
We consider the function Fλ defined by

∀ x ∈ Rd, Fλ(x) =
1

|W |
∑
w∈W

Gλ(wx). (2.10)

This function is the unique analytic function on Rd, which satisfies the differ-
ential system {

p(T )Fλ(x) = p(iλ)Fλ(x), x ∈ Rd,
Fλ(0) = 1

(2.11)

for all W -invariant polynomials p on Cd and p(T ) = p(T1, T2, ..., Td).
The function Fλ(x) called the Heckman-Opdam hypergeometric function,

is W -invariant both in λ and x. (For more properties of Fλ see [8]).

2.3 The Hypergeometric Fourier transform

Notations. We denote by
- E(Rd)W the space of C∞-functions on Rd, which are W -invariant.
- D(Rd)W the space of C∞-functions on Rd, with compact support and

W -invariant.
- S(Rd)W the space of W -invariant functions from the classical Schwartz

space S(Rd).
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The spaces E(Rd)W , D(Rd)W et E(Rd)W are equipped with their classical
topologies.

- S2(Rd)W the space of C∞-functions on Rd, which are W -invariant, and
such that for all `, n ∈ N,

p`,n(f) = sup
|µ|≤n
x∈Rd

(1 + ‖x‖)`(F0(x))−1|Dµf(x)| < +∞, (2.12)

where

Dµ =
∂|µ|

∂xµ11 ...∂x
µd
d

, µ = (µ1, ..., µd) ∈ Nd, |µ| =
d∑
i=1

µi.

Its topology is defined by the semi-norms p`,n, `, n ∈ N.
- PWa(Cd)W , a > 0, the space of entire functions g on Cd, which are

W -invariant and satisfying

∀ m ∈ N, qm(g) = sup
λ∈Cd

(1 + ‖λ‖)me−a‖Imλ‖|g(λ)| < +∞. (2.13)

The topology of PWa(Cd) is defined by the semi-norms qm,m ∈ N.
We set

PW (Cd)W = ∪a>0PWa(Cd)W . (2.14)

This space is called the Paley-Wiener space. It is equipped with the inductive
limit topology.

Definition 1 The hypergeometric Fourier transform HW is defined for f in
D(Rd)W (resp. S2(Rd)W ) by

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)F−λ(x)Ak(x)dx. (2.15)

Remark 1 We have also the relation

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)Fλ(−x)Ak(x)dx. (2.16)

Proposition 1 For all f in D(Rd)W (resp. S2(Rd)W ), we have the following
relations

∀ λ ∈ Rd,HW (f̄)(λ) = HW (f̌)(λ), (2.17)

∀ λ ∈ Rd,HW (f)(λ) = HW (f̌)(−λ), (2.18)

where f̌ is the function defined by

∀ x ∈ Rd, f̌(x) = f(−x).
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Theorem 1
i) The hypergeometric Fourier transform HW is a topological isomorphism from
• D(Rd)W onto PW (Cd)W .
• S2(Rd)W onto S(Rd)W .

ii) A function f belongs to D(Rd)W with supp f ⊂ B(0, a) the closed ball of
center 0 and radius a > 0, if and only if its hypergeometric Fourier transform
HW (f) belongs to PWa(Cd)W .
iii) The inverse transform (HW )−1 is given by

∀ x ∈ Rd, (HW )−1(h)(x) =

∫
Rd

h(λ)Fλ(x)CWk (λ)dλ, (2.19)

where

CWk (λ) = co|ck(λ)|−2, (2.20)

with co a positive constant chosen in such a way that CWk (−ρ) = 1, and

ck(λ) =
∏
α∈R+

Γ(〈iλ, α̌〉+ 1
2
k(α

2
))

Γ(〈iλ, α̌〉+ k(α) + 1
2
k(α

2
))
, (2.21)

with the convention that k(α
2
) = 0 if α

2
/∈ R.

Remark 2 The function CWk is continuous on Rd and satisfies the estimate

∀ λ ∈ Rd, |CWk (λ)| ≤ const.(1 + ‖λ‖)s, (2.22)

for some s > 0.

Notations. We denote by
- LpAk

(Rd)W , 1 ≤ p ≤ +∞, the space of measurable functions f on Rd

which are W -invariant and satisfying

‖f‖Ak,p =
(∫

Rd

|f(x)|pAk(x)dx
)1/p

< +∞, 1 ≤ p < +∞,

‖f‖Ak,∞ = ess sup
x∈Rd

|f(x)| < +∞.

- LpCWk
(Rd)W , 1 ≤ p ≤ +∞, the space of measurable functions f on Rd

which are W -invariant and satisfying

‖f‖CWk ,p =
(∫

Rd

|f(λ)|pCWk (λ)dλ
)1/p

< +∞, 1 ≤ p < +∞,

‖f‖CWk ,∞ = ess sup
λ∈Rd

|f(λ)| < +∞.
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Theorem 2
i) (Plancherel formulas). For all f, g in L2

Ak
(Rd)W , we have∫

Rd

f(x)g(x)Ak(x)dx =

∫
Rd

HW (f)(λ)HW (g)(λ)CWk (λ)dλ, (2.23)

and
||f ||Ak,2 = ||HW (f)||CWk ,2. (2.24)

ii) (Plancherel theorem). The hypergeometric Fourier transform HW extends
uniquely to an isometric isomorphism from L2

Ak
(Rd)W onto L2

CWk
(Rd)W .

Corollary 1 For all f in L2
Ak

(Rd)W such that HW (f) belongs to L1
CWk

(Rd)W ,

we have the inversion formula

f(x) =

∫
Rd

HW (f)(λ)Fλ(x)CWk (λ)dλ, a.e. x ∈ Rd . (2.25)

2.4 The hypergeometric translation operator and the
hypergeometric convolution product

Definition 2 The hypergeometric translation operator T Wx , x ∈ Rd, is defined
on L2

Ak
(Rd)W by

HW (T Wx (f))(λ) = Fλ(x)HW (f)(λ), λ ∈ Rd. (2.26)

Proposition 2
i) For all f in L2

Ak
(Rd)W , we have

‖T Wx (f)‖Ak,2 ≤ |W |1/2‖f‖Ak,2. (2.27)

ii) For all f in L2
Ak

(Rd)W , we have

T Wx (f)(y) = lim
n→+∞

∫
B(0,n)

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ,

where B(0, n) is the closed ball of center 0 and radius n. The limit is in
L2
Ak

(Rd)W .
iii) For all f in L2

Ak
(Rd)W such that HW (f) belongs to L1

CWk
(Rd)W and x ∈ Rd,

we have

T Wx (f)(y) =

∫
Rd

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ, a.e. y ∈ Rd. (2.28)

iv) For all f in L2
Ak

(Rd)W , we have

T Wx (f)(y) = T Wx (f)(y), x, y ∈ Rd, (2.29)

and
T Wx (f)(y) = T Wy (f)(x), x, y ∈ Rd. (2.30)
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Definition 3 The hypergeometric convolution product f ∗HW g of the functions
f, g in D(Rd)W (resp. S2(Rd)W ) is defined by

∀ x ∈ Rd, f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy. (2.31)

Proposition 3 Let f be in L2
Ak

(Rd)W and g in L1
Ak

(Rd)W . Then, the function
f ∗HW g defined all most everywhere on Rd by

f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy, (2.32)

belongs to L2
Ak

(Rd)W , and we have

‖f ∗HW g‖Ak,2 ≤ |W |1/2‖f‖Ak,2‖g‖Ak,1, (2.33)

and

HW (f ∗HW g) = HW (f).HW (g). (2.34)

Proposition 4 Let f and g be in L2
Ak

(Rd)W . Then, the function f ∗HW g
belongs to L2

Ak
(Rd)W if and only if the function HW (f).HW (g) is in L2

Ak
(Rd)W ,

and we have

HW (f ∗HW g) = HW (f).HW (g), (2.35)

in the L2-case.

3 Calderón’s reproducing formula

3.1 Generalized wavelets and the generalized wavelet
transform on Rd

Definition 4 We say that a function g in L2
Ak

(Rd)W is a generalized wavelet
on Rd, if there exists a constant Cg such that
i) 0 < Cg < +∞.
ii) For almost all λ ∈ Rd, we have

Cg =

∫ +∞

0

|HW (g)(aλ)|2da
a
. (3.1)

Example 1 Let t > 0. We consider the function g defined by

∀x ∈ Rd, g(x) = −LWk EW
t (x),
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where LWk is the Heckman-Opdam Laplacian defined for a function f on Rd of
class C2 and W -invariant, by

LWk f =
d∑
j=1

T 2
j f. (3.2)

It has the following form : For x ∈ Rd
reg

LWk f(x) = ∆f(x) +
∑
α∈R+

k(α) coth(
〈α, x〉

2
)〈∇f(x), α〉+ ||ρ||2f(x),

where ∆ and ∇ are respectively the Laplacian and the gradient on Rd, and
EW
t , t > 0, the heat kernel given by

∀x ∈ Rd, EW
t (x) =

∫
Rd

e−t(||λ||
2+‖ρ‖2)Fλ(x)CWk (λ)dλ. (3.3)

By using (2.9),(2.10),(3.2),(3.3), we obtain

∀x ∈ Rd, g(x) =

∫
Rd

||λ||2e−t(||λ||2+‖ρ‖2)Fλ(x)CWk (λ)dλ.

The function g belongs to S2(Rd)W and we have

∀λ ∈ Rd, HW (g)(λ) = ||λ||2e−t(||λ||2+‖ρ‖2).

For λ ∈ Rd\{0}, we have

Cg =

∫ +∞

0

|HW (g)(aλ)|2da
a

= e−2t||ρ||2
∫ +∞

0

||λ||4e−2ta2||λ||2a3da,

By change of variables we obtain, for almost all λ ∈ Rd:

Cg =
e−2t||ρ||2

8t2
.

Definition 5 We define the function lk on ]0,+∞[ by

lk(a) = sup
λ∈Rd\{0}

|CWk (λ
a
)|

|CWk (λ)|
= sup

λ∈Rd\{0}

|ck(λ)|2

|ck(λa )|2
, (3.4)

where CWk and ck the functions given by the relations (2.20),(2.21).
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Remark 3 When k(α) ∈ N, for all α ∈ R, the function lk has the follouwing
form

lk(a) = sup
λ∈Rd\{0}

∏
α∈R+

k(α)∏
n=1

(〈λ, α̌〉)2 + (1
2
k(α

2
) + k(α)− n)2

( 1
a
〈λ, α̌〉)2 + (1

2
k(α

2
) + k(α)− n)2

.

It satisfies the estimates
i) If a ∈ [1,+∞[

0 < lk(a) ≤ a2γ,

with γ defined by the relation (2.3).
ii) If a ∈]0, 1[

0 < lk(a) ≤
∏
α∈R+

k(α).

Theorem 3 Let a > 0 and g a generalized wavelet on Rd in L2
Ak

(Rd)W . Then,
i) The function λ −→ HW (g)(aλ) belongs to L2

CWk
(Rd)W , and we have∫

Rd

|HW (g)(aλ)|2CWk (λ)dλ ≤ lk(a)

ad
||g||2Ak,2

, (3.5)

where lk is the function given by the relation (3.4).
ii) There exists a function ga in L2

Ak
(Rd)W such that

HW (ga)(λ) = HW (g)(aλ), λ ∈ Rd, (3.6)

and we have

||ga||2Ak,2
≤ lk(a)

ad
||g||2Ak,2

. (3.7)

Proposition 5 Let g be a generalized wavelet on Rd in L2
Ak

(Rd)W . Then, for
a > 0 and b ∈ Rd, the function

ga,b(x) = T Wb ga(x), x ∈ Rd, (3.8)

is a generalized wavelet on Rd in L2
Ak

(Rd)W , and we have

Cga,b ≤ |W |Cg. (3.9)

Definition 6 The generalized wavelet transform Φg on Rd is defined, for f in
L2
Ak

(Rd)W , by

Φg(f)(a, b) =

∫
Rd

f(x)ga,b(x)Ak(x)dx, (a, b) ∈]0,+∞[×Rd. (3.10)

We can also write it in the form

Φg(f)(a, b) = f̌ ∗HW ga(b), (3.11)

where f̌ is the function defined by

f̌(x) = f(−x), x ∈ Rd.
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3.2 Calderón’s reproducing formula

Theorem 4 (Calderón’s formula). Let g be a generalized wavelet in L2
Ak

(Rd)W

such that HW (g) belongs to L∞CWk
(Rd)W . Then, for f in L2

Ak
(Rd)W and

0 < ε < δ < +∞, the function

f ε,δ(x) =
1

Cg

∫ δ

ε

∫
Rd

Φg(a, b)ga,b(x)Ak(b)db
da

a
, x ∈ Rd, (3.12)

belongs to L2
Ak

(Rd)W , and satisfies

lim
ε→0,δ→+∞

||f ε,δ − f ||Ak,2 = 0. (3.13)

To prove this theorem we need the following Lemmas.

Lemma 1 Let g be the generalized wavelet satisfying the conditions of Theo-
rem 4 and f in L2

Ak
(Rd)W . Then,

i) The functions (f̌ ∗HW ga)
ˇ and (f̌ ∗HW ga)

ˇ∗HW ga are in L2
Ak

(Rd)W , and we
have

HW ((f̌ ∗HW ga)
ˇ∗HW ga)(λ) = HW (f)(λ)|HW (ga)(λ)|2, λ ∈ Rd. (3.14)

ii) We have

||(f̌ ∗HW ga)
ˇ∗HW ga||Ak,2 ≤ ||HW (g)||2CWk ,∞||f ||Ak,2. (3.15)

Proof
i) From the relations (2.17)(2.18) and Proposition 4 we have

HW ((f̌ ∗HW ga)
ˇ)(λ) = HW (f̌ ∗HW ga)(−λ)

= HW (f̌)(−λ)HW (ga)(−λ)

= HW (f)(λ)HW (ǧa)(−λ).

Thus,

HW ((f̌ ∗HW ga)
ˇ)(λ) = HW (f)(λ)HW (ga)(λ). (3.16)

On the other hand, we put

Z(x) = (f̌ ∗HW ga)
ˇ(x), x ∈ Rd.

Thus,

HW ((f̌ ∗HW ga)
ˇ∗HW ga)(λ) = HW (Z ∗HW ga)(λ), λ ∈ Rd.
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By using Proposition 4, we deduce that the function Z belongs to L2
Ak

(Rd)W ,
and we have

HW (Z ∗HW ga)(λ) = HW (Z)(λ)HW (ga)(λ), λ ∈ Rd. (3.17)

We deduce (3.14) from (3.16),(3.17).
ii) From the i) we have∫
Rd

|HW ((f̌∗HW ga)
ˇ∗HW ga)(λ)|2CWk (λ)dλ =

∫
Rd

|HW (f)(λ)|2|HW (ga)(λ)|4CWk (λ)dλ.

Then, from the Plancherel formula (2.24) and the fact that HW (ga) belongs to
L∞CWk

(Rd)W , we obtain

||(f̌ ∗HW ga)
ˇ∗HW ga||Ak,2 ≤ ||HW (ga)||2CWk ,∞||f ||Ak,2.

We deduce the result from the relation (3.6).

Lemma 2 Let g be the generalized wavelet satisfying the conditions of Theo-
rem 4. Then, the function Kε,δ defined by

Kε,δ(λ) =
1

Cg

∫ δ

ε

|HW (ga)(λ)|2da
a
, λ ∈ Rd, (3.18)

satisfies, for almost all λ ∈ Rd:

0 < Kε,δ(λ) ≤ 1, (3.19)

and

lim
ε→0,δ→+∞

Kε,δ(λ) = 1. (3.20)

Proof
From the relation (3.1), for almost all λ ∈ Rd, we have

|Kε,δ(λ)| ≤ 1

Cg

∫ +∞

0

|HW (ga)(λ)|2da
a

= 1.

On the other hand, for almost all λ ∈ Rd, we have

lim
ε→0,δ→+∞

Kε,δ(λ) = 1.

This completes the proof.
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Lemma 3 We consider the functions f and g satisfying the conditions of
Theorem 4. Then the function f ε,δ defined by the relation (3.12) belongs to
L2
Ak

(Rd)W and satisfies

HW (f ε,δ)(λ) = HW (f)(λ)Kε,δ(λ), λ ∈ Rd, (3.21)

where Kε,δ is the function given by the relation (3.18).

Proof
- We prove first, that the function f ε,δ belongs to L2

Ak
(Rd)W .

From Definition 6, Proposition 5 and the relation (2.30) we have

f ε,δ(x) =
1

Cg

∫ δ

ε

∫
Rd

(f̌ ∗HW ga)(b)T Wx (ga)(b)Ak(b)db
da

a
. (3.22)

But, from the relation (2.32) we have∫
Rd

(f̌ ∗HW ga)(b)T Wx (ga)(b)Ak(b)db =

∫
Rd

(f̌ ∗HW ga)
ˇ(b)T Wx (ga)(−b)Ak(b)db

= (f̌ ∗HW ga)
ˇ∗HW ga(x).

Then,

f ε,δ(x) =
1

Cg

∫ δ

ε

(f̌ ∗HW ga)
ˇ∗HW ga(x)

da

a
. (3.23)

By using Hölder’s inequality for the measure da
a

, we get

|f ε,δ(x)|2 ≤ 1

C2
g

(

∫ δ

ε

da

a
)

∫ δ

ε

|(f̌ ∗HW ga)
ˇ∗HW ga(x)|2da

a
.

So, by applying Fubini-Tonelli’s theorem, we obtain∫
Rd

|f ε,δ(x)|2Ak(x)dx ≤ 1

C2
g

(

∫ δ

ε

da

a
)

∫ δ

ε

(

∫
Rd

|(f̌∗HW ga)
ˇ∗HW ga(x)|2Ak(x)dx)

da

a
.

From the Plancherel formula (2.24) and the relation (3.14), we deduce that∫
Rd

|f ε,δ(x)|2Ak(x)dx ≤ 1

C2
g

(

∫ δ

ε

da

a
)

∫
Rd

|HW (f)(λ)|2(

∫ δ

ε

|HW (ga)(λ)|4da
a

)CWk (λ)dλ.

On the other hand, from the relations (3.1),(3.6), we have∫ δ

ε

|HW (ga)(λ)|4da
a
≤ Cg||HW (g)||2CWk ,∞.
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Thus, ∫
Rd

|f ε,δ(x)|2Ak(x)dx ≤ 1

Cg
(

∫ δ

ε

da

a
)||HW (g)||2CWk ,∞||H

W (f)||2CWk ,2,

and the Plancherel formula (2.24) implies∫
Rd

|f ε,δ(x)|2Ak(x)dx ≤ 1

Cg
(

∫ δ

ε

da

a
)||HW (g)||2CWk ,∞||f ||

2
Ak,2

< +∞.

Then, f ε,δ belongs to L2
Ak

(Rd)W .
- We prove now the relation (3.21). Let ψ in S(Rd)W . From Theorem 1.i), the
function (HW )−1(ψ) is in S2(Rd)W . From the relation (3.23), we have∫
Rd f

ε,δ(x)(HW )−1(ψ)(x)Ak(x)dx

=

∫
Rd

(
1

Cg

∫ δ

ε

(f̌ ∗HW ga)
ˇ∗HW ga(x)

da

a
)(HW )−1(ψ)(x)Ak(x)dx.

(3.24)
We consider

1
Cg

∫
Rd

∫ δ
ε
|(f̌ ∗HW ga)

ˇ∗HW ga(x)(HW )−1(ψ)(x)|Ak(x)dxda
a

=
1

Cg

∫ δ

ε

[

∫
Rd

|(f̌ ∗HW ga)
ˇ∗HW ga(x)||(HW )−1(ψ)(x)|Ak(x)dx]

da

a
.

(3.25)
By applying Hölder’s inequality to the second member, we get

1
Cg

∫ δ
ε

[
∫
Rd |(f̌ ∗HW ga)

ˇ∗HW ga(x)||(HW )−1(ψ)(x)|Ak(x)dx]da
a

≤ 1

Cg

∫ δ

ε

||(f̌ ∗HW ga)
ˇ∗HW ga||Ak,2||(HW )−1(ψ)||Ak,2

da

a
.

From the relation (3.15) and the Plancherel formula (2.24), we obtain

1
Cg

∫ δ
ε

[
∫
Rd |(f̌ ∗HW ga)

ˇ∗HW ga(x)||(HW )−1(ψ)(x)|Ak(x)dx]da
a

≤ 1

Cg
(

∫ δ

ε

da

a
)||HW (g)||CWk ,∞||ψ||CWk ,2||f ||Ak,2 < +∞.

Then, from Fubini theorem, the second member of the relation (3.24) can also
be written in the form

1

Cg

∫ δ

ε

(

∫
Rd

(f̌ ∗HW ga)
ˇ∗HW ga(x)(HW )−1(ψ)(x)Ak(x)dx)

da

a
. (3.26)
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But, by using the Plancherel formula (2.24) and the relation (3.14), the relation
(3.26) is equal to

1

Cg

∫ δ

ε

(

∫
Rd

HW (f)(λ)|HW (ga)|2ψ(λ)CWk (λ)dλ)
da

a
.

By applying Fubini-Tonelli’s theorem and next Fubini’s theorem to this inte-
gral, it takes the form∫
Rd

HW (f)(λ)(
1

Cg

∫ δ

ε

|HW (ga)|2
da

a
)ψ(λ)CWk (λ)dλ =

∫
Rd

HW (f)(λ)Kε,δ(λ)ψ(λ)CWk (λ)dλ.

(3.27)
On the other hand, by applying the Plancherel formula (2.24) to the first
member of the relation (3.24), we get∫

Rd

HW (f ε,δ)(λ)ψ(λ)CWk (λ)dλ. (3.28)

From the relations (3.27),(3.28), we obtain for all ψ in S(Rd)W :∫
Rd

(HW (f ε,δ)(λ)−HW (f)(λ)Kε,δ(λ))ψ(λ)CWk (λ)dλ = 0.

Thus
HW (f ε,δ)(λ) = HW (f)(λ)Kε,δ(λ), λ ∈ Rd.

Proof of Theorem 3.2
From Lemma 3, the function f ε,δ belongs to L2

Ak
(Rd)W . By using the Plancherel

formula (2.24) and Lemma 3, we obtain

||f ε,δ − f ||Ak,2 =

∫
Rd

|HW (f ε,δ − f)(λ)|2CWk (λ)dλ

=

∫
Rd

|HW (f)(λ)(Kε,δ(λ)− 1)|2CWk (λ)dλ

=

∫
Rd

|HW (f)(λ)|2|1−Kε,δ(λ)|2CWk (λ)dλ.

But from Lemma 2, for almost all λ ∈ Rd, we have

lim
ε→0,δ→+∞

|HW (f)(λ)|2|1−Kε,δ(λ)|2 = 0,

and
|HW (f)(λ)|2|1−Kε,δ(λ)|2 ≤ 4|HW (f)(λ)|2,

with |HW (f)(λ)|2 in L1
CWk

(Rd)W . So, the relation (3.13) follows from the dom-

inated convergence theorem.
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4 Open Problem

The purpose of the future work is to generalize the Calderón’s reproducing
formula for the generalized wavelet on Rd associated to the Heckman-Opdam
theory on functions spaces other than L2

Ak
(Rd)W .

References

1. A.P.Calderón. Intermediate spaces and interpolation, the complex method.
Studia Math. 24, (1964), p. 113-190.

2. I.Daubechies. Ten lectures on wavelets. CBMS-NSF Reg. Conf. Ser.
App. Math. Vol.61. SIAM, Philadelphia (1992).

3. M.Frazier, B.Jawerth and G.Weiss. Littelwood-Paley theory and the
study of functions spaces. CBMS Reg. Conf. Ser. Math. Vol.79. Amer.
Math. Soc., Providence, RI (1991).

4. A.Hassini, R.Maalaoui and K.Trimèche. Generalized wavelets and
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