Calderón's reproducing formula for the generalized wavelet transform on \mathbb{R}^{d} associated to the Heckman-Opdam theory

Amina Hassini, Rayaane Maalaoui and Khalifa Trimèche
University of Tunis El Manar, Faculty of Sciences of Tunis, Department of Mathematics, CAMPUS, 2092 Tunis, Tunisia
e.mail: hassini.amina@hotmail.fr e.mail: rayaane.maalaoui@gmail.com
e.mail: khalifa.trimeche@gmail.com

Abstract

We consider the harmonic analysis associated with the HeckmanOpdam theory on \mathbb{R}^{d}. Through this theory, we have defined and studied in [4], generalized wavelet transform on \mathbb{R}^{d}. In this paper, we prove a Calderón type reproducing formula, which gives rise to new representation for $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$-functions.

Keywords: Heckman-Opdam theory; Generalized wavelet transform; Calderón's reproducing formula

2000 Mathematical Subject Classification: 51F15, 33C67, 33E30, 43A32, 44A15.

1 Introduction

Calderón's reproducing formula was originally used in the so-called CalderónZygmund theory of singular integral operators (see [1]). Besides other applications in decomposition of certain function spaces (see [3]), the Calderón's formula was proved to be a powerful tool for recovering any L^{2} - function f from its wavelet transform $\Phi_{g}(f)$ (see [2]), given for a scale $a>0$ and position $b \in \mathbb{R}^{d}$, as follows: For $g \in L^{2}\left(\mathbb{R}^{d}\right)$ a classical wavelet, we have

$$
\begin{equation*}
\left.\Phi_{g}(f)(a, b)=\int_{\mathbb{R}^{d}} f(x) \overline{g_{a, b}}(x) d x, \quad(a, b) \in\right] 0,+\infty\left[\times \mathbb{R}^{d}\right. \tag{1.1}
\end{equation*}
$$

where $g_{a, b}$ is the wavelet defined by

$$
\begin{equation*}
g_{a, b}(x)=\mathcal{T}_{b} g_{a}(x), \quad x \in \mathbb{R}^{d} \tag{1.2}
\end{equation*}
$$

with g_{a} the function given by

$$
\begin{equation*}
g_{a}(x)=\frac{1}{a^{d}} g\left(\frac{x}{a}\right) . \tag{1.3}
\end{equation*}
$$

Which satisfies

$$
\begin{equation*}
\mathcal{F}\left(g_{a}\right)(\lambda)=\mathcal{F}(g)(a \lambda), \quad \lambda \in \mathbb{R}^{d} \tag{1.4}
\end{equation*}
$$

where \mathcal{F} is the classical Fourier transform on \mathbb{R}^{d} and $\mathcal{T}_{b}, b \in \mathbb{R}^{d}$, the classical translation operator defined by

$$
\begin{equation*}
\mathcal{T}_{b} g(x)=g(b-x), \quad x \in \mathbb{R}^{d} . \tag{1.5}
\end{equation*}
$$

From [6], Calderón's reproducing formula is expressed in this way:

$$
\begin{equation*}
f(x)=\frac{1}{C_{g}} \int_{0}^{+\infty}\left(\int_{\mathbb{R}^{d}} \Phi_{g}(f)(a, b) g_{a, b}(x) d x\right) \frac{d a}{a}, \tag{1.6}
\end{equation*}
$$

strongly in $L^{2}\left(\mathbb{R}^{d}\right)$, where C_{g} is the constant given for almost all $\lambda \in \mathbb{R}^{d}$, by

$$
\begin{equation*}
C_{g}=\int_{0}^{+\infty}|\mathcal{F}(g)(a \lambda)|^{2} \frac{d a}{a} \tag{1.7}
\end{equation*}
$$

and which satisfies

$$
\begin{equation*}
0<C_{g}<+\infty \tag{1.8}
\end{equation*}
$$

In [5][7], Heckman and Opdam have developed a harmonic analysis associated to the Cherednik operators on \mathbb{R}^{d}, which generalizes the harmonic analysis on symmetric spaces called the Heckman-Opdam theory on \mathbb{R}^{d}.

We have studied in [4], generalized wavelets and the generalized wavelet transform on \mathbb{R}^{d} associated to the Heckman-Opdam theory. In this paper, we prove a Calderón's reproducing formula for this generalized wavelet transform.

2 Harmonic analysis associated to the HeckmanOpdam theory on \mathbb{R}^{d}

In this section, we cite basic results of the harmonic analysis associated to the Heckman-Opdam theory on \mathbb{R}^{d}. More details can be found in [9][10].

We consider \mathbb{R}^{d} with the standard basis $\left\{e_{i}, i=1,2, \ldots, d\right\}$ and the inner product $\langle.,$.$\rangle for which this basis is orthonormal. We extend this inner product$ to a complex bilinear form on \mathbb{C}^{d}.

2.1 The root system, the multiplicity function and the Cherednik operators

Let $\alpha \in \mathbb{R}^{d} \backslash\{0\}$ and $\check{\alpha}=\frac{2}{\|\alpha\|^{2}} \alpha$. We denote by

$$
\begin{equation*}
r_{\alpha}(x)=x-\langle\check{\alpha}, x\rangle \alpha, \quad x \in \mathbb{R}^{d} \tag{2.1}
\end{equation*}
$$

the reflection in the hyperplan $H_{\alpha} \subset \mathbb{R}^{d}$ orthogonal to α.
A finite set $\mathcal{R} \subset \mathbb{R}^{d} \backslash\{0\}$ is called a root system if $\mathcal{R} \cap \mathbb{R} \alpha=\{ \pm \alpha\}$ and $r_{\alpha} \mathcal{R}=\mathcal{R}$, for all $\alpha \in \mathcal{R}$. For a given root system \mathcal{R}, the reflections $r_{\alpha}, \alpha \in \mathcal{R}$, generate a finite group $W \subset O(d)$, called the reflection group associated with \mathcal{R}. For a given $\beta \in \mathbb{R}^{d}$ which belongs to no hyperplane $H_{\alpha}, \alpha \in \mathcal{R}$, we fix the positive subsystem $\mathcal{R}_{+}=\{\alpha \in \mathcal{R},\langle\alpha, \beta\rangle>0\}$. Then for each $\alpha \in \mathcal{R}$, either $\alpha \in \mathcal{R}_{+}$or $-\alpha \in \mathcal{R}_{+}$. We denote by \mathcal{R}_{+}^{0}, the set of positive indivisible roots. Let

$$
\begin{equation*}
\mathfrak{a}^{+}=\left\{x \in \mathbb{R}^{d}, \forall \alpha \in \mathcal{R},\langle\alpha, x\rangle>0\right\} \tag{2.2}
\end{equation*}
$$

be the positive Weyl chamber. We denote by $\overline{\mathfrak{a}^{+}}$its closure.
Let also $\mathbb{R}_{r e g}^{d}=\mathbb{R}^{d} \backslash \cup_{\alpha \in \mathcal{R}} H_{\alpha}$ be the set of regular elements in \mathbb{R}^{d}.
A function $k: \mathcal{R} \rightarrow[0,+\infty[$ on the root system \mathcal{R} is called a multiplicity function, if it is invariant under the action of the reflection group W. We introduce the index

$$
\begin{equation*}
\gamma=\gamma(\mathcal{R})=\sum_{\alpha \in \mathcal{R}_{+}} k(\alpha) \tag{2.3}
\end{equation*}
$$

Moreover, let \mathcal{A}_{k} be the weight function

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}, \quad \mathcal{A}_{k}(x)=\prod_{\alpha \in \mathcal{R}_{+}}\left|2 \sinh \left\langle\frac{\alpha}{2}, x\right\rangle\right|^{2 k(\alpha)}, \tag{2.4}
\end{equation*}
$$

which is W-invariant.
The Cherednik operators $T_{j}, j=1,2, \ldots, d$, on \mathbb{R}^{d} associated with the reflection group W and the multiplicity function k, are defined for f of class C^{1} on \mathbb{R}^{d} and $x \in \mathbb{R}_{\text {reg }}^{d}$ by

$$
\begin{equation*}
T_{j} f(x)=\frac{\partial}{\partial x_{j}} f(x)+\sum_{\alpha \in \mathbb{R}_{+}} \frac{k(\alpha) \alpha^{j}}{1-e^{-\langle\alpha, x\rangle}}\left\{f(x)-f\left(r_{\alpha} x\right)\right\}-\rho_{j} f(x), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{j}=\frac{1}{2} \sum_{\alpha \in \mathcal{R}_{+}} k(\alpha) \alpha^{j}, \text { and } \alpha^{j}=\left\langle\alpha, e_{j}\right\rangle . \tag{2.6}
\end{equation*}
$$

In the case $k(\alpha)=0$, for all $\alpha \in \mathcal{R}_{+}$, the operators $T_{j}, j=1,2, \ldots d$, reduce to the corresponding partial derivatives. We suppose in the following that $k \neq 0$.

The Cherednik operators form a commutative system of differential-difference operators.

For f of class C^{1} on \mathbb{R}^{d} with compact support and g of class C^{1} on \mathbb{R}^{d}, we have for $j=1,2, \ldots, d$:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} T_{j} f(x) g(x) \mathcal{A}_{k}(x) d x=-\int_{\mathbb{R}^{d}} f(x)\left(T_{j}+S_{j}\right) g(x) \mathcal{A}_{k}(x) d x \tag{2.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}, S_{j} g(x)=\sum_{\alpha \in \mathcal{R}_{+}} k(\alpha) \alpha^{j} g\left(r_{\alpha} x\right) \tag{2.8}
\end{equation*}
$$

2.2 The Opdam-Cherednik kernel and the HeckmanOpdam hypergeometric function

We denote by $G_{\lambda}, \lambda \in \mathbb{C}^{d}$, the eigenfunction of the operators $T_{j}, j=1,2, \ldots, d$. It is the unique analytic function on \mathbb{R}^{d} which satisfies the differential-difference system

$$
\begin{cases}T_{j} G_{\lambda}(x) & =i \lambda_{j} G_{\lambda}(x), \quad j=1,2, \ldots, d, x \in \mathbb{R}^{d} \tag{2.9}\\ G_{\lambda}(0) & =1\end{cases}
$$

It is called the Opdam-Cherednik kernel.
We consider the function F_{λ} defined by

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}, \quad F_{\lambda}(x)=\frac{1}{|W|} \sum_{w \in W} G_{\lambda}(w x) \tag{2.10}
\end{equation*}
$$

This function is the unique analytic function on \mathbb{R}^{d}, which satisfies the differential system

$$
\begin{cases}p(T) F_{\lambda}(x) & =p(i \lambda) F_{\lambda}(x), \quad x \in \mathbb{R}^{d} \tag{2.11}\\ F_{\lambda}(0) & =1\end{cases}
$$

for all W-invariant polynomials p on \mathbb{C}^{d} and $p(T)=p\left(T_{1}, T_{2}, \ldots, T_{d}\right)$.
The function $F_{\lambda}(x)$ called the Heckman-Opdam hypergeometric function, is W-invariant both in λ and x. (For more properties of F_{λ} see [8]).

2.3 The Hypergeometric Fourier transform

Notations. We denote by

- $\mathcal{E}\left(\mathbb{R}^{d}\right)^{W}$ the space of C^{∞}-functions on \mathbb{R}^{d}, which are W-invariant.
- $\mathcal{D}\left(\mathbb{R}^{d}\right)^{W}$ the space of C^{∞}-functions on \mathbb{R}^{d}, with compact support and W-invariant.
- $\mathcal{S}\left(\mathbb{R}^{d}\right)^{W}$ the space of W-invariant functions from the classical Schwartz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

The spaces $\mathcal{E}\left(\mathbb{R}^{d}\right)^{W}, \mathcal{D}\left(\mathbb{R}^{d}\right)^{W}$ et $\mathcal{E}\left(\mathbb{R}^{d}\right)^{W}$ are equipped with their classical topologies.

- $\mathcal{S}_{2}\left(\mathbb{R}^{d}\right)^{W}$ the space of C^{∞}-functions on \mathbb{R}^{d}, which are W-invariant, and such that for all $\ell, n \in \mathbb{N}$,

$$
\begin{equation*}
p_{\ell, n}(f)=\sup _{\substack{|\mu| \leq n \\ x \in \mathbb{R}^{d}}}(1+\|x\|)^{\ell}\left(F_{0}(x)\right)^{-1}\left|D^{\mu} f(x)\right|<+\infty \tag{2.12}
\end{equation*}
$$

where

$$
D^{\mu}=\frac{\partial^{|\mu|}}{\partial x_{1}^{\mu_{1}} \ldots \partial x_{d}^{\mu_{d}}}, \quad \mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \in \mathbb{N}^{d}, \quad|\mu|=\sum_{i=1}^{d} \mu_{i}
$$

Its topology is defined by the semi-norms $p_{\ell, n}, \ell, n \in \mathbb{N}$.

- $P W_{a}\left(\mathbb{C}^{d}\right)^{W}, a>0$, the space of entire functions g on \mathbb{C}^{d}, which are W-invariant and satisfying

$$
\begin{equation*}
\forall m \in \mathbb{N}, q_{m}(g)=\sup _{\lambda \in \mathbb{C}^{d}}(1+\|\lambda\|)^{m} e^{-a\|I m \lambda\|}|g(\lambda)|<+\infty \tag{2.13}
\end{equation*}
$$

The topology of $P W_{a}\left(\mathbb{C}^{d}\right)$ is defined by the semi-norms $q_{m}, m \in \mathbb{N}$.
We set

$$
\begin{equation*}
P W\left(\mathbb{C}^{d}\right)^{W}=\cup_{a>0} P W_{a}\left(\mathbb{C}^{d}\right)^{W} \tag{2.14}
\end{equation*}
$$

This space is called the Paley-Wiener space. It is equipped with the inductive limit topology.

Definition 1 The hypergeometric Fourier transform \mathcal{H}^{W} is defined for f in $\mathcal{D}\left(\mathbb{R}^{d}\right)^{W}\left(\right.$ resp. $\left.\mathcal{S}_{2}\left(\mathbb{R}^{d}\right)^{W}\right)$ by

$$
\begin{equation*}
\forall \lambda \in \mathbb{C}^{d}, \mathcal{H}^{W}(f)(\lambda)=\int_{\mathbb{R}^{d}} f(x) F_{-\lambda}(x) \mathcal{A}_{k}(x) d x \tag{2.15}
\end{equation*}
$$

Remark 1 We have also the relation

$$
\begin{equation*}
\forall \lambda \in \mathbb{C}^{d}, \mathcal{H}^{W}(f)(\lambda)=\int_{\mathbb{R}^{d}} f(x) F_{\lambda}(-x) \mathcal{A}_{k}(x) d x \tag{2.16}
\end{equation*}
$$

Proposition 1 For all f in $\mathcal{D}\left(\mathbb{R}^{d}\right)^{W}\left(\right.$ resp. $\left.\mathcal{S}_{2}\left(\mathbb{R}^{d}\right)^{W}\right)$, we have the following relations

$$
\begin{align*}
& \forall \lambda \in \mathbb{R}^{d}, \mathcal{H}^{W}(\bar{f})(\lambda)=\overline{\mathcal{H}^{W}(\check{f})(\lambda)} \tag{2.17}\\
& \forall \lambda \in \mathbb{R}^{d}, \mathcal{H}^{W}(f)(\lambda)=\mathcal{H}^{W}(\check{f})(-\lambda) \tag{2.18}
\end{align*}
$$

where \check{f} is the function defined by

$$
\forall x \in \mathbb{R}^{d}, \quad \check{f}(x)=f(-x) .
$$

Theorem 1

i) The hypergeometric Fourier transform \mathcal{H}^{W} is a topological isomorphism from - $\mathcal{D}\left(\mathbb{R}^{d}\right)^{W}$ onto $P W\left(\mathbb{C}^{d}\right)^{W}$.

- $\mathcal{S}_{2}\left(\mathbb{R}^{d}\right)^{W}$ onto $\mathcal{S}\left(\mathbb{R}^{d}\right)^{W}$.
ii) A function f belongs to $\mathcal{D}\left(\mathbb{R}^{d}\right)^{W}$ with supp $f \subset B(0, a)$ the closed ball of center 0 and radius $a>0$, if and only if its hypergeometric Fourier transform $\mathcal{H}^{W}(f)$ belongs to $P W_{a}\left(\mathbb{C}^{d}\right)^{W}$.
iii) The inverse transform $\left(\mathcal{H}^{W}\right)^{-1}$ is given by

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d},\left(\mathcal{H}^{W}\right)^{-1}(h)(x)=\int_{\mathbb{R}^{d}} h(\lambda) F_{\lambda}(x) \mathcal{C}_{k}^{W}(\lambda) d \lambda \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{C}_{k}^{W}(\lambda)=c_{o}\left|c_{k}(\lambda)\right|^{-2} \tag{2.20}
\end{equation*}
$$

with c_{o} a positive constant chosen in such a way that $\mathcal{C}_{k}^{W}(-\rho)=1$, and

$$
\begin{equation*}
c_{k}(\lambda)=\prod_{\alpha \in \mathcal{R}_{+}} \frac{\Gamma\left(\langle i \lambda, \check{\alpha}\rangle+\frac{1}{2} k\left(\frac{\alpha}{2}\right)\right)}{\Gamma\left(\langle i \lambda, \check{\alpha}\rangle+k(\alpha)+\frac{1}{2} k\left(\frac{\alpha}{2}\right)\right)}, \tag{2.21}
\end{equation*}
$$

with the convention that $k\left(\frac{\alpha}{2}\right)=0$ if $\frac{\alpha}{2} \notin \mathcal{R}$.
Remark 2 The function \mathcal{C}_{k}^{W} is continuous on \mathbb{R}^{d} and satisfies the estimate

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}^{d},\left|\mathcal{C}_{k}^{W}(\lambda)\right| \leq \text { const. }(1+\|\lambda\|)^{s}, \tag{2.22}
\end{equation*}
$$

for some $s>0$.
Notations. We denote by

- $L_{\mathcal{A}_{k}}^{p}\left(\mathbb{R}^{d}\right)^{W}, 1 \leq p \leq+\infty$, the space of measurable functions f on \mathbb{R}^{d} which are W-invariant and satisfying

$$
\begin{aligned}
\|f\|_{\mathcal{A}_{k}, p} & =\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} \mathcal{A}_{k}(x) d x\right)^{1 / p}<+\infty, \quad 1 \leq p<+\infty \\
\|f\|_{\mathcal{A}_{k}, \infty} & =\text { ess } \sup _{x \in \mathbb{R}^{d}}|f(x)|<+\infty
\end{aligned}
$$

- $L_{\mathcal{C}_{k}^{W}}^{p}\left(\mathbb{R}^{d}\right)^{W}, 1 \leq p \leq+\infty$, the space of measurable functions f on \mathbb{R}^{d} which are W-invariant and satisfying

$$
\begin{aligned}
\|f\|_{\mathcal{C}_{k}^{W}, p} & =\left(\int_{\mathbb{R}^{d}}|f(\lambda)|^{p} \mathcal{C}_{k}^{W}(\lambda) d \lambda\right)^{1 / p}<+\infty, \quad 1 \leq p<+\infty \\
\|f\|_{\mathcal{C}_{k}^{W}, \infty} & =\text { ess } \sup _{\lambda \in \mathbb{R}^{d}}|f(\lambda)|<+\infty
\end{aligned}
$$

Theorem 2

i) (Plancherel formulas). For all f, g in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f(x) \overline{g(x)} \mathcal{A}_{k}(x) d x=\int_{\mathbb{R}^{d}} \mathcal{H}^{W}(f)(\lambda) \overline{\mathcal{H}^{W}(g)(\lambda)} \mathcal{C}_{k}^{W}(\lambda) d \lambda \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{\mathcal{A}_{k}, 2}=\left\|\mathcal{H}^{W}(f)\right\|_{\mathcal{C}_{k}^{W}, 2} \tag{2.24}
\end{equation*}
$$

ii) (Plancherel theorem). The hypergeometric Fourier transform \mathcal{H}^{W} extends uniquely to an isometric isomorphism from $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ onto $L_{\mathcal{C}_{k}^{W}}^{2}\left(\mathbb{R}^{d}\right)^{W}$.
Corollary 1 For all f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ such that $\mathcal{H}^{W}(f)$ belongs to $L_{\mathcal{C}_{k}^{W}}^{1}\left(\mathbb{R}^{d}\right)^{W}$, we have the inversion formula

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{d}} \mathcal{H}^{W}(f)(\lambda) F_{\lambda}(x) \mathcal{C}_{k}^{W}(\lambda) d \lambda, \text { a.e. } \quad x \in \mathbb{R}^{d} \tag{2.25}
\end{equation*}
$$

2.4 The hypergeometric translation operator and the hypergeometric convolution product

Definition 2 The hypergeometric translation operator $\mathcal{T}_{x}^{W}, x \in \mathbb{R}^{d}$, is defined on $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ by

$$
\begin{equation*}
\mathcal{H}^{W}\left(\mathcal{T}_{x}^{W}(f)\right)(\lambda)=F_{\lambda}(x) \mathcal{H}^{W}(f)(\lambda), \quad \lambda \in \mathbb{R}^{d} \tag{2.26}
\end{equation*}
$$

Proposition 2

i) For all f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, we have

$$
\begin{equation*}
\left\|\mathcal{T}_{x}^{W}(f)\right\|_{\mathcal{A}_{k}, 2} \leq|W|^{1 / 2}\|f\|_{\mathcal{A}_{k}, 2} \tag{2.27}
\end{equation*}
$$

ii) For all f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, we have

$$
\mathcal{T}_{x}^{W}(f)(y)=\lim _{n \rightarrow+\infty} \int_{B(0, n)} F_{\lambda}(x) F_{\lambda}(y) \mathcal{H}^{W}(f)(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda
$$

where $B(0, n)$ is the closed ball of center 0 and radius n. The limit is in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$.
iii) For all f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ such that $\mathcal{H}^{W}(f)$ belongs to $L_{\mathcal{C}_{k}^{W}}^{1}\left(\mathbb{R}^{d}\right)^{W}$ and $x \in \mathbb{R}^{d}$, we have

$$
\begin{equation*}
\mathcal{T}_{x}^{W}(f)(y)=\int_{\mathbb{R}^{d}} F_{\lambda}(x) F_{\lambda}(y) \mathcal{H}^{W}(f)(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda, \text { a.e. } \quad y \in \mathbb{R}^{d} \tag{2.28}
\end{equation*}
$$

iv) For all f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, we have

$$
\begin{equation*}
\overline{\mathcal{T}_{x}^{W}(f)(y)}=\mathcal{T}_{x}^{W}(\bar{f})(y), \quad x, y \in \mathbb{R}^{d} \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{x}^{W}(f)(y)=\mathcal{T}_{y}^{W}(f)(x), \quad x, y \in \mathbb{R}^{d} \tag{2.30}
\end{equation*}
$$

Definition 3 The hypergeometric convolution product $f *_{\mathcal{H}^{W}} g$ of the functions f,g in $\mathcal{D}\left(\mathbb{R}^{d}\right)^{W}\left(\right.$ resp. $\left.\mathcal{S}_{2}\left(\mathbb{R}^{d}\right)^{W}\right)$ is defined by

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}, f *_{\mathcal{H}^{W}} g(x)=\int_{\mathbb{R}^{d}} \mathcal{T}_{x}^{W}(f)(-y) g(y) \mathcal{A}_{k}(y) d y \tag{2.31}
\end{equation*}
$$

Proposition 3 Let f be in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ and g in $L_{\mathcal{A}_{k}}^{1}\left(\mathbb{R}^{d}\right)^{W}$. Then, the function $f *_{\mathcal{H}^{W}} g$ defined all most everywhere on \mathbb{R}^{d} by

$$
\begin{equation*}
f *_{\mathcal{H}^{W}} g(x)=\int_{\mathbb{R}^{d}} \mathcal{T}_{x}^{W}(f)(-y) g(y) \mathcal{A}_{k}(y) d y \tag{2.32}
\end{equation*}
$$

belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and we have

$$
\begin{equation*}
\left\|f *_{\mathcal{H}^{W}} g\right\|_{\mathcal{A}_{k}, 2} \leq|W|^{1 / 2}\|f\|_{\mathcal{A}_{k}, 2}\|g\|_{\mathcal{A}_{k}, 1} \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{H}^{W}\left(f *_{\mathcal{H}^{W}} g\right)=\mathcal{H}^{W}(f) \cdot \mathcal{H}^{W}(g) \tag{2.34}
\end{equation*}
$$

Proposition 4 Let f and g be in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$. Then, the function $f *_{\mathcal{H}^{W} g} g$ belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ if and only if the function $\mathcal{H}^{W}(f) . \mathcal{H}^{W}(g)$ is in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and we have

$$
\begin{equation*}
\mathcal{H}^{W}\left(f *_{\mathcal{H}^{W}} g\right)=\mathcal{H}^{W}(f) \cdot \mathcal{H}^{W}(g) \tag{2.35}
\end{equation*}
$$

in the L^{2}-case.

3 Calderón's reproducing formula

3.1 Generalized wavelets and the generalized wavelet transform on \mathbb{R}^{d}

Definition 4 We say that a function g in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ is a generalized wavelet on \mathbb{R}^{d}, if there exists a constant C_{g} such that
i) $0<C_{g}<+\infty$.
ii) For almost all $\lambda \in \mathbb{R}^{d}$, we have

$$
\begin{equation*}
C_{g}=\int_{0}^{+\infty}\left|\mathcal{H}^{W}(g)(a \lambda)\right|^{2} \frac{d a}{a} \tag{3.1}
\end{equation*}
$$

Example 1 Let $t>0$. We consider the function g defined by

$$
\forall x \in \mathbb{R}^{d}, \quad g(x)=-\mathcal{L}_{k}^{W} E_{t}^{W}(x)
$$

where \mathcal{L}_{k}^{W} is the Heckman-Opdam Laplacian defined for a function f on \mathbb{R}^{d} of class C^{2} and W-invariant, by

$$
\begin{equation*}
\mathcal{L}_{k}^{W} f=\sum_{j=1}^{d} T_{j}^{2} f \tag{3.2}
\end{equation*}
$$

It has the following form : For $x \in \mathbb{R}_{\text {reg }}^{d}$

$$
\mathcal{L}_{k}^{W} f(x)=\Delta f(x)+\sum_{\alpha \in \mathcal{R}_{+}} k(\alpha) \operatorname{coth}\left(\frac{\langle\alpha, x\rangle}{2}\right)\langle\nabla f(x), \alpha\rangle+\|\rho\|^{2} f(x)
$$

where Δ and ∇ are respectively the Laplacian and the gradient on \mathbb{R}^{d}, and $E_{t}^{W}, t>0$, the heat kernel given by

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}, \quad E_{t}^{W}(x)=\int_{\mathbb{R}^{d}} e^{-t\left(\|\lambda\|^{2}+\|\rho\|^{2}\right)} F_{\lambda}(x) \mathcal{C}_{k}^{W}(\lambda) d \lambda \tag{3.3}
\end{equation*}
$$

By using (2.9), (2.10), (3.2), (3.3), we obtain

$$
\forall x \in \mathbb{R}^{d}, \quad g(x)=\int_{\mathbb{R}^{d}}\|\lambda\|^{2} e^{-t\left(\|\lambda\|^{2}+\|\rho\|^{2}\right)} F_{\lambda}(x) \mathcal{C}_{k}^{W}(\lambda) d \lambda
$$

The function g belongs to $S_{2}\left(\mathbb{R}^{d}\right)^{W}$ and we have

$$
\forall \lambda \in \mathbb{R}^{d}, \quad \mathcal{H}^{W}(g)(\lambda)=\|\lambda\| \|^{2} e^{-t\left(\|\lambda\|^{2}+\|\rho\|^{2}\right)}
$$

For $\lambda \in \mathbb{R}^{d} \backslash\{0\}$, we have

$$
\begin{aligned}
C_{g} & =\int_{0}^{+\infty}\left|\mathcal{H}^{W}(g)(a \lambda)\right|^{2} \frac{d a}{a} \\
& =e^{-2 t\|\rho\|^{2}} \int_{0}^{+\infty}\|\lambda\|^{4} e^{-2 t a^{2}\|\lambda\|^{2}} a^{3} d a
\end{aligned}
$$

By change of variables we obtain, for almost all $\lambda \in \mathbb{R}^{d}$:

$$
C_{g}=\frac{e^{-2 t\|\rho\|^{2}}}{8 t^{2}}
$$

Definition 5 We define the function l_{k} on $] 0,+\infty[$ by

$$
\begin{equation*}
l_{k}(a)=\sup _{\lambda \in \mathbb{R}^{d} \backslash\{0\}} \frac{\left|\mathcal{C}_{k}^{W}\left(\frac{\lambda}{a}\right)\right|}{\left|\mathcal{C}_{k}^{W}(\lambda)\right|}=\sup _{\lambda \in \mathbb{R}^{d} \backslash\{0\}} \frac{\left|c_{k}(\lambda)\right|^{2}}{\left|c_{k}\left(\frac{\lambda}{a}\right)\right|^{2}}, \tag{3.4}
\end{equation*}
$$

where \mathcal{C}_{k}^{W} and c_{k} the functions given by the relations (2.20),(2.21).

Remark 3 When $k(\alpha) \in \mathbb{N}$, for all $\alpha \in \mathcal{R}$, the function l_{k} has the follouwing form

$$
l_{k}(a)=\sup _{\lambda \in \mathbb{R}^{d} \backslash\{0\}} \prod_{\alpha \in \mathcal{R}_{+}} \prod_{n=1}^{k(\alpha)} \frac{(\langle\lambda, \check{\alpha}\rangle)^{2}+\left(\frac{1}{2} k\left(\frac{\alpha}{2}\right)+k(\alpha)-n\right)^{2}}{\left(\frac{1}{a}\langle\lambda, \check{\alpha}\rangle\right)^{2}+\left(\frac{1}{2} k\left(\frac{\alpha}{2}\right)+k(\alpha)-n\right)^{2}} .
$$

It satisfies the estimates
i) If $a \in[1,+\infty[$

$$
0<l_{k}(a) \leq a^{2 \gamma}
$$

with γ defined by the relation (2.3).
ii) If $a \in] 0,1[$

$$
0<l_{k}(a) \leq \prod_{\alpha \in \mathcal{R}_{+}} k(\alpha)
$$

Theorem 3 Let $a>0$ and g a generalized wavelet on \mathbb{R}^{d} in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$. Then, i) The function $\lambda \longrightarrow \mathcal{H}^{W}(g)(a \lambda)$ belongs to $L_{\mathcal{C}_{k}^{W}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and we have

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}(g)(a \lambda)\right|^{2} \mathcal{C}_{k}^{W}(\lambda) d \lambda \leq \frac{l_{k}(a)}{a^{d}}\|g\|_{\mathcal{A}_{k}, 2}^{2} \tag{3.5}
\end{equation*}
$$

where l_{k} is the function given by the relation (3.4).
ii) There exists a function g_{a} in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ such that

$$
\begin{equation*}
\mathcal{H}^{W}\left(g_{a}\right)(\lambda)=\mathcal{H}^{W}(g)(a \lambda), \quad \lambda \in \mathbb{R}^{d} \tag{3.6}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\left\|g_{a}\right\|_{\mathcal{A}_{k}, 2}^{2} \leq \frac{l_{k}(a)}{a^{d}}\|g\|_{\mathcal{A}_{k}, 2}^{2} \tag{3.7}
\end{equation*}
$$

Proposition 5 Let g be a generalized wavelet on \mathbb{R}^{d} in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$. Then, for $a>0$ and $b \in \mathbb{R}^{d}$, the function

$$
\begin{equation*}
g_{a, b}(x)=\mathcal{T}_{b}^{W} g_{a}(x), \quad x \in \mathbb{R}^{d} \tag{3.8}
\end{equation*}
$$

is a generalized wavelet on \mathbb{R}^{d} in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and we have

$$
\begin{equation*}
C_{g_{a, b}} \leq|W| C_{g} . \tag{3.9}
\end{equation*}
$$

Definition 6 The generalized wavelet transform Φ_{g} on \mathbb{R}^{d} is defined, for f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, by

$$
\begin{equation*}
\left.\Phi_{g}(f)(a, b)=\int_{\mathbb{R}^{d}} f(x) \overline{g_{a, b}(x)} \mathcal{A}_{k}(x) d x, \quad(a, b) \in\right] 0,+\infty\left[\times \mathbb{R}^{d}\right. \tag{3.10}
\end{equation*}
$$

We can also write it in the form

$$
\begin{equation*}
\Phi_{g}(f)(a, b)=\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}(b) \tag{3.11}
\end{equation*}
$$

where \check{f} is the function defined by

$$
\check{f}(x)=f(-x), \quad x \in \mathbb{R}^{d} .
$$

3.2 Calderón's reproducing formula

Theorem 4 (Calderón's formula). Let g be a generalized wavelet in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ such that $\mathcal{H}^{W}(g)$ belongs to $L_{\mathcal{C}_{k}^{W}}^{\infty}\left(\mathbb{R}^{d}\right)^{W}$. Then, for f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ and $0<\epsilon<\delta<+\infty$, the function

$$
\begin{equation*}
f^{\epsilon, \delta}(x)=\frac{1}{C_{g}} \int_{\epsilon}^{\delta} \int_{\mathbb{R}^{d}} \Phi_{g}(a, b) g_{a, b}(x) \mathcal{A}_{k}(b) d b \frac{d a}{a}, \quad x \in \mathbb{R}^{d}, \tag{3.12}
\end{equation*}
$$

belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and satisfies

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0, \delta \rightarrow+\infty}\left\|f^{\epsilon, \delta}-f\right\|_{\mathcal{A}_{k}, 2}=0 \tag{3.13}
\end{equation*}
$$

To prove this theorem we need the following Lemmas.
Lemma 1 Let g be the generalized wavelet satisfying the conditions of Theorem 4 and f in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$. Then,
i) The functions $\left(\dot{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{c}}$ and $\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}$ are in $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and we have

$$
\begin{equation*}
\mathcal{H}^{W}\left(\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\left.\check{*} *_{\mathcal{H}}{ }^{W} g_{a}\right)(\lambda)=\mathcal{H}^{W}(f)(\lambda)\left|\mathcal{H}^{W}\left(g_{a}\right)(\lambda)\right|^{2}, \quad \lambda \in \mathbb{R}^{d} . . . ~ . ~}\right. \tag{3.14}
\end{equation*}
$$

ii) We have

$$
\begin{equation*}
\left\|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}\right\|_{\mathcal{A}_{k}, 2} \leq\left\|\mathcal{H}^{W}(g)\right\|_{\mathcal{C}_{k}^{W}, \infty}^{2}\|f\|_{\mathcal{A}_{k}, 2} \tag{3.15}
\end{equation*}
$$

Proof

i) From the relations (2.17)(2.18) and Proposition 4 we have

$$
\begin{aligned}
\mathcal{H}^{W}\left(\left(\check{f} *_{\mathcal{H}}{ }^{W} \overline{g_{a}}\right)\right)(\lambda) & =\mathcal{H}^{W}\left(\check{f} *_{\mathcal{H}}{ }^{W} \overline{g_{a}}\right)(-\lambda) \\
& =\mathcal{H}^{W}(\check{f})(-\lambda) \mathcal{H}^{W}\left(\overline{g_{a}}\right)(-\lambda) \\
& =\mathcal{H}^{W}(f)(\lambda) \overline{\mathcal{H}^{W}\left(\check{g_{a}}\right)(-\lambda)} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\mathcal{H}^{W}\left(\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{\prime}}\right)(\lambda)=\mathcal{H}^{W}(f)(\lambda) \overline{\mathcal{H}^{W}\left(g_{a}\right)(\lambda)} . \tag{3.16}
\end{equation*}
$$

On the other hand, we put

$$
Z(x)=\left(\check{f} *_{\mathcal{H}^{w}} \overline{g_{a}}\right)^{\circ}(x), \quad x \in \mathbb{R}^{d} .
$$

Thus,

By using Proposition 4 , we deduce that the function Z belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$, and we have

$$
\begin{equation*}
\mathcal{H}^{W}\left(Z *_{\mathcal{H}^{W}} g_{a}\right)(\lambda)=\mathcal{H}^{W}(Z)(\lambda) \mathcal{H}^{W}\left(g_{a}\right)(\lambda), \quad \lambda \in \mathbb{R}^{d} \tag{3.17}
\end{equation*}
$$

We deduce (3.14) from (3.16),(3.17).
ii) From the i) we have
$\int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}\left(\left(\check{f} *_{\mathcal{H}}{ }^{W} \overline{g_{a}}\right) \check{*}_{\mathcal{H}}{ }^{W} g_{a}\right)(\lambda)\right|^{2} \mathcal{C}_{k}^{W}(\lambda) d \lambda=\int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}\left|\mathcal{H}^{W}\left(g_{a}\right)(\lambda)\right|^{4} \mathcal{C}_{k}^{W}(\lambda) d \lambda$.
Then, from the Plancherel formula (2.24) and the fact that $\mathcal{H}^{W}\left(g_{a}\right)$ belongs to $L_{\mathcal{C}_{k}^{W}}^{\infty}\left(\mathbb{R}^{d}\right)^{W}$, we obtain

$$
\left\|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}\right\|_{\mathcal{A}_{k}, 2} \leq\left\|\mathcal{H}^{W}\left(g_{a}\right)\right\|_{\mathcal{C}_{k}^{W}, \infty}^{2}\|f\|_{\mathcal{A}_{k}, 2}
$$

We deduce the result from the relation (3.6).
Lemma 2 Let g be the generalized wavelet satisfying the conditions of Theorem 4. Then, the function $K_{\epsilon, \delta}$ defined by

$$
\begin{equation*}
K_{\epsilon, \delta}(\lambda)=\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left|\mathcal{H}^{W}\left(g_{a}\right)(\lambda)\right|^{2} \frac{d a}{a}, \quad \lambda \in \mathbb{R}^{d} \tag{3.18}
\end{equation*}
$$

satisfies, for almost all $\lambda \in \mathbb{R}^{d}$:

$$
\begin{equation*}
0<K_{\epsilon, \delta}(\lambda) \leq 1 \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0, \delta \rightarrow+\infty} K_{\epsilon, \delta}(\lambda)=1 \tag{3.20}
\end{equation*}
$$

Proof

From the relation (3.1), for almost all $\lambda \in \mathbb{R}^{d}$, we have

$$
\left|K_{\epsilon, \delta}(\lambda)\right| \leq \frac{1}{C_{g}} \int_{0}^{+\infty}\left|\mathcal{H}^{W}\left(g_{a}\right)(\lambda)\right|^{2} \frac{d a}{a}=1
$$

On the other hand, for almost all $\lambda \in \mathbb{R}^{d}$, we have

$$
\lim _{\epsilon \rightarrow 0, \delta \rightarrow+\infty} K_{\epsilon, \delta}(\lambda)=1
$$

This completes the proof.

Lemma 3 We consider the functions f and g satisfying the conditions of Theorem 4. Then the function $f^{\epsilon, \delta}$ defined by the relation (3.12) belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$ and satisfies

$$
\begin{equation*}
\mathcal{H}^{W}\left(f^{\epsilon, \delta}\right)(\lambda)=\mathcal{H}^{W}(f)(\lambda) K_{\epsilon, \delta}(\lambda), \quad \lambda \in \mathbb{R}^{d} \tag{3.21}
\end{equation*}
$$

where $K_{\epsilon, \delta}$ is the function given by the relation (3.18).

Proof

- We prove first, that the function $f^{\epsilon, \delta}$ belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$.

From Definition 6, Proposition 5 and the relation (2.30) we have

$$
\begin{equation*}
f^{\epsilon, \delta}(x)=\frac{1}{C_{g}} \int_{\epsilon}^{\delta} \int_{\mathbb{R}^{d}}\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)(b) \mathcal{T}_{x}^{W}\left(g_{a}\right)(b) \mathcal{A}_{k}(b) d b \frac{d a}{a} . \tag{3.22}
\end{equation*}
$$

But, from the relation (2.32) we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)(b) \mathcal{T}_{x}^{W}\left(g_{a}\right)(b) \mathcal{A}_{k}(b) d b & =\int_{\mathbb{R}^{d}}\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)(b) \mathcal{T}_{x}^{W}\left(g_{a}\right)(-b) \mathcal{A}_{k}(b) d b \\
& =\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}(x) .
\end{aligned}
$$

Then,

$$
\begin{equation*}
f^{\epsilon, \delta}(x)=\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left(\check{f} *_{\mathcal{H}^{w}} \overline{g_{a}}\right)^{\check{ }} *_{\mathcal{H}^{w}} g_{a}(x) \frac{d a}{a} . \tag{3.23}
\end{equation*}
$$

By using Hölder's inequality for the measure $\frac{d a}{a}$, we get

$$
\left|f^{\epsilon, \delta}(x)\right|^{2} \leq \frac{1}{C_{g}^{2}}\left(\int_{\epsilon}^{\delta} \frac{d a}{a}\right) \int_{\epsilon}^{\delta}\left|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}(x)\right|^{2} \frac{d a}{a} .
$$

So, by applying Fubini-Tonelli's theorem, we obtain

$$
\int_{\mathbb{R}^{d}}\left|f^{\epsilon, \delta}(x)\right|^{2} \mathcal{A}_{k}(x) d x \leq \frac{1}{C_{g}^{2}}\left(\int_{\epsilon}^{\delta} \frac{d a}{a}\right) \int_{\epsilon}^{\delta}\left(\int_{\mathbb{R}^{d}}\left|\left(\check{f} *_{\mathcal{H}}{ }^{W} \overline{g_{a}}\right) *_{\mathcal{H}^{W}} g_{a}(x)\right|^{2} \mathcal{A}_{k}(x) d x\right) \frac{d a}{a} .
$$

From the Plancherel formula (2.24) and the relation (3.14), we deduce that

$$
\int_{\mathbb{R}^{d}}\left|f^{\epsilon, \delta}(x)\right|^{2} \mathcal{A}_{k}(x) d x \leq \frac{1}{C_{g}^{2}}\left(\int_{\epsilon}^{\delta} \frac{d a}{a}\right) \int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}\left(\int_{\epsilon}^{\delta}\left|\mathcal{H}^{W}\left(g_{a}\right)(\lambda)\right|^{4} \frac{d a}{a}\right) \mathcal{C}_{k}^{W}(\lambda) d \lambda
$$

On the other hand, from the relations (3.1),(3.6), we have

$$
\int_{\epsilon}^{\delta}\left|\mathcal{H}^{W}\left(g_{a}\right)(\lambda)\right|^{4} \frac{d a}{a} \leq C_{g}\left\|\mathcal{H}^{W}(g)\right\|_{\mathcal{C}_{k}^{W}, \infty}^{2}
$$

Thus,

$$
\int_{\mathbb{R}^{d}}\left|f^{\epsilon, \delta}(x)\right|^{2} \mathcal{A}_{k}(x) d x \leq \frac{1}{C_{g}}\left(\int_{\epsilon}^{\delta} \frac{d a}{a}\right)\left\|\mathcal{H}^{W}(g)\right\|_{\mathcal{C}_{k}^{W}, \infty}^{2}\left\|\mathcal{H}^{W}(f)\right\|_{\mathcal{C}_{k}^{W}, 2}^{2}
$$

and the Plancherel formula (2.24) implies

$$
\int_{\mathbb{R}^{d}}\left|f^{\epsilon, \delta}(x)\right|^{2} \mathcal{A}_{k}(x) d x \leq \frac{1}{C_{g}}\left(\int_{\epsilon}^{\delta} \frac{d a}{a}\right)\left\|\mathcal{H}^{W}(g)\right\|_{\mathcal{C}_{k}^{W}, \infty}^{2}\|f\|_{\mathcal{A}_{k}, 2}^{2}<+\infty
$$

Then, $f^{\epsilon, \delta}$ belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$.

- We prove now the relation (3.21). Let ψ in $S\left(\mathbb{R}^{d}\right)^{W}$. From Theorem 1.i), the function $\left(\mathcal{H}^{W}\right)^{-1}(\psi)$ is in $S_{2}\left(\mathbb{R}^{d}\right)^{W}$. From the relation (3.23), we have

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} f^{\epsilon, \delta}(x)\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x) \mathcal{A}_{k}(x) d x \\
&=\int_{\mathbb{R}^{d}}\left(\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right) *_{\mathcal{H}^{W}} g_{a}(x) \frac{d a}{a}\right)\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x) \mathcal{A}_{k}(x) d x . \tag{3.24}
\end{align*}
$$

We consider

$$
\begin{align*}
& \frac{1}{C_{g}} \int_{\mathbb{R}^{d}} \int_{\epsilon}^{\delta}\left|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}(x)\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x)\right| \mathcal{A}_{k}(x) d x \frac{d a}{a} \\
&=\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left[\int_{\mathbb{R}^{d}}\left|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}(x)\right|\left|\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x)\right| \mathcal{A}_{k}(x) d x\right] \frac{d a}{a} . \tag{3.25}
\end{align*}
$$

By applying Hölder's inequality to the second member, we get

$$
\begin{aligned}
& \frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left[\int_{\mathbb{R}^{d}}\left|\left(\check{f} *_{\mathcal{H}}{ }^{W} \overline{g_{a}}\right)^{\tau} *_{\mathcal{H}^{W}} g_{a}(x) \|\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x)\right| \mathcal{A}_{k}(x) d x\right] \frac{d a}{a} \\
& \leq \frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left\|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{ }} *_{\mathcal{H}^{W}} g_{a}\right\|_{\mathcal{A}_{k}, 2}\left\|\left(\mathcal{H}^{W}\right)^{-1}(\psi)\right\|_{\mathcal{A}_{k}, 2} \frac{d a}{a}
\end{aligned}
$$

From the relation (3.15) and the Plancherel formula (2.24), we obtain

$$
\begin{aligned}
& \frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left[\int_{\mathbb{R}^{d}}\left|\left(\check{f} *_{\mathcal{H}^{W}} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}(x) \|\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x)\right| \mathcal{A}_{k}(x) d x\right] \frac{d a}{a} \\
& \leq \frac{1}{C_{g}}\left(\int_{\epsilon}^{\delta} \frac{d a}{a}\right)\left\|\mathcal{H}^{W}(g)\right\|\left\|_{\mathcal{C}_{k}^{W}, \infty}\left|\|\psi\|_{\mathcal{C}_{k}^{W}, 2}\right| \mid f\right\|_{\mathcal{A}_{k}, 2}<+\infty
\end{aligned}
$$

Then, from Fubini theorem, the second member of the relation (3.24) can also be written in the form

$$
\begin{equation*}
\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left(\int_{\mathbb{R}^{d}}\left(\check{f} *_{\mathcal{H}}{ }^{W} \overline{g_{a}}\right)^{\check{*}} *_{\mathcal{H}^{W}} g_{a}(x)\left(\mathcal{H}^{W}\right)^{-1}(\psi)(x) \mathcal{A}_{k}(x) d x\right) \frac{d a}{a} . \tag{3.26}
\end{equation*}
$$

But, by using the Plancherel formula (2.24) and the relation (3.14), the relation (3.26) is equal to

$$
\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left(\int_{\mathbb{R}^{d}} \mathcal{H}^{W}(f)(\lambda)\left|\mathcal{H}^{W}\left(g_{a}\right)\right|^{2} \psi(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda\right) \frac{d a}{a}
$$

By applying Fubini-Tonelli's theorem and next Fubini's theorem to this integral, it takes the form

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \mathcal{H}^{W}(f)(\lambda)\left(\frac{1}{C_{g}} \int_{\epsilon}^{\delta}\left|\mathcal{H}^{W}\left(g_{a}\right)\right|^{2} \frac{d a}{a}\right) \psi(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda=\int_{\mathbb{R}^{d}} \mathcal{H}^{W}(f)(\lambda) K_{\epsilon, \delta}(\lambda) \psi(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda \tag{3.27}
\end{equation*}
$$

On the other hand, by applying the Plancherel formula (2.24) to the first member of the relation (3.24), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \mathcal{H}^{W}\left(f^{\epsilon, \delta}\right)(\lambda) \psi(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda \tag{3.28}
\end{equation*}
$$

From the relations (3.27),(3.28), we obtain for all ψ in $S\left(\mathbb{R}^{d}\right)^{W}$:

$$
\int_{\mathbb{R}^{d}}\left(\mathcal{H}^{W}\left(f^{\epsilon, \delta}\right)(\lambda)-\mathcal{H}^{W}(f)(\lambda) K_{\epsilon, \delta}(\lambda)\right) \psi(\lambda) \mathcal{C}_{k}^{W}(\lambda) d \lambda=0
$$

Thus

$$
\mathcal{H}^{W}\left(f^{\epsilon, \delta}\right)(\lambda)=\mathcal{H}^{W}(f)(\lambda) K_{\epsilon, \delta}(\lambda), \quad \lambda \in \mathbb{R}^{d}
$$

Proof of Theorem 3.2

From Lemma 3, the function $f^{\epsilon, \delta}$ belongs to $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$. By using the Plancherel formula (2.24) and Lemma 3, we obtain

$$
\begin{aligned}
\left\|f^{\epsilon, \delta}-f\right\|_{\mathcal{A}_{k}, 2} & =\int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}\left(f^{\epsilon, \delta}-f\right)(\lambda)\right|^{2} \mathcal{C}_{k}^{W}(\lambda) d \lambda \\
& =\int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}(f)(\lambda)\left(K_{\epsilon, \delta}(\lambda)-1\right)\right|^{2} \mathcal{C}_{k}^{W}(\lambda) d \lambda \\
& =\int_{\mathbb{R}^{d}}\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}\left|1-K_{\epsilon, \delta}(\lambda)\right|^{2} \mathcal{C}_{k}^{W}(\lambda) d \lambda
\end{aligned}
$$

But from Lemma 2, for almost all $\lambda \in \mathbb{R}^{d}$, we have

$$
\lim _{\epsilon \rightarrow 0, \delta \rightarrow+\infty}\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}\left|1-K_{\epsilon, \delta}(\lambda)\right|^{2}=0
$$

and

$$
\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}\left|1-K_{\epsilon, \delta}(\lambda)\right|^{2} \leq 4\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}
$$

with $\left|\mathcal{H}^{W}(f)(\lambda)\right|^{2}$ in $L_{\mathcal{C}_{k}^{W}}^{1}\left(\mathbb{R}^{d}\right)^{W}$. So, the relation (3.13) follows from the dominated convergence theorem.

4 Open Problem

The purpose of the future work is to generalize the Calderón's reproducing formula for the generalized wavelet on \mathbb{R}^{d} associated to the Heckman-Opdam theory on functions spaces other than $L_{\mathcal{A}_{k}}^{2}\left(\mathbb{R}^{d}\right)^{W}$.

References

1. A.P.Calderón. Intermediate spaces and interpolation, the complex method. Studia Math. 24, (1964), p. 113-190.
2. I.Daubechies. Ten lectures on wavelets. CBMS-NSF Reg. Conf. Ser. App. Math. Vol.61. SIAM, Philadelphia (1992).
3. M.Frazier, B.Jawerth and G.Weiss. Littelwood-Paley theory and the study of functions spaces. CBMS Reg. Conf. Ser. Math. Vol.79. Amer. Math. Soc., Providence, RI (1991).
4. A.Hassini, R.Maalaoui and K.Trimèche. Generalized wavelets and generalized wavelet transform associated to the Heckman-Opdam theory. Preprint. Faculty of Sciences of Tunis. 2015.
5. G.J.Heckman and E.M.Opdam. Root systems and hypergeometric functions I. Compositio Math. 64, (1987), p. 329-352.
6. T.H.Koornwinder. The continuous wavelet transform. Series in Approximations and Decompositions. Vol.1. Wavelets: An elementary treatment of theory and applications. Edited by T.H.Koornwinder, World Scientific, (1993), p.27-48.
7. E.M.Opdam. Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, (1995), p. 75.121.
8. B.Schapira. Contribution to the hypergeometric function theory of Heckman and Opdam; sharp estimates, Schwartz spaces, heat kernel. Geom. Funct. Anal. 18, (2008), p.222-250.
9. K.Trimèche. Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory. Adv. Pure Appl. Math. 2, (2011), p. 23-46.
10. K.Trimèche. The harmonic analysis associated to the Heckman-Opdam theory and its application to a root system of type $B C_{d}$. Preprint. Faculty of Sciences of Tunis. 2015.
