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Abstract

In this work, we consider a second order differential operator
4A defined on (0,+∞), where A is a non negative function satisfy-
ing some conditions. To 4A we associate DLp-type spaces denoted
by DpA. Some results, related to the spaces DpA, are proved. Moreover
A generalization of Titchmarsh’s theorem for the Chébli-Trimèche
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1 Introduction

L. Schwartz has introduced in [18] the space DLp , 1 ≤ p ≤ ∞, of all C∞-
functions ψ on R such that for all n ∈ N, Dnψ is in Lp(R) and the map
ψ 7→ Dnψ from DLp into Lp(R) is continuous. These spaces are studied by
many authors (see [1], [2], [5], [17]) among others.

In [12] the authors define new function spaces similar to DLp but replacing
the usual derivative D by the generalized Laplace operator 4A defined on
(0,∞) by

4A =
d2

dx2
+
A′(x)

A(x)

d

dx
+ ρ2, ρ ≥ 0,
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where A is the Chébli-Trimèche function (cf. [6], Section 3.5) defined on [0,∞)
and satisfies the following conditions:

i) There exists a positive even infinitely differentiable function B on R,
with B(0) = 1,
x ∈ R+, such that A(x) = x2α+1B(x), α > −1

2
.

ii) A is increasing on R+ and lim
x→∞

A(x) =∞.

iii)
A′

A
is decreasing on (0,∞), and lim

x→∞

A′(x)

A(x)
= 2ρ.

iv) There exists a constant σ > 0, such that for all x ∈ [x0,∞), x0 > 0, we
have

A
′
(x)

A(x)
=

{
2ρ+ e−σxF (x), if ρ > 0
2α + 1

x
+ e−σxF (x) , if ρ = 0

where F is C∞ on (0,∞), bounded together with its derivatives.
For A(x) = x2α+1, α > −1

2
and ρ = 0 we regain the Bessel operator

lαf =
d2f

dx2
+

(
2α + 1

x

)
df

dx
.

For A(x) = sinh2α+1(x) cosh2β+1(x), α ≥ β ≥ −1
2
, α 6= −1

2
and ρ = α+β+1

we regain the Jacobi operator

lα,βf =
d2f

dx2
+
[
(2α + 1) cothx+ (2β + 1) tanhx

]f(x)

x
+ ρ2.

In this paper, these spaces denoted by DpA, 1 ≤ p ≤ ∞, are moreover considered
as subspaces of E∗(R) (the space of even C∞-functions on R). Some properties,
related to the spaces DpA, are given.

The contents of the paper is as follows :
In §2 we recall some basic facts about the harmonic analysis results related

to the operator4A. in §3 we introduce the space DpA and we show some results.
In particular, we study the continuity of the Chébli-Trimèche transform on
DpA, 1 ≤ p ≤ 2. In §4 a generalization of Titchmarsh’s theorem for the Chébli-
Trimèche transfrom F for functions satisfying the Chébli-Trimèche-Lipschitz
condition in D2

A is established.

2 Preliminaries

In this section, we collect some harmonic analysis results related to the operator
4A. For details we refer the reader to [6], [8], [12], [14], [21], and [22].
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2.1 Eigenfunctions of the operator 4A

In the following we denote by
C0
∗(R) the space of even continuous functions f on R such that

lim
|x|→+∞

|f(x)| = 0.

S∗(R) the subspace of E∗(R), consisting of functions f rapidly decreasing to-
gether with their derivatives.
S2
∗ (R) = ϕ0S∗(R), where ϕ0 is the eigenfunction of the operator 4A associated

with the value λ = 0.
S ′∗(R) the dual topological space of S∗(R).
(S2
∗ )
′(R) the dual topological space of S2

∗ (R).
É∗(R+) the dual topological space of E∗(R).
H∗(C) the space of even entire functions on C which are of exponential type
and slowly increasing.
H∗,a(C) the subspace of H∗(C) satisfying

∃m ∈ N, Pm(f) = sup
λ∈C

(1 + λ2)−m|f(λ)| exp(−a|Imλ|) < +∞

we have H∗(C) = ∪a≥0H∗,a(C).

For every λ ∈ C, let us denote by ϕλ the unique solution of the eigenvalue
problem {

4Af(x) = −λ2f(x),
f(0) = 1, f ′(0) = 0.

(1)

Remark 1 This function satisfies the following properties.

• ∀x ≥ 0, the function λ 7−→ ϕλ(x) is analytic on C.

• Product formula

∀x, y ≥ 0; ϕλ(x)ϕλ(y) =

∫ ∞
0

ϕλ(z)w(x, y, z)A(z)dz (2)

where w(x, y, .) is a measurable positive function on [0,∞), with support
in [|x− y|, x+ y].

• ∀ λ ≥ 0 and x ∈ R, |ϕλ(x)| ≤ 1. (3)

• For ρ > 0, we have

∀x ≥ 0,∀λ ∈ R, |ϕλ(x)| ≤ ϕ0(x) ≤ m(1 + x)exp(−ρx), (4)

where m is a positive constant.
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• For ρ = 0, we have

∀x ≥ 0, ϕ0(x) = 1,

• ∀x ≥ 0,∀λ ∈ R, |ϕ′λ(x)| ≤ c(λ2 + ρ2)(1 + x)xexp(−ρx), (5)

where c is a positive constant.

• We have the following integral representation of Mehler type,

∀x > 0,∀λ ∈ C, ϕλ(x) =

∫ x

0

k(x, t) cos(λt)dt (6)

where, k(x, .) is an even positive C∞ function on ] − x, x[ with support
in [−x, x].

2.2 Generalized Fourier transform

For a Borel positive measure µ on R, and 1 ≤ p ≤ ∞, we write Lpµ(R+) for the
Lebesgue space equipped with the norm ‖ · ‖Lpµ(R+) defined by

‖f‖Lpµ(R+) =

(∫
R
|f(x)|p dµ(x)

)1/p

, if p <∞,

and ‖f‖L∞
µ (R+) = ess supx∈R+

|f(x)|. When µ(x) = w(x)dx, with w a nonneg-
ative function on R+, we replace the µ in the norms by w.

For f ∈ L1
A(R+), the generalized Fourier transform, called also Chébli-

Trimèche transform, is defined by

F(f)(λ) =

∫
R+

f(x)ϕλ(x)A(x)dx, ∀λ ∈ R. (7)

The inverse generalized Fourier transform of a suitable function g on R+ is
given by:

J g(x) = F−1g(x) =

∫
R+

g(λ)ϕλ(x)dγ(λ) (8)

where dγ(λ) is the spectral measure given by

dγ(λ) =
dλ

|cA(λ)|2
. (9)

Remark 2 The function λ 7−→ cA(λ) satisfies the following properties.

• For λ ∈ R ,we have cA(−λ) = cA(λ).
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• The function |cA(λ)|−2 is continuous on [0,∞[ .

• There exist positive constants k1, k2, and k3, such that
If ρ ≥ 0 : ∀λ ∈ C, Imλ ≤ 0, |λ| > k3;

k1 |λ|2α+1 ≤ |cA(λ)|−2 ≤ k2 |λ|2α+1 .

If ρ = 0, α > 0 : ∀λ ∈ C, |λ| ≤ k3;

k1 |λ|2α+1 ≤ |cA(λ)|−2 ≤ k2 |λ|2α+1 .

If ρ > 0 : ∀λ ∈ C, |λ| ≤ k3;

k1 |λ|2 ≤ |cA(λ)|−2 ≤ k2 |λ|2 .

Proposition 1 ([10]). i) The generalized transform F and its inverse J are
topological isomorphisms between the generalized Schwartz space S2

∗ (R) and the
Schwartz space S(R∗).

ii) The transform F is a topological isomorphism from É∗(R+) onto H∗(C).
Moreover, for all T ∈ É∗(R+), we have: supp(T ) ⊆ [−a, a] if and only if
F(T ) ∈ H∗,a(C).

Next, we give some properties of this transform.
i) For f in L1

A(R+) we have

||F(f)||L∞
γ (R+) ≤ ||f ||L1

A(R+). (10)

ii) For f in S2
∗ (R) we have

F(4Af)(y) = −y2F(f)(y), for all y ∈ R+. (11)

Proposition 2 ([10]). Plancherel formula for F . For all f in S2
∗ (R) we

have ∫
R+

|f(x)|2A(x) dx =

∫
R+

|F(f)(ξ)|2dγ(ξ). (12)

ii) Plancherel theorem.
The transform F extends uniquely to an isomorphism from L2

A(R+) onto
L2
γ(R+).

iii) for all f, g ∈ L2
A(R+), we have∫

R+

f(x)g(x)A(x) dx =

∫
R+

F(f)(ξ)F(g)(ξ)dγ(ξ). (13)

Remark 3 We have S2
∗ (R) ⊂ LpA(R+) for all 2 ≤ p ≤ ∞, but S2

∗(R) ↪→
LpA(R+) for all 0 < p < 2.
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Proposition 3 Let 1 ≤ p ≤ 2. The Fourier transform F , (resp. J ) can
be extended as a continuous mapping from LpA(R+) onto Lp

′
γ (R+) (resp. from

Lpγ(R+) onto Lp
′

A(R+)) and we have

‖Ff‖
Lp

′
γ (R+)

≤ ‖f‖LpA(R+) ; ‖J g‖
Lp

′
A (R+)

≤ ‖g‖Lpγ(R+) (14)

with
1

p′
+

1

p
= 1.

2.3 Generalized convolution

Definition 1 ([9]). The translation operator associated with the operator 4A

is defined on L1
A(R+), by

∀x, y ≥ 0; τAx f(y) =

∫ ∞
0

f(z)w(x, y, z)A(z)dz (15)

where w is the function defined in the relation (2).

Proposition 4 ([9]). For a suitable function f on R+, we have
i) τAx f(y) = τAy f(x).
ii) τA0 f(y) = f(y).
iii) τAx τ

A
y = τAy τ

A
x .

iv) τAx ϕλ(y) = ϕλ(x)ϕλ(y).
v) F(τAx f)(λ) = ϕλ(x)F(f)(λ).
vi) 4A(τAx )f = τAx (4Af)
vii) ∀x ≥ 0 ‖τAx f‖LpA(R+) ≤ ‖f‖LpA(R+), p ∈ [1, ∞].

Definition 2 ([9]). For suitable functions f and g, we define the convolution
product f ∗A g by

f ∗A g(x) =

∫
R+

τAx f(y)g(y)A(y)dy. (16)

Remark 4 It is clear that this convolution product is both commutative and
associative:

i) f ∗A g = g ∗A f.
ii) (f ∗A g) ∗A h = f ∗A (g ∗A h).

Proposition 5 ([9]).
i) Assume that 1 ≤ p, q, r ≤ ∞ satisfy 1

p
+ 1

q
− 1 = 1

r
. Then, for every

f ∈ LpA(R+) and g ∈ LqA(R+), we have f ∗A g ∈ LrA(R+), and

‖f ∗A g‖LrA(R+) ≤ C‖f‖LpA(R+)‖g‖LqA(R+). (17)
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ii) If ρ > 0 and 1 ≤ p < q ≤ 2. Then

LpA(R+) ∗A LqA(R+) ↪→ LqA(R+). (18)

iii) If ρ > 0 and 2 < p, q <∞ such that q
2
≤ p < q. Then

LpA(R+) ∗A Lq
′

A(R+) ↪→ LqA(R+) (19)

where q′ is the conjugate exponent of q.
iv) If ρ > 0 and 1 < p < 2 such that p < q ≤ p

2−p . Then

LpA(R+) ∗A LpA(R+) ↪→ LqA(R+). (20)

v)
L1
A(R+) ∗A C0

∗(R) ↪→ C0
∗(R). (21)

Proposition 6 If ρ > 0, then for f ∈ L2
A(R+) and g ∈ LpA(R+), with 1 ≤ p <

2 we have
F(f ∗A g) = F(f)(λ)F(g)(λ). (22)

Proposition 7 ([21]) Let f, g ∈ L2
A(R+). Then f ∗A g ∈ L2

A(R+) if and only
if F(f)F(g) belongs to L2

γ(R+), and in this case we have

F(f ∗A g) = F(f)F(g).

Proposition 8 ([21])Let f be locally integrable function on [0, +∞), and g a
measurable function on [0, +∞) satisfying the condition:

∃ r ∈ N such that (1 + λ2)−rg ∈ L1
γ(R+). (23)

We suppose that for all ψ ∈ D∗(R),∫ ∞
0

f(x)ψ(x)A(x)dx =

∫ ∞
0

g(λ)F(ψ)(λ)dγ(λ).

Then the function f belongs to L2
A(R+) if and only if the function g belongs to

L2
γ(R+) and we have

F(f) = g.

Definition 3 The generalized Fourier transform of a distribution τ in (S2
∗ )
′(R)

is defined by

〈F(τ), φ〉 = 〈τ,F−1(φ)〉, for all φ ∈ S∗(R). (24)

Proposition 9 The generalized Fourier transform F is a topological isomor-
phism from (S2

∗ )
′(R) onto S ′∗(R).
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Let τ be in (S2
∗ )
′(R+). We define the distribution 4Aτ , by

〈4Aτ, ψ〉 = 〈τ,4Aψ〉, for all ψ ∈ S2
∗ (R+).

This distribution satisfy the following property

F(4Aτ) = −y2F(τ). (25)

Remark 5 (see [20])

i) The generalized convolution product of a distribution S in D′∗(R) and a
function ψ in D∗(R) is the function S ∗A ψ defined by

∀ x ∈ R+, S ∗A ψ(x) = 〈Sy, τAx ψ(y)〉 (26)

ii) Let U be a distribution in D′∗(R) and S a distribution in E ′∗(R). The
generalized convolution product of U and S is the distribution in D′∗(R)
defined for all ψ in D∗(R) by

〈U ∗A S, ψ〉 = 〈Ux, S ∗A ψ(x)〉 = 〈Sy, U ∗A ψ(y)〉 (27)

iii) Let k ∈ N∗. Then, for all U in D′∗(R) and S in E ′∗(R), we have

4k
A(U ∗A S) = U ∗A4k

A(S) = (4k
AU) ∗A S (28)

iv) let U and S be two distributions in E ′∗(R). Then the function U ∗A S
belongs to E ′∗(R) and we have

F(U ∗A S) = F(U)F(S). (29)

3 The space DpA
Now, we start with the definition of the spaces of DpA.

Definition 4 If 1 ≤ p < ∞, the space DpA is the set of all of C∞ and even
functions f on R such that, for all k ∈ N, 4k

Aφ is in LpA(R+) which is equipped
with the topology generated by the countable norms

γAm,p(f) = max
0≤k≤m

‖4k
Af‖LpA(R+), m ∈ N.

A function f ∈ E∗(R) is in B∞A when γAm,∞(f) <∞ for each m ∈ N, where

γAm,∞(f) = max
0≤k≤m

‖4k
Af‖L∞

A (R+), m ∈ N.

We denote by D∞A the subspace of B∞A that consists of all those functions f ∈
B∞A for which lim

|x|→∞
4m
Af(x) = 0 for each m ∈ N.
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The space B∞A is endowed with the topology generated by the system {γAm,∞}m∈N.

Remark 6 i) Let 1 ≤ p <∞. A function ϕ ∈ LpA(R+) is in DpA if and only if
(I −4A)mϕ ∈ LpA(R+) for every m ∈ N.

ii) A function φ ∈ L∞A (R+) is in B∞A if and only if (I −4A)mφ ∈ L∞A (R+)
for every m ∈ N.

iii) For 0 < p ≤ 2, we define the generalized Schwartz space Sp∗(R) by

Sp∗(R) =

{
f ∈ E∗(R) / ∀ k, l ∈ N, sup

x≥0
(1 + x)lϕ

−2/p
0 (x)|fk(x)| <∞

}
.

Then, for q ∈ [max{1, p}, +∞], Sp∗(R) ⊂ DqA. In particular, when ρ = 0 or
0 < p ≤ 1, for all q ∈ [1, +∞], Sp∗(R) ⊂ DqA.

Proposition 10 ([12]) For every p ∈ N and ε > 0, there exists m0 ∈ N such
that for any m ∈ N, m ≥ m0, we can find two functions χm ∈ D∗,ε(R)(the
subspace of D∗(R) consisting of function f such that suppf ⊂ [−ε, ε]) and
Γm ∈ Wp

ε (R) (the space of function f : R → C of class C2p on R, even and
with support in [−ε, ε]) such that

δ = (I −4A)mΓm + χm.

We start with some topological properties of the spaces DpA.

Proposition 11 i) DpA, 1 ≤ p ≤ ∞ and B∞A are Fréchet spaces.
ii) DpA is continuously contained in DqA, when 1 ≤ p ≤ q ≤ ∞.
iii) If 1 < p <∞ then DpA is a reflexive space.

Proof. In Proposition 2.1 [12], the result is proved for the spaces DpA, 1 ≤ p <
∞ and B∞A . Lets prove that D∞A is a Fréchet space. let (un)n∈N be a Cauchy
sequence in D∞A . Since C0

∗(R) is a Banach space, then there exists vm ∈ C0
∗(R)

such that 4m
Aun → vm, as n → ∞, in C0

∗(R), for each m ∈ N. On the other
hand by a simple calculation we see that, 4m

Av0 = vm, m ∈ N. Which implies
that (un)n∈N converge to v0 in D∞A . Thus the proof of i) is finished.
ii) Let ϕ ∈ DpA. Then, using Proposition 10, for a > 0 and n ∈ N, there exist
two functions χ ∈ D∗(R) and Γ ∈ Wn

a (R) such that

4k
Aϕ = δ ∗A4k

Aϕ = Γ ∗A (I −4A)n4k
Aϕ+ χ ∗A4k

Aϕ, k ∈ N (30)

Therefore, from proposition 5 i),v) we deduce the result. Moreover, for 1 ≤
p ≤ q ≤ ∞, there exists c > 0 such that

∀m ∈ N, ∃m1 ∈ N satisfying γAm,q(ϕ) ≤ cγAm1,p
(ϕ). (31)
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To see iii) it is sufficient to argue like in [18].
It is well known (see [21]) that for all f ∈ LpA(R+), p ∈ [1, ∞),

lim
x→0
‖τAx f − f‖LpA(R+) = 0 and lim

ε→0
‖f ∗A vε − f‖LpA(R+) = 0. (32)

where

vε = (εA(x))−1A(
x

ε
)v(

x

ε
) (33)

with v is a positive function in L1
A(R+) such that ‖v‖L1

A(R+) = 1.
The case p = ∞ is given by the following Lemma which we need in the

sequel to study the density of the space D∗(R) in DpA, p ∈ [1, ∞].

Lemma 1 Let f ∈ L∞A (R+) such that there exists a continuous function g in
C0
∗(R) satisfying f = g a.e. Then

i) lim
x→0
‖τAx f − f‖L∞

A (R+) = 0.

ii) lim
ε→0
‖f ∗A vε − f‖L∞

A (R+) = 0.

where vε is given by (33).

Proof. i) Suppose that f ∈ D∗(R), then from inversion formula (8) and
Proposition 4 v), we deduce that for x, y ≥ 0

|τAx f(y)− f(y)| ≤
∫ ∞
0

|ϕλ(y)F(f)(λ)||ϕλ(x)− 1|dγ(λ) (34)

Now, using mean value theorem and the fact that for x ≥ 0 and λ ∈ R

|ϕ′λ(x)| ≤ C(λ2 + ρ2)(1 + x)xe−ρx (35)

where C is a positive constant (see proposition II.2 [4]), it follows from (3) and
(34) that for x ≥ 0

‖τAx f − f‖L∞
A (R+) ≤ C(1 + x)x2‖(λ2 + ρ2)F(f)‖L1

γ(R+) (36)

and this completes the proof for f ∈ D∗(R).
Now, suppose that f ∈ L∞A (R+) such that there exists a continuous function

g in C0
∗(R) satisfying f = g a.e. Then, there exists a sequence (fn)n in D∗(R)

such that

lim
n→∞

‖fn − f‖L∞
A (R+) = 0. (37)
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According to proposition 4 vii), we deduce that for n ∈ N,

‖τAx f − f‖L∞
A (R+) ≤ ‖τAx (f − fn)‖L∞

A (R+) + ‖τAx fn − fn‖L∞
A (R+) + ‖fn − f‖L∞

A (R+)

≤ 2‖fn − f‖L∞
A (R+) + ‖τAx fn − fn‖L∞

A (R+) (38)

and the result follows by applying Lemma 1 i) for fn.
ii) Let f ∈ L∞A (R+) such that there exists a continuous function g in C0

∗(R)
satisfying f = g a.e. Then, for x ≥ 0, we have

|f ∗A vε(x)− f(x)| ≤
∫ ∞
0

vε(y)|τAx f(y)− f(x)|A(y)dy (39)

which implies, by putting t =
y

ε
, that

‖f ∗A vε − f‖L∞
A (R+) ≤

∫ ∞
0

v(t)‖τAtεf − f‖L∞
A (R+)A(t)dt (40)

But, from Lemma 1 i),

lim
ε→0
‖τAtεf−f‖L∞

A (R+) = 0 and ‖τAtεf−f‖L∞
A (R+)v(t) ≤ 2‖f‖L∞

A (R+)v(t) ∈ L1
A(R+).

Hence, from (40) and by dominated convergence theorem, we deduce the result.

Proposition 12 D∗(R) is dense in DpA, p ∈ [1, ∞].

Proof. Let f ∈ DpA, p ∈ [1, ∞]. Then, from (32) and Lemma 1 ii), we have
for all k ∈ N,

lim
ε→0
‖4k

Af ∗A vε −4k
Af‖LpA(R+) = 0. (41)

On the other hand, from the density of D∗(R) respectively in LpA(R+) and
C0
∗(R), there exists a sequence (fn)n in D∗(R) such that

lim
n→∞

‖fn − f‖LpA(R+) = 0. (42)

Let k ∈ N and δ > 0, there exist ε > 0 and n ∈ N such that

‖4k
Af ∗A vε −4k

Af‖LpA(R+) < δ/2 and ‖fn − f‖LpA(R+) <
δ

2‖4k
Avε‖L1

A(R+)

. (43)

Thus, by virtue of remark 5 iii) and using Proposition 5, it follows that

‖4k
A(fn ∗A vε − f)‖LpA(R+) ≤ ‖fn ∗A4k

Avε − f ∗A4k
Avε‖LpA(R+) + ‖4k

Af ∗A vε −4k
Af‖LpA(R+)

≤ ‖fn − f‖LpA(R+)‖4k
Avε‖L1

A(R+) + ‖4k
Af ∗A vε −4k

Af‖LpA(R+)

≤ δ (44)
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Choosing the function v in D∗(R), it follows that for all ε > 0 and all n ∈ N,
fn ∗A vε ∈ D∗(R). And this achieves the proof of the proposition.

In the sequel, we give some result concerning the continuity of the Fourier
transform F and its inverse. We start with the following Lemma deduced from
the hypothesis of the function A

Lemma 2
i) For any real a > 0 there exist positive constants C1(a), C2(a) such that for
all x ∈ [0, a],

C1(a)x2α+1 ≤ A(x) ≤ C2(a)x2α+1.

ii) For ρ > 0,
A(x) ∼ e2ρx, (x −→ +∞)

iii) For ρ = 0,
A(x) ∼ x2α+1, (x −→ +∞)

Theorem 1 The inverse of the Fourier transform F−1 defines a continuous

linear map from D∗(R) into DpA if p ∈
{

[1, +∞[, for ρ = 0
[2,∞[, for ρ > 0

.

Proof. According to lemma 2 and using relation (4), it is not hard to see that

S2
∗(R) ↪→ Dp

A, p ∈
{

[1, +∞[, for ρ = 0
[2,∞[, for ρ > 0

.

Thus, the result follows from the fact that, for all k ∈ N, 4k
AF−1 is continuous

from D∗(R) into S2
∗ (R).

Let E0 = {f ∈ C0
∗(R)/x2kf ∈ C0

∗(R), k ∈ N} and E1 = {f ∈ L2
γ(R+)/x2kf ∈

L2
γ(R+), k ∈ N} equipped respectively with the topology generated by the

countable norms

µγm,∞(f) = max
0≤k≤m

‖λ2kf‖L∞
γ (R+), m ∈ N.

and
µγm,2(f) = max

0≤k≤m
‖λ2kf‖L2

γ(R+), m ∈ N.

Thus, E0 and E1 are Fréchet spaces and we have

Theorem 2 1)The Fourier transform F is a continuous from D1
A into E0.

2) The Fourier transform F is an isomorphism from D2
A onto E1.

3) Let p ∈ [1, 2]. Then, for r ∈ [1, p] and q ∈ [1, p′] with p′ is the conjugate
exponent of p, there exist c > 0 and m ∈ N such that for all f ∈ DpA,

‖F(f)‖Lqγ(R+) ≤ c γAm,r(f),

γAm,r(f) is finite or infinite. In particular, the Fourier transform F is a con-
tinuous from DpA into Lqγ(R+), q ∈ [1, p′].
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Proof. For all f ∈ D1
A (resp. f ∈ D2

A), we have

F(4Af) = −λ2F(f) (45)

Then 1) and 2) follows respectively from (10) and Plancherel Theorem.
3) According to Proposition 3 and using inequality (31), we deduce that, for
r ∈ [1, p], there exist c1 > 0 and k ∈ N such that for all f ∈ DpA,

‖Ff‖
Lp

′
γ (R+)

≤ ‖f‖LpA(R+) ≤ c1γ
A
k,r(f), (46)

γAm,r(f) is finite or infinite.
On the other hand, using Holder inequality, it follows that for q ∈ [1, p′]

there exist c2 > 0 and n ∈ N such that for all g ∈ DpA,

‖Fg‖Lqγ(R+) ≤ c2 ‖F((I −4A)ng)‖
Lp

′
γ (R+)

. (47)

Hence, the result follows by combining (46) and (47).

4 Titchmarsh’s theorem for the Chébli-Trimèche

transfrom F in D2
A

In [19], Titchmarsh characterized the set of functions in L2(R) satisfying the
Cauchy Lipschitz condition by means of an asymptotic estimate growth of the
norm of their Fourier transforms. More precisely, we have:

Theorem 3 [19] Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the follow-
ing are equivalent:

1) ‖f(t+ h)− f(t)‖L2(R) = O(hα) as h −→ 0.

2)

∫
|λ|≥r
|g(λ)|2dλ = O(r−2α) as r −→∞. Where g stands for the Fourier

transform of f.

In this section, we prove a generalization of Titchmarsh’s theorem for the
Chébli-Trimèche transfrom F for functions satisfying the Chébli-Trimèche-
Lipschitz condition in D2

A.
Putting Vλ(x) =

√
A(x)ϕλ(x), we see that Vλ satisfies

(Lα + χ(x) + λ2)Vλ(x) = 0,

where Lα and χ(x) are defined by

(Lαu)(x) = u”(x)−
α2 − 1

4

x2
u(x)
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and

χ(x) = ρ2 − (2α + 1)
B′(x)

2xB(x)
− 1

2

(
B′(x)

B(x)

)′
− 1

4

(
B′(x)

B(x)

)2

.

Thus, we have

Vλ(x) ∼ xα+
1
2 , V

′

λ(x) ∼ (α +
1

2
)xα−

1
2 (x→ 0).

We assume in this section that χ is holomorphic in a disc D(0, 2b) = {z ∈
C, |z| < 2b}, b > 0. Therefore, from [13], we have:

Theorem 4 The eigenfunction ϕλ can be expanded in a Bessel-function series
as follows

ϕλ(x) =
xα+

1
2

2α
√
A(x)

∞∑
p=0

x2pBp(x)

2pΓ(α + p+ 1)
jα+p(λx) (48)

where Bp are functions defined by a recursive relation and satisfy:

|B(q)
p (x)| ≤ (c/2)pdp−1b1−p−q(p+ q − 1)! (49)

for all x ∈ [0, b], p = 1, 2, ... and q = 0, 1, 2, ..., where

c = max{1 + |2α− 1|, 2 sup(|χ(z)|, |z| ≤ 2b)}, d = (b+ b−1)

and B0(x) = B0 > 0,

Corollary 1 There exist η > 0, N > 1 and c > 0 such that

for all λ > N and λx ∈ [
η

2
, η], 1− ϕλ(x) > c.

Proof. Firstly it can be observed from inequality (3) and the integral repre-
sentation (6) that, for λx ∈ [0, π

2
], 0 ≤ ϕλ(x) ≤ 1.

Since ϕλ(0) = 1, then by virtue of Theorem 4 we deduce that

lim
x→0

B0 x
α+ 1

2

2αΓ(α + 1)
√
A(x)

= 1. (50)

And from the expansion of the normalized Bessel function

jα(x) = Γ(α + 1)
∞∑
n=0

(−1)n

n!Γ(α + n+ 1)
(
x

2
)2n,
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which implies that

lim
x→0

jα(x)− 1

x2
6= 0

and therefore, there exist κ > 0 and σ > 0 such that for every η ∈ (0, σ], we
have

∀x ∈ [
η

2
, η], |1− jα(x)| = 1− jα(x) ≥ κx2 ≥ κ

η2

4
. (51)

Thus, there exists δ ∈ (0, 1) such that for all λ, x ≥ 0 satisfying λx ∈ [η
2
, η]

we have

0 ≤ jα(λx) < δ. (52)

and from (50) one can easily see that for δ1 ∈ (δ, 1) there exist N > 1 such

that for x ≤ η

N

0 ≤ B0 x
α+ 1

2

2αΓ(α + 1)
√
A(x)

<
δ1
δ
. (53)

Combining (52) and (53) we deduce that for λ ≥ N and λx ∈ [
η

2
, η]

0 ≤ B0 x
α+ 1

2 jα(λx)

2αΓ(α + 1)
√
A(x)

< δ1. (54)

On the other hand, using the inequality (49), we have for all p ∈ N\{0}

|x
2pBp(x)jα+p(λx)

2pΓ(α + p+ 1)
| ≤ b

d
(
cdx2

4b
)p

Γ(p)

Γ(p+ α + 1)
≤ 1

Γ(α + 2)
(
cdx2

4b
)p, x ∈ [0, b].

Thus, by virtue of (53) and choosing η ≤ min{σ, b, 1√
2
,
√

δB0(δ2−δ1)
4δ1

} with

δ2 ∈ (δ1, 1), and N ≥ max{1,
√

cd
4b
}, we have for x ∈ [0,

η

N
]

| xα+
1
2

2α
√
A(x)

∞∑
p=1

x2pBp(x)

2pΓ(α + p+ 1)
jα+p(λx)| ≤ xα+

1
2

2αΓ(α + 2)
√
A(x)

∞∑
p=1

(
cdx2

4b
)p

≤ 2xα+
1
2

2αΓ(α + 1)
√
A(x)

∞∑
p=1

η2p

≤ B0 x
α+ 1

2

2αΓ(α + 1)
√
A(x)

δ(δ2 − δ1)
δ1

≤ δ2 − δ1. (55)
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Therefore, according to the expansion of ϕλ given by (48) and using inequalities

(54) and (55), it follows that for λ ≥ N and λx ∈ [
η

2
, η]

1− ϕλ(x) ≥ 1− δ2 > 0,

and this achieves the proof of the Corollary.

Definition 5 Let δ ∈ (0, 1). A function f ∈ D2
A is said to be in the Chébli

Trimèche Lipschitz class, denoted by Lip(δ, 2), if

∀ k ∈ N, ∀ r ∈ N, ‖Lkx4r
Af‖L2

A(R+) = O(xδ) as x→ 0,

where Lxf = τAx f − f.

To prove the main result of this section we need the following Lemma

Lemma 3 Let f ∈ D2
A. Then for every k ∈ N and r ∈ N, we have

‖Lkx4r
Af‖2L2(R+) =

∫ ∞
0

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ).

Proof. It is easily to see that for all k ∈ N

Lkxf(y) =
k∑
i=0

(−1)k−i(ki )(τ
A
x )if(y)

Thus, by virtue of Proposition 4 v) and using the fact that

F(4r
Af)(λ) = (−λ2)rF(f)(λ)

it follows that

F(Lkx4r
Af)(λ) =

k∑
i=0

(−1)k−i(ki )F((τAx )i4r
Af)(λ)

= (−λ2)rF(f)(λ)
k∑
i=0

(−1)k−i(ki )ϕ
i
λ(x)

= (−λ2)rF(f)(λ)(ϕλ(x)− 1)k.

Hence, from Plancherel formula for F , we deduce the result.

Theorem 5 Let f ∈ D2
A. Then the following are equivalents

i) f ∈ Lip(δ, 2).

ii) ∀ r ∈ N,
∫ ∞
s

λ4r|F(f)(λ)|2dγ(λ) = O(s−2δ) as s→ +∞.



New results on the DLp-type spaces 53

Proof. Suppose that f ∈ Lip(δ, 2). According to Corollary 1 we deduce that
there exist η > 0, a > 0 and c > 0 such that for x ∈ (0, a) and for all r ∈ N,
we have∫ η

x

η
2x

λ4r|F(f)(λ)|2dγ(λ) ≤ 1

c2k

∫ ∞
0

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ), k ∈ N

which implies, from Lemma 3, that∫ η
x

η
2x

λ4r|F(f)(λ)|2dγ(λ) = O(x2δ) as x→ 0.

Therefore, there exists C > 0 such that∫ 2s

s

λ4r|F(f)(λ)|2dγ(λ) ≤ C s−2δ.

Thus, there exists C1 > 0 satisfying∫ ∞
s

λ4r|F(f)(λ)|2dγ(λ) =
∞∑
i=0

∫ 2i+1s

2is

λ4r|F(f)(λ)|2dγ(λ) ≤ C1 s
−2δ

and consequently ii) is proved. Lets prove now that ii) ⇒ i). We have∫ ∞
0

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ) =

∫ η
x

0

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ)

+

∫ ∞
η
x

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ).

By virtue of i), it follows that∫ ∞
η
x

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ) ≤ 4k
∫ ∞
η
x

λ4r|F(f)(λ)|2dγ(λ) = O(x2δ). (56)

On the other hand, estimate 1 − ϕλ(x) using the mean value theorem and
inequality (5), we get for x ≤ 1∫ η

x

0

λ4r|1− ϕλ(x)|2k|F(f)(λ)|2dγ(λ) ≤ 4k
∫ η

x

0

λ4r|1− ϕλ(x)||F(f)(λ)|2dγ(λ)

≤ C4kx2

{∫ η
x

0

λ4r+2|F(f)(λ)|2dγ(λ)

+ ρ2
∫ η

x

0

λ4r|F(f)(λ)|2dγ(λ).
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But δ < 1, then we have

4kx2ρ2
∫ η

x

0

λ4r|F(f)(λ)|2dγ(λ) ≤ 4kx2ρ2
∫ ∞
0

λ4r|F(f)(λ)|2dγ(λ)

= 4kx2ρ2‖4r
Af‖2L2

A(R+)

= O(x2δ).

Now, by putting ψ(s) =

∫ ∞
s

λ4r|F(f)(λ)|2dγ(λ) and using integration by

parts, we obtain

4kx2
∫ η

x

0

λ4r+2|F(f)(λ)|2dγ(λ) = 4kx2
∫ η

x

0

−s2ψ′(s)ds

= 4k(−ψ(x) + 2x2
∫ η

x

0

sψ(s)ds).

Therefore, using the fact that ψ(s) = O(s−2δ), it is not hard to see that

4kx2
∫ η

x

0

λ4r+2|F(f)(λ)|2dγ(λ) = O(x2δ)

and the theorem is proved.

5 Open Problem

The purpose of the future work is to generalize the Titchmarsh’s theorem for
the Chébli-Trimèche transfrom F for functions satisfying the Chébli-Trimèche-
Lipschitz condition in DpA with 1 ≤ p ≤ 2.
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