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Abstract

In this work, we consider a second order differential operator
Ay defined on (0,4+00), where A is a non negative function satisfy-
ing some conditions. To A, we associate Dp,-type spaces denoted
by D",. Some results, related to the spaces D", are proved. Moreover
A generalization of Titchmarsh’s theorem for the Chébli- Triméche
transfrom in D? is established.
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1 Introduction

L. Schwartz has introduced in [18] the space D», 1 < p < o0, of all C*-
functions ¢ on R such that for all n € N, D™ is in LP(R) and the map
¥ — D™ from Dy, into LP(R) is continuous. These spaces are studied by
many authors (see [1], [2], [5], [17]) among others.

In [12] the authors define new function spaces similar to D» but replacing
the usual derivative D by the generalized Laplace operator A, defined on
(0,00) by
d>  A(z) d )

-4 il >
i A(x) a 0,

AV
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where A is the Chébli-Trimeche function (cf. [6], Section 3.5) defined on [0, 00)
and satisfies the following conditions:

i) There exists a positive even infinitely differentiable function B on R,
with B(0) =1,
z € Ry, such that A(z) = 2?*"' B(z), a > 3.

ii) A is increasing on R, and lim A(x) = oc.
T—00

A Al
iii) " is decreasing on (0, c0), and mh_}rgo A((;:)) = 2p.

iv) There exists a constant o > 0, such that for all z € [xg,00), xg > 0, we

have '
A'(x) 22p 1 e{”F(x), ifp >0
a +e 7F(x),ifp=0

where F' is C* on (0, 00), bounded together with its derivatives.
For A(z) = 22t o > —% and p = 0 we regain the Bessel operator

_d2f+(2a+1>ﬁ

la f

 dx2 x dx’

For A(x) = sinh®**™ (z) cosh® ™ (2), a > 8 > —
we regain the Jacobi operator

,a# —tandp=a+p+1

D=

2
lagf = % + |(2a+ 1) cothz + (26 + 1) tanhx} @ + 0.

In this paper, these spaces denoted by D%, 1 < p < 0o, are moreover considered

as subspaces of £,(R) (the space of even C*°-functions on R). Some properties,

related to the spaces DY, are given.

The contents of the paper is as follows :

In §2 we recall some basic facts about the harmonic analysis results related
to the operator A 4. in §3 we introduce the space D% and we show some results.
In particular, we study the continuity of the Chébli-Trimeche transform on
D%,1 <p <2 In §4 a generalization of Titchmarsh’s theorem for the Chébli-
Trimeche transfrom F for functions satisfying the Chébli-Trimeche-Lipschitz
condition in D? is established.

2 Preliminaries

In this section, we collect some harmonic analysis results related to the operator
A 4. For details we refer the reader to [6], [8], [12], [14], [21], and [22].
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2.1 Eigenfunctions of the operator A4

In the following we denote by
CY(R) the space of even continuous functions f on R such that

lim |[f(x)| =0.

|z| =400

S.(R) the subspace of &£,(R), consisting of functions f rapidly decreasing to-
gether with their derivatives.

S2(R) = oS« (R), where ¢y is the eigenfunction of the operator A 4 associated
with the value A = 0.

S’ (R) the dual topological space of S,(R).

(82)'(R) the dual topological space of S?(R).

E.(R,) the dual topological space of E,(R).

H.(C) the space of even entire functions on C which are of exponential type
and slowly increasing.

H...(C) the subspace of H.(C) satisfying

Im € N, P,,(f) = sup(1 + X*)"™|f(\)| exp(—alImA|) < +o0
AeC
we have H,.(C) = U,>0H..q(C).

For every A € C, let us denote by ¢, the unique solution of the eigenvalue

problem
AAf(x) = _/\Zf(x)a (1)
f(0)=1, f(0)=0
Remark 1 This function satisfies the following properties.
o Vx>0, the function A —— py(x) is analytic on C.

e Product formula

o0

Va,y > 0; pr(2)oaly) = / o(2)w(e,y, 2)A()dz 2)

where w(x,y,.) is a measurable positive function on [0, 00), with support
in [lz —yl,z +y].

eV A>0 and x € R, |p\(z)| <1

e For p >0, we have
Vo > 0,VA € R, |pa(7)| < @o(z) < m(l + x)exp(—pz), (4)

where m s a positive constant.



40 M. Jelassi

e For p =0, we have

Ve >0, ¢o(z) =1,

o V2 >0,VAER, |p\(2)] <A+ p?)(1 + z)zexp(—px), (5)
where ¢ is a positive constant.

e We have the following integral representation of Mehler type,
Ve > 0,VA € C, pr(x)= / k(x,t) cos(At)dt (6)
0

where, k(x,.) is an even positive C* function on | — x,z[ with support
in [—z,x].

2.2 Generalized Fourier transform

For a Borel positive measure 4 on R, and 1 < p < oo, we write Lﬁ(RJr) for the
Lebesgue space equipped with the norm || - ||z, defined by

1/p
||f||Lg(R+)=(/R If(x)|pdﬂ(fﬂ)) i p<oo,

and || flle® ) = ess sup,ep, |f(z)|. When p(z) = w(z)dz, with w a nonneg-
ative function on R, we replace the p in the norms by w.

For f € LY (R,), the generalized Fourier transform, called also Chébli-
Trimeche transform, is defined by

F(HN) = A f(@)or(@)A(x)dz, VA eR. (7)

The inverse generalized Fourier transform of a suitable function g on R, is
given by:

Tofa) = F (@) = [ aWer(ohir) Q
where dy()) is the spectral measure given by
d\
dy(\) = ———. 9

Remark 2 The function A — ca(\) satisfies the following properties.

e For A € R ,we have c4(—\) = ca(N).
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o The function |ca(N\)|72 is continuous on [0, 00] .

e There exist positive constants k1, ko, and ks, such that

Ifp>0:YAeC, ImA<0, |\ > ks;

R AP < Jea) 7 < kg AT
Ifp=0,a>0:VAeC, |\ <ks;

B PP < Jea) < e AP
If p>0:VYAeC, |\ <k;;

R < Jea)] ™ < ke AP

Proposition 1 ([10]). i) The generalized transform F and its inverse J are
topological isomorphisms between the generalized Schwartz space S?(R) and the
Schwartz space S(R,).

ii) The transform F is a topological isomorphism from E.(R.) onto H.(C).
Moreover, for all T € E.(Ry), we have: supp(T) C [—a,a] if and only if
F(T) € Hya(C).

Next, we give some properties of this transform.
i) For f in LY (R,) we have

IF (@ < [1F1ey ey (10)

ii) For f in S?(R) we have
F(Aaf)y) = —y*F(f)(y), forally € R.. (11)
Proposition 2 (/10]). Plancherel formula for F. For all f in S?2(R) we

have

| 1s@PAw) iz = [ R0 (12)
Ry Ry
i1) Plancherel theorem.

The transform F extends uniquely to an isomorphism from L% (R,) onto
L2(R,).
i) for all f, g € L4(R,), we have

i f(@)g(x)A(z) dv = [ F(F)(E)F(9)(E)dv(£)- (13)

Ry

Remark 3 We have S?(R) C LY (R,) for all 2 < p < oo, but S?(R) —
LY (Ry) for all0 < p < 2.
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Proposition 3 Let 1 < p < 2. The Fourier transform F, (resp. J ) can
be extended as a continuous mapping from LY (R, ) onto LZ’;/ (Ry) (resp. from

LE(Ry) onto LP%(R.)) and we have
1 e < e 1780 < llazgeny (14

1 1
’thh—,—i——:l
p p

2.3 Generalized convolution

Definition 1 (/9]/). The translation operator associated with the operator A 4
is defined on LY (R,), by

Yo,y > 0; ALy /f w(e,y, 2) Al2)dz (15)
where w is the function defined in the relation (2).
Proposition 4 ([9]). For a suitable function f on Ry, we have

i) Tff( ) =1, f(2).
ii) To ( ) = F(y).

iii) =7l

) 7 sox( ) = ea(@)eay)-

v) FEA ) = er(0) F(HO),
vi) Aa(Th)f = TA(A4f)

Vi)V >0 |7 f”L”(R+ < 1/ llzs ), P € [L, 00].

Definition 2 (/9]). For suitable functions f and g, we define the convolution
product f x4 g by

feagle) = / A1 (9)g(y)Aly)dy. (16)

Remark 4 [t is clear that this convolution product is both commutative and
associative:

i) frag=g*alf
i) (f*xag)*ah=fxa(g*ah).

Proposition 5 (/9)).
i) Assume that 1 < p,q, 7 < o0 satisfy % + é —1= % Then, for every
fel(Ry) and g € LY(R,), we have f*4 g € L', (Ry), and

1 *a gllon @) < Cllf g @ llglley e.)- (17)
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i) Ifp>0and1 <p<q<2 Then

L5 (Ry) %4 L4(R,) = LY (Ry). (18)
iii) If p > 0 and 2 < p,q < o0 such that £ < p < q. Then

Lh(Ry) #4 LY (Ry) < LY(R.) (19)

where ¢’ is the conjugate exponent of q.
iv) If p>0and 1 < p <2 such thatp<q§ﬁ. Then

L (Ry) %4 LY (R4 ) — LY (Ry). (20)

v)
La(R:) %4 CI(R) = CU(R). (21)

Proposition 6 If p > 0, then for f € L4(Ry) and g € LA(Ry), with1 < p <
2 we have

F(fxag) = F(HNF(g)A). (22)

Proposition 7 ([21]) Let f,g € L3A(Ry). Then f x4 g € L4(R,) if and only
if F(f)F(g) belongs to L2(Ry), and in this case we have

F(fxag) = F()F(9).

Proposition 8 (/21])Let f be locally integrable function on [0, +00), and g a
measurable function on [0, +00) satisfying the condition:

3r € N such that (14 X)7"ge L (Ry). (23)

We suppose that for all p € D, (R),

/0°° f(z)(x)A(z)dx = /0009()\)]:(10)(/\)(17()\),

Then the function f belongs to L3 (R,) if and only if the function g belongs to
L2(Ry) and we have

F(f)=g.

Definition 3 The generalized Fourier transform of a distribution 7 in (S2)'(R)
1s defined by

(F(1),¢) = (1, FX(¢)), forall ¢ € S,(R). (24)

Proposition 9 The generalized Fourier transform F is a topological isomor-
phism from (S%)(R) onto S'.(R).
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Let 7 be in (S?)'(R,). We define the distribution A 47, by
(Dat, ) = (1, L49), forally € SY(R,).
This distribution satisfy the following property
F(Dar) = —y*F(r). (25)
Remark 5 (see [20))

i) The generalized convolution product of a distribution S in D,(R) and a

function ¥ in D.(R) is the function S x4 1 defined by
Ve RJr? S xa ¢(l’) = <Sy77—;:4 (y)> (26)
ii) Let U be a distribution in D,(R) and S a distribution in E.(R). The

generalized convolution product of U and S is the distribution in D, (R)

defined for all ¥ in D,(R) by
(Uxa S, ¥) = Uy, Sxa9(x)) = (Sy, U x4 ¥(y)) (27)
ii) Let k € N*. Then, for all U in D.(R) and S in E.(R), we have
AR (U x4 8) = Uxy AR(S) = (ARU) x4 S (28)

w) let U and S be two distributions in EL(R). Then the function U x4 S
belongs to E.(R) and we have

F(U x4 8)=FU)F(S). (29)

3 The space D'

Now, we start with the definition of the spaces of D4.

Definition 4 If 1 < p < oo, the space D is the set of all of C*° and even
functions f on R such that, for all k € N, AK¢ is in L (R,) which is equipped
with the topology generated by the countable norms

Yonp(f) = Jnax 1A flls @y, m €N

A function f € E(R) is in BY when 77?1700(]0) < oo for each m € N, where

A k
Vool f) = Jnag 1A%l @y), m €N

We denote by DY the subspace of BY that consists of all those functions f €
B for which | l‘im A} f(x) =0 for each m € N.
T|—00
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The space BY is endowed with the topology generated by the system {7;31’00},”61\].

Remark 6 i) Let 1 < p < oco. A function ¢ € L5 (Ry) is in DY if and only if
(I — Ax)™p e LA (Ry) for every m € N.

ii) A function ¢ € LY (Ry) is in BY if and only if (I — Ax)™¢ € LY (R,)
for every m € N.

iii) For 0 < p <2, we define the generalized Schwartz space SP(R) by

SP(R) = {f € &(R)/VE, 1N, sup (1 + 2)og P ()| f5(x)] < oo}.

Then, for q € [max{l,p}, +o0], SP(R) C D%. In particular, when p = 0 or
0<p<l1, forallqell, +o0], SP(R) C DY.

Proposition 10 ([12]) For every p € N and € > 0, there exists mg € N such
that for any m € N, m > mg, we can find two functions X, € D.(R)(the
subspace of D.(R) consisting of function f such that suppf C [—e,e]) and
L., € WP(R) (the space of function f : R — C of class C* on R, even and
with support in [—e,€|) such that

§ = (I —A4) T+ Xon-

We start with some topological properties of the spaces DY.

Proposition 11 ) DY, 1 < p < 0o and By are Fréchet spaces.
i) DY is continuously contained in DY, when 1 < p < g < oo.
iii) If 1 < p < oo then DY is a reflexive space.

Proof. In Proposition 2.1 [12], the result is proved for the spaces D, 1 < p <
oo and BY. Lets prove that DY is a Fréchet space. let (u,)nen be a Cauchy
sequence in DY. Since CY(R) is a Banach space, then there exists v,,, € C?(R)
such that AT, — v, as n — oo, in C2(R), for each m € N. On the other
hand by a simple calculation we see that, AYvy = v,,, m € N. Which implies
that (u,)nen converge to vy in DY. Thus the proof of i) is finished.

ii) Let ¢ € D%. Then, using Proposition 10, for a > 0 and n € N, there exist
two functions y € D.(R) and I' € W?(R) such that

Ao =6xa Do =Txy (I —LD2)"ANp+xx4 A, EKEN (30)

Therefore, from proposition 5 i),v) we deduce the result. Moreover, for 1 <
p < q < 00, there exists ¢ > 0 such that

Vm e N, 3m; € N satisfying fy;i’q(go) < 07£17p(<p). (31)
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To see iii) it is sufficient to argue like in [18].
It is well known (see [21]) that for all f € L5 (R,), p € [1, 00),

. A .
lim [[72°f = fllog ey = 0 and lm [ f 54 ve = fllg @, = 0. (32)
where
_ xr xr
0. = (A AG() (33)

with v is a positive function in L} (Ry) such that [[v]|py @) = 1.
The case p = oo is given by the following Lemma which we need in the
sequel to study the density of the space D.(R) in D4, p € [1, o0

Lemma 1 Let f € L (R,) such that there exists a continuous function g in
CO(R) satisfying f = g a.e. Then

1. A .
o) I [72°f = fllegp@,) = 0.
it) lim | f *ave = fllLe@,) = 0.

where ve s given by (33).

Proof. i) Suppose that f € D,(R), then from inversion formula (8) and
Proposition 4 v), we deduce that for z, y > 0

[ f(y) = f)l < /0 [ox(W)F () (Mlpa(z) = dy(A) (34)
Now, using mean value theorem and the fact that for x > 0 and A € R
[P\ (@)] < OO+ p*) (1 + z)ze™” (35)

where C' is a positive constant (see proposition I1.2 [4]), it follows from (3) and
(34) that for z >0

1T = fllosey < COA+2)2 (X + p°)F ()l e, (36)

and this completes the proof for f € D.(R).

Now, suppose that f € LY (R, ) such that there exists a continuous function
g in CO(R) satisfying f = g a.e. Then, there exists a sequence (f,), in D,(R)
such that

Tim £~ Fllzgces) = 0. (37)
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According to proposition 4 vii), we deduce that for n € N,

172 = fllez @y < 172 (F = fa)llee®e) + 17 fo = Fall ey + 1 fn = Fllees)
< 2l fn = fllze@s) + 17 0 = fallr®y) (38)

and the result follows by applying Lemma 1 i) for f,.
ii) Let f € LY (R, ) such that there exists a continuous function g in C?(R)
satisfying f = g a.e. Then, for x > 0, we have

| ave(n) — fl)] < / T 0T — F(@)Aly)dy (39)

which implies, by putting t = g, that
€

I ave = Fligen < [ oIS = fligwodde (10)
But, from Lemma 1 i),
lim (|72 f—f ey = 0 and 152 f = F e ov(t) < 20 fllug@aov(t) € Ly(Ry).
Hence, from (40) and by dominated convergence theorem, we deduce the result.

Proposition 12 D,.(R) is dense in DY, p € [1, oo].

Proof. Let f € DY, p € [1, o0]. Then, from (32) and Lemma 1 ii), we have
for all K € N,

lim || A4 44 e — A ey = 0. (41)

On the other hand, from the density of D.(R) respectively in L% (R;) and
CY9(R), there exists a sequence (f,), in D,(R) such that

Jim || £~ i = 0. (42)

Let £k € N and 6 > 0, there exist € > 0 and n € N such that

1)
<
TN TA P

IO f *ave = D flle myy < 6/2 and || fr = fllzzx, -(43)

Thus, by virtue of remark 5 iii) and using Proposition 5, it follows that

HA]fx(fn *A Ve — f)HLg(M) | *a Aﬁva — [ xa AI;XUSHLZ(RH + HAIZf *A Ve — Alﬁxf”ﬁ;om)
Ifr — f|’Lg(R+)||AI§Wa||L}4(R+) + | A% fxa v — Alﬁxf”Lg(uh)

5 (44)

IN N IA



48 M. Jelassi

Choosing the function v in D,(R), it follows that for all € > 0 and all n € N,
fn*av: € Do(R). And this achieves the proof of the proposition.

In the sequel, we give some result concerning the continuity of the Fourier
transform F and its inverse. We start with the following Lemma deduced from
the hypothesis of the function A

Lemma 2
i) For any real a > 0 there ezist positive constants Cy(a), Cs(a) such that for
all x € [0, al,
Ci(a)z® ™ < A(x) < Cy(a)z® .

i) For p > 0,

A(x) ~ ¥ (1 — +00)
iii) For p =0,

A(x) ~ 2% (2 — +00)

Theorem 1 The inverse of the Fourier transform F~1 defines a continuous

| _ . [1, +o00[, forp =0
linear map from D.(R) into Dy if p € { 2,00, forp>0

Proof. According to lemma 2 and using relation (4), it is not hard to see that
5 » [1, +oof, forp =10

S*(R)(_)DA’pE{ [2,00[, forp>0"

Thus, the result follows from the fact that, for all £ € N, Ak F~1 is continuous

from D, (R) into S2(R).

Let By = {f € C2(R)/z*f € C)(R),k € N} and By = {f € L2(R,.)/z* f €
L%(RJF), k € N} equipped respectively with the topology generated by the
countable norms

— 2k
Hmoo(f) = maz AT fllrge @), mEN.

and

2k
tma(f) = maz (AT, mEN.

Thus, Ey and E; are Fréchet spaces and we have

Theorem 2 1)The Fourier transform F is a continuous from D} into E.
2) The Fourier transform F is an isomorphism from D% onto F).

3) Let p € [1, 2]. Then, for r € [1, p| and q € [1, p'| with p’ is the conjugate
exponent of p, there exist ¢ > 0 and m € N such that for all f € DY,

IF ey < C’Yfrt,r(f),

’y;,ﬁ,r(f) 18 finite or infinite. In particular, the Fourier transform F is a con-
tinuous from DY into LI(Ry), q € [1, p'].
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Proof. For all f € DY (resp. f € D?%), we have
F(Aaf)=-NF(f) (45)

Then 1) and 2) follows respectively from (10) and Plancherel Theorem.
3) According to Proposition 3 and using inequality (31), we deduce that, for
r € [1, p|, there exist ¢; > 0 and k € N such that for all f € DY,

1F f ey < 1l e,y < et (£). (46)

Vi (f) is finite or infinite.
On the other hand, using Holder inequality, it follows that for ¢ € [1, p/]
there exist ¢; > 0 and n € N such that for all g € DY,

1Fdll s < e 1P~ BV Dl e, (47)

Hence, the result follows by combining (46) and (47).

4 Titchmarsh’s theorem for the Chébli-Trimeche
transfrom F in D’

In [19], Titchmarsh characterized the set of functions in L?(R) satisfying the
Cauchy Lipschitz condition by means of an asymptotic estimate growth of the
norm of their Fourier transforms. More precisely, we have:

Theorem 3 [19] Let a € (0,1) and assume that f € L*(R). Then the follow-
g are equivalent:

DA +h) = fOl 2@ = Oh) as h—0.

2) / lg(N)|?dN = O(r™2*) as 1 —> oo. Where g stands for the Fourier
[A[>7
transform of f.

In this section, we prove a generalization of Titchmarsh’s theorem for the
Chébli-Trimeche transfrom F for functions satisfying the Chébli-Trimeche-
Lipschitz condition in D3.

Putting V)\(z) = /A(z)pa(x), we see that V) satisfies

(Lo + x(x) + A)Vi(z) = 0,

where L, and x(x) are defined by

(Lou)(x) = u” () —
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and

@) == e 2L L (B (B

Thus, we have

N

1
~)a®

Va(z) ~ 2%2, Vi (2) ~ (a + 5

(x — 0).

We assume in this section that x is holomorphic in a disc D(0,2b) = {z €
C,|z| < 2b}, b > 0. Therefore, from [13], we have:

Theorem 4 The eigenfunction p, can be expanded in a Bessel-function series
as follows

ot (A 48
palz) = FZ T a+p+ e (M) (48)
where B, are functions defined by a recursive relation and satisfy:

By (2)] < (¢/2)Pd" "6 P4 (p + g — 1)) (49)

for all z €[0,b], p=1,2,... and ¢ =0,1,2, ..., where

c =max{1 + [2a — 1], 2sup(|x(2)|, |2| £ 20)}, d=(b+b"")
and By(z) = By > 0,
Corollary 1 There existn >0, N > 1 and ¢ > 0 such that

forall A\ > N and Az € [g, nl, 1 —ga(z) > ¢

Proof. Firstly it can be observed from inequality (3) and the integral repre-
sentation (6) that, for Az € [0, 7], 0 < px(z) < 1.
Since ¢, (0) = 1, then by virtue of Theorem 4 we deduce that

lim BQiL‘
250 29T (0 + 1) A()

~ 1. (50)

And from the expansion of the normalized Bessel function

Ja(r) =T +1) z% n!r(ij)err 1) (g)%’
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which implies that

lim 22 " 2 (x) = 7é 0

x—0 17
and therefore, there exist £ > 0 and o > 0 such that for every n € (0, o], we
have

2
Ve e [l 11— ja(@)] = 1 - jala) > ra® > wor- (51)
Thus, there exists § € (0, 1) such that for all A\, z > 0 satisfying Az € [Z, 7]

we have
0 < ja(Az) <. (52)

and from (50) one can easily see that for 6, € (9, 1) there exist N > 1 such

n
that f < =4
a orx_N

1
BO ) (51

0= 2T(a+ )/A@) 0 (53)

Combining (52) and (53) we deduce that for A > N and Az € [ﬂ

2,77]

By 2°72j,(Ax)
29T (a4 1)y/A(x)

< 0. (54)

On the other hand, using the inequality (49), we have for all p € N\{0}

2 By () jarp(Ax) b cdz®  T(p) < 1 cdx?

| 2T (o +p+1) =3t Tptatl) F(a+2)< T !

IN

Thus, by virtue of (53) and choosing 7 < min{o, b, = = M} with

d2 € (61, 1), and N > max{1, \/<}, we have for z € [0, %]
1% B)(x)

a+2
' <
\/_Zzpr (a+p+ 1)]O“+p(/\$)| T 29T (o + 2 \/—Z

cdx

272 Z 2p
2T (a+ 1)\/A 7
BO T 2 (5(62 - (51)
20T (a + 1)\/A(x) 0
< §y — 0. (55)

IN
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Therefore, according to the expansion of ¢, given by (48) and using inequalities

(54) and (55), it follows that for A > N and Az € [g, n]

1—@0)\($>21—(52>0,
and this achieves the proof of the Corollary.

Definition 5 Let § € (0, 1). A function f € D? is said to be in the Chébli
Triméche Lipschitz class, denoted by Lip(6,2), if

VkeN, VreN, |[LEAT, fllez @y = O(2°) as z—0,

where L,f = 72f — f.
To prove the main result of this section we need the following Lemma

Lemma 3 Let f € D%4. Then for every k € N and r € N, we have
IE84 I = [ AL = or@ PN (),
Proof. It is easily to see that for all k € N
Lif(y) => (DO )

Thus, by virtue of Proposition 4 v) and using the fact that

FALFA) = (=A)F(H)(N)

it follows that

FILEALNN) = 3 (DT OF ()DL
= (=) F(HN) Y (-1 (2)

=0

= (=N F(HN(ealz) = 1)
Hence, from Plancherel formula for F, we deduce the result.

Theorem 5 Let f € D%. Then the following are equivalents
i) f € Lip(6,2).

i) ¥ reN, /OO MF(HN)Pdy(N) = O(s7%)  as s — 400.



New results on the Dy ,-type spaces 53

Proof. Suppose that f € Lip(d,2). According to Corollary 1 we deduce that
there exist 7 > 0, a > 0 and ¢ > 0 such that for x € (0,a) and for all r € N,
we have

[XHFOQF0 < 2 [T = @ PP, keN

2z

which implies, from Lemma 3, that

/ AFENPdYN) = O@@®) as - 0.

2z

Therefore, there exists C' > 0 such that

[ FEOORR M) < 05

Thus, there exists C] > 0 satisfying

21+1

/ XTIFE(S) V) Pdy(N) Z / XTF()N)Pdy(h) < Crs™
s 20

and consequently ii) is proved. Lets prove now that ii) = i). We have

813

[ A= a@PEOOFW = [TAh - p@PEOWEGN)
s [N - @PIE P

By virtue of i), it follows that w

[ = @ PR < 45X EO OB 0) = 06, (56

On the other hand, estimate 1 — @,(x) using the mean value theorem and
inequality (5), we get for z <1

8IS

/0 N = oy @) EIF(H O Py < 4’% XIL = o (@) [|F(F) D2y (N)

i {/ TR Edy (V)

0

IN

T / " AE(H) O Py ().
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But 0 < 1, then we have
427 / CNTFEDONPAR) < 42 / N IE(F) N Py (V)
0 0

= 4520 A 1T
= O(z%).

2(Ry)

Now, by putting 9(s) = / M F(f)(N)|?dy(N) and using integration by
parts, we obtain ’

n

4%2/’” A2 F(HNPdy(N) = 4522 /m —s%)'(s)ds
0 0

= 4F(—y(z) + 222 /oz s1(s)ds).

Therefore, using the fact that (s) = O(s~%9), it is not hard to see that

vt [TAHEWFRR) = 06)

and the theorem is proved.

5 Open Problem

The purpose of the future work is to generalize the Titchmarsh’s theorem for
the Chébli-Trimeche transfrom F for functions satisfying the Chébli-Trimeche-
Lipschitz condition in DY with 1 < p < 2.
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