Int. J. Open Problems Complex Analysis, Vol. 7, No. 3, November 2015 ISSN 2074-2827; Copyright ©ICSRS Publication, 2015 www.i-csrs.org

New results on the D_{Lp} -type spaces associated with a singular second order differential operator

Mourad Jelassi

Mathematics Department, College of Sciences, Aljouf University, Saudi Arabia Aljouf University, Saudi Arabia e-mail: mkjelassi@ju.edu.sa

Abstract

In this work, we consider a second order differential operator \triangle_A defined on $(0, +\infty)$, where A is a non negative function satisfying some conditions. To \triangle_A we associate D_{Lp} -type spaces denoted by \mathcal{D}_A^p . Some results, related to the spaces \mathcal{D}_A^p , are proved. Moreover A generalization of Titchmarsh's theorem for the Chébli-Trimèche transfrom in \mathcal{D}_A^2 is established.

Keywords: second order differential operator \triangle_A , \mathcal{D}^p_A spaces, Titchmarsh's theorem

2000 Mathematical Subject Classification: 35L05, 22E30.

1 Introduction

L. Schwartz has introduced in [18] the space D_{L^p} , $1 \leq p \leq \infty$, of all C^{∞} functions ψ on \mathbb{R} such that for all $n \in \mathbb{N}$, $D^n \psi$ is in $L^p(\mathbb{R})$ and the map $\psi \mapsto D^n \psi$ from D_{L^p} into $L^p(\mathbb{R})$ is continuous. These spaces are studied by
many authors (see [1], [2], [5], [17]) among others.

In [12] the authors define new function spaces similar to D_{L^p} but replacing the usual derivative D by the generalized Laplace operator Δ_A defined on $(0,\infty)$ by

$$\Delta_A = \frac{d^2}{dx^2} + \frac{A'(x)}{A(x)}\frac{d}{dx} + \rho^2, \quad \rho \ge 0,$$

where A is the Chébli-Trimèche function (cf. [6], Section 3.5) defined on $[0, \infty)$ and satisfies the following conditions:

- i) There exists a positive even infinitely differentiable function B on \mathbb{R} , with B(0) = 1, $x \in \mathbb{R}_+$, such that $A(x) = x^{2\alpha+1}B(x)$, $\alpha > \frac{-1}{2}$.
- ii) A is increasing on \mathbb{R}_+ and $\lim_{x\to\infty} A(x) = \infty$.
- iii) $\frac{A'}{A}$ is decreasing on $(0, \infty)$, and $\lim_{x \to \infty} \frac{A'(x)}{A(x)} = 2\rho$.
- iv) There exists a constant $\sigma > 0$, such that for all $x \in [x_0, \infty)$, $x_0 > 0$, we have

$$\frac{A'(x)}{A(x)} = \begin{cases} 2\rho + e^{-\sigma x} F(x), & \text{if } \rho > 0\\ \frac{2\alpha + 1}{x} + e^{-\sigma x} F(x), & \text{if } \rho = 0 \end{cases}$$

where F is C^{∞} on $(0, \infty)$, bounded together with its derivatives.

For $A(x) = x^{2\alpha+1}$, $\alpha > -\frac{1}{2}$ and $\rho = 0$ we regain the Bessel operator

$$l_{\alpha}f = \frac{d^2f}{dx^2} + \left(\frac{2\alpha + 1}{x}\right)\frac{df}{dx}$$

For $A(x) = \sinh^{2\alpha+1}(x) \cosh^{2\beta+1}(x)$, $\alpha \ge \beta \ge -\frac{1}{2}$, $\alpha \ne -\frac{1}{2}$ and $\rho = \alpha + \beta + 1$ we regain the Jacobi operator

$$l_{\alpha,\beta}f = \frac{d^2f}{dx^2} + \left[(2\alpha + 1) \coth x + (2\beta + 1) \tanh x \right] \frac{f(x)}{x} + \rho^2.$$

In this paper, these spaces denoted by \mathcal{D}_A^p , $1 \leq p \leq \infty$, are moreover considered as subspaces of $\mathcal{E}_*(\mathbb{R})$ (the space of even C^{∞} -functions on \mathbb{R}). Some properties, related to the spaces \mathcal{D}_A^p , are given.

The contents of the paper is as follows :

In §2 we recall some basic facts about the harmonic analysis results related to the operator Δ_A . in §3 we introduce the space \mathcal{D}_A^p and we show some results. In particular, we study the continuity of the Chébli-Trimèche transform on \mathcal{D}_A^p , $1 \leq p \leq 2$. In §4 a generalization of Titchmarsh's theorem for the Chébli-Trimèche transfrom \mathcal{F} for functions satisfying the Chébli-Trimèche-Lipschitz condition in \mathcal{D}_A^2 is established.

2 Preliminaries

In this section, we collect some harmonic analysis results related to the operator Δ_A . For details we refer the reader to [6], [8], [12], [14], [21], and [22].

2.1 Eigenfunctions of the operator \triangle_A

In the following we denote by

 $C^0_*(\mathbb{R})$ the space of even continuous functions f on \mathbb{R} such that

$$\lim_{|x| \to +\infty} |f(x)| = 0.$$

 $\mathcal{S}_*(\mathbb{R})$ the subspace of $\mathcal{E}_*(\mathbb{R})$, consisting of functions f rapidly decreasing together with their derivatives.

 $\mathcal{S}^2_*(\mathbb{R}) = \varphi_0 \mathcal{S}_*(\mathbb{R})$, where φ_0 is the eigenfunction of the operator Δ_A associated with the value $\lambda = 0$.

 $\mathcal{S}'_*(\mathbb{R})$ the dual topological space of $\mathcal{S}_*(\mathbb{R})$.

 $(\mathcal{S}^2_*)'(\mathbb{R})$ the dual topological space of $\mathcal{S}^2_*(\mathbb{R})$.

 $\mathcal{E}'_*(\mathbb{R}_+)$ the dual topological space of $\mathcal{E}_*(\mathbb{R})$.

 $\mathcal{H}_*(\mathbb{C})$ the space of even entire functions on \mathbb{C} which are of exponential type and slowly increasing.

 $\mathcal{H}_{*,a}(\mathbb{C})$ the subspace of $\mathcal{H}_{*}(\mathbb{C})$ satisfying

$$\exists m \in \mathbb{N}, P_m(f) = \sup_{\lambda \in \mathbb{C}} (1 + \lambda^2)^{-m} |f(\lambda)| \exp(-a|Im\lambda|) < +\infty$$

we have $\mathcal{H}_*(\mathbb{C}) = \bigcup_{a \ge 0} \mathcal{H}_{*,a}(\mathbb{C}).$

For every $\lambda \in \mathbb{C}$, let us denote by φ_{λ} the unique solution of the eigenvalue problem

$$\begin{cases} \Delta_A f(x) = -\lambda^2 f(x), \\ f(0) = 1, \quad f'(0) = 0. \end{cases}$$
(1)

Remark 1 This function satisfies the following properties.

- $\forall x \geq 0$, the function $\lambda \mapsto \varphi_{\lambda}(x)$ is analytic on \mathbb{C} .
- Product formula

$$\forall x, y \ge 0; \ \varphi_{\lambda}(x)\varphi_{\lambda}(y) = \int_{0}^{\infty} \varphi_{\lambda}(z)w(x, y, z)A(z)dz$$
(2)

where w(x, y, .) is a measurable positive function on $[0, \infty)$, with support in [|x - y|, x + y].

- $\forall \ \lambda \ge 0 \ and \ x \in \mathbb{R}, \ |\varphi_{\lambda}(x)| \le 1.$ (3)
- For $\rho > 0$, we have

$$\forall x \ge 0, \forall \lambda \in \mathbb{R}, \quad |\varphi_{\lambda}(x)| \le \varphi_0(x) \le m(1+x)exp(-\rho x), \tag{4}$$

where m is a positive constant.

M. Jelassi

• For $\rho = 0$, we have

$$\forall x \ge 0, \quad \varphi_0(x) = 1,$$

•
$$\forall x \ge 0, \forall \lambda \in \mathbb{R}, \quad |\varphi'_{\lambda}(x)| \le c(\lambda^2 + \rho^2)(1+x)xexp(-\rho x),$$
 (5)

where c is a positive constant.

• We have the following integral representation of Mehler type,

$$\forall x > 0, \forall \lambda \in \mathbb{C}, \quad \varphi_{\lambda}(x) = \int_{0}^{x} k(x,t) \cos(\lambda t) dt$$
 (6)

where, k(x, .) is an even positive C^{∞} function on] - x, x[with support in [-x, x].

2.2 Generalized Fourier transform

For a Borel positive measure μ on \mathbb{R} , and $1 \leq p \leq \infty$, we write $L^p_{\mu}(\mathbb{R}_+)$ for the Lebesgue space equipped with the norm $\|\cdot\|_{L^p_{\mu}(\mathbb{R}_+)}$ defined by

$$||f||_{L^p_{\mu}(\mathbb{R}_+)} = \left(\int_{\mathbb{R}} |f(x)|^p \ d\mu(x)\right)^{1/p}, \quad \text{if } p < \infty,$$

and $||f||_{L^{\infty}_{\mu}(\mathbb{R}_{+})} = \operatorname{ess sup}_{x \in \mathbb{R}_{+}} |f(x)|$. When $\mu(x) = w(x)dx$, with w a nonnegative function on \mathbb{R}_{+} , we replace the μ in the norms by w.

For $f \in L^1_A(\mathbb{R}_+)$, the generalized Fourier transform, called also Chébli-Trimèche transform, is defined by

$$\mathcal{F}(f)(\lambda) = \int_{\mathbb{R}_+} f(x)\varphi_{\lambda}(x)A(x)dx, \quad \forall \lambda \in \mathbb{R}.$$
 (7)

The inverse generalized Fourier transform of a suitable function g on \mathbb{R}_+ is given by:

$$\mathcal{J}g(x) = \mathcal{F}^{-1}g(x) = \int_{\mathbb{R}_+} g(\lambda)\varphi_\lambda(x)d\gamma(\lambda) \tag{8}$$

where $d\gamma(\lambda)$ is the spectral measure given by

$$d\gamma(\lambda) = \frac{d\lambda}{|c_A(\lambda)|^2}.$$
(9)

Remark 2 The function $\lambda \mapsto c_A(\lambda)$ satisfies the following properties.

• For $\lambda \in \mathbb{R}$, we have $c_A(-\lambda) = \overline{c_A(\lambda)}$.

- The function $|c_A(\lambda)|^{-2}$ is continuous on $[0,\infty[$.
- There exist positive constants k_1 , k_2 , and k_3 , such that If $\rho \ge 0$: $\forall \lambda \in \mathbb{C}$, $Im\lambda \le 0$, $|\lambda| > k_3$;

$$k_1 |\lambda|^{2\alpha+1} \le |c_A(\lambda)|^{-2} \le k_2 |\lambda|^{2\alpha+1}.$$

If $\rho = 0, \ \alpha > 0 : \forall \lambda \in \mathbb{C}, \ |\lambda| \le k_3;$

$$k_1 |\lambda|^{2\alpha+1} \le |c_A(\lambda)|^{-2} \le k_2 |\lambda|^{2\alpha+1}.$$

If $\rho > 0 : \forall \lambda \in \mathbb{C}, \ |\lambda| \le k_3;$

$$|k_1|\lambda|^2 \le |c_A(\lambda)|^{-2} \le k_2 |\lambda|^2$$
.

Proposition 1 ([10]). i) The generalized transform \mathcal{F} and its inverse \mathcal{J} are topological isomorphisms between the generalized Schwartz space $\mathcal{S}^2_*(\mathbb{R})$ and the Schwartz space $\mathcal{S}(\mathbb{R}_*)$.

ii) The transform \mathcal{F} is a topological isomorphism from $\mathcal{E}_*(\mathbb{R}_+)$ onto $\mathcal{H}_*(\mathbb{C})$. Moreover, for all $T \in \mathcal{E}_*(\mathbb{R}_+)$, we have: $\operatorname{supp}(T) \subseteq [-a, a]$ if and only if $\mathcal{F}(T) \in \mathcal{H}_{*,a}(\mathbb{C})$.

Next, we give some properties of this transform.

i) For f in $L^1_A(\mathbb{R}_+)$ we have

$$||\mathcal{F}(f)||_{L^{\infty}_{\gamma}(\mathbb{R}_{+})} \le ||f||_{L^{1}_{A}(\mathbb{R}_{+})}.$$
(10)

ii) For f in $\mathcal{S}^2_*(\mathbb{R})$ we have

$$\mathcal{F}(\Delta_A f)(y) = -y^2 \mathcal{F}(f)(y), \quad \text{for all } y \in \mathbb{R}_+.$$
(11)

Proposition 2 ([10]). **Plancherel formula for** \mathcal{F} . For all f in $\mathcal{S}^2_*(\mathbb{R})$ we have

$$\int_{\mathbb{R}_{+}} |f(x)|^{2} A(x) \, dx = \int_{\mathbb{R}_{+}} |\mathcal{F}(f)(\xi)|^{2} d\gamma(\xi).$$
(12)

ii) <u>Plancherel theorem.</u>

The transform \mathcal{F} extends uniquely to an isomorphism from $L^2_A(\mathbb{R}_+)$ onto $L^2_{\gamma}(\mathbb{R}_+)$.

iii) for all $f, g \in L^2_A(\mathbb{R}_+)$, we have

$$\int_{\mathbb{R}_{+}} f(x)\overline{g(x)}A(x) \, dx = \int_{\mathbb{R}_{+}} \mathcal{F}(f)(\xi)\overline{\mathcal{F}(g)(\xi)}d\gamma(\xi).$$
(13)

Remark 3 We have $\mathcal{S}^2_*(\mathbb{R}) \subset L^p_A(\mathbb{R}_+)$ for all $2 \leq p \leq \infty$, but $S^2_*(\mathbb{R}) \hookrightarrow L^p_A(\mathbb{R}_+)$ for all 0 .

Proposition 3 Let $1 \leq p \leq 2$. The Fourier transform \mathcal{F} , (resp. \mathcal{J}) can be extended as a continuous mapping from $L^p_A(\mathbb{R}_+)$ onto $L^{p'}_{\gamma}(\mathbb{R}_+)$ (resp. from $L^p_{\gamma}(\mathbb{R}_+)$ onto $L^{p'}_A(\mathbb{R}_+)$) and we have

$$\|\mathcal{F}f\|_{L^{p'}_{\gamma}(\mathbb{R}_{+})} \leq \|f\|_{L^{p}_{A}(\mathbb{R}_{+})}; \ \|\mathcal{J}g\|_{L^{p'}_{A}(\mathbb{R}_{+})} \leq \|g\|_{L^{p}_{\gamma}(\mathbb{R}_{+})}$$
(14)
with $\frac{1}{p'} + \frac{1}{p} = 1.$

2.3 Generalized convolution

Definition 1 ([9]). The translation operator associated with the operator \triangle_A is defined on $L^1_A(\mathbb{R}_+)$, by

$$\forall x, y \ge 0; \ \tau_x^A f(y) = \int_0^\infty f(z) w(x, y, z) A(z) dz \tag{15}$$

where w is the function defined in the relation (2).

Proposition 4 ([9]). For a suitable function f on \mathbb{R}_+ , we have

i) $\tau_x^A f(y) = \tau_y^A f(x).$ ii) $\tau_0^A f(y) = f(y).$ iii) $\tau_x^A \tau_y^A = \tau_y^A \tau_x^A.$ iv) $\tau_x^A \varphi_\lambda(y) = \varphi_\lambda(x)\varphi_\lambda(y).$ v) $\mathcal{F}(\tau_x^A f)(\lambda) = \varphi_\lambda(x)\mathcal{F}(f)(\lambda).$ vi) $\triangle_A(\tau_x^A)f = \tau_x^A(\triangle_A f)$ vii) $\forall x \ge 0 \ \|\tau_x^A f\|_{L_A^p(\mathbb{R}_+)} \le \|f\|_{L_A^p(\mathbb{R}_+)}, \ p \in [1, \infty].$

Definition 2 ([9]). For suitable functions f and g, we define the convolution product $f *_A g$ by

$$f *_A g(x) = \int_{\mathbb{R}_+} \tau_x^A f(y) g(y) A(y) dy.$$
(16)

Remark 4 It is clear that this convolution product is both commutative and associative:

i) $f *_A g = g *_A f.$ ii) $(f *_A g) *_A h = f *_A (g *_A h).$

Proposition 5 (/9).

i) Assume that $1 \leq p, q, r \leq \infty$ satisfy $\frac{1}{p} + \frac{1}{q} - 1 = \frac{1}{r}$. Then, for every $f \in L^p_A(\mathbb{R}_+)$ and $g \in L^q_A(\mathbb{R}_+)$, we have $f *_A g \in L^r_A(\mathbb{R}_+)$, and

$$\|f *_A g\|_{L^r_A(\mathbb{R}_+)} \le C \|f\|_{L^p_A(\mathbb{R}_+)} \|g\|_{L^q_A(\mathbb{R}_+)}.$$
(17)

- ii) If $\rho > 0$ and $1 \le p < q \le 2$. Then $L^p_A(\mathbb{R}_+) *_A L^q_A(\mathbb{R}_+) \hookrightarrow L^q_A(\mathbb{R}_+).$
- iii) If $\rho > 0$ and $2 < p, q < \infty$ such that $\frac{q}{2} \le p < q$. Then

$$L^p_A(\mathbb{R}_+) *_A L^{q'}_A(\mathbb{R}_+) \hookrightarrow L^q_A(\mathbb{R}_+)$$
(19)

where q' is the conjugate exponent of q.

iv) If $\rho > 0$ and $1 such that <math>p < q \le \frac{p}{2-p}$. Then

$$L^p_A(\mathbb{R}_+) *_A L^p_A(\mathbb{R}_+) \hookrightarrow L^q_A(\mathbb{R}_+).$$
⁽²⁰⁾

v)

$$L^1_A(\mathbb{R}_+) *_A C^0_*(\mathbb{R}) \hookrightarrow C^0_*(\mathbb{R}).$$
(21)

Proposition 6 If $\rho > 0$, then for $f \in L^2_A(\mathbb{R}_+)$ and $g \in L^p_A(\mathbb{R}_+)$, with $1 \le p < 2$ we have

$$\mathcal{F}(f *_A g) = \mathcal{F}(f)(\lambda)\mathcal{F}(g)(\lambda).$$
(22)

Proposition 7 ([21]) Let $f, g \in L^2_A(\mathbb{R}_+)$. Then $f *_A g \in L^2_A(\mathbb{R}_+)$ if and only if $\mathcal{F}(f)\mathcal{F}(g)$ belongs to $L^2_{\gamma}(\mathbb{R}_+)$, and in this case we have

$$\mathcal{F}(f *_A g) = \mathcal{F}(f)\mathcal{F}(g).$$

Proposition 8 ([21])Let f be locally integrable function on $[0, +\infty)$, and g a measurable function on $[0, +\infty)$ satisfying the condition:

$$\exists r \in \mathbb{N} \quad \text{such that} \quad (1+\lambda^2)^{-r}g \in L^1_{\gamma}(\mathbb{R}_+).$$
(23)

We suppose that for all $\psi \in D_*(\mathbb{R})$,

$$\int_0^\infty f(x)\psi(x)A(x)dx = \int_0^\infty g(\lambda)\mathcal{F}(\psi)(\lambda)d\gamma(\lambda)$$

Then the function f belongs to $L^2_A(\mathbb{R}_+)$ if and only if the function g belongs to $L^2_\gamma(\mathbb{R}_+)$ and we have

$$\mathcal{F}(f) = g.$$

Definition 3 The generalized Fourier transform of a distribution τ in $(\mathcal{S}^2_*)'(\mathbb{R})$ is defined by

$$\langle \mathcal{F}(\tau), \phi \rangle = \langle \tau, \mathcal{F}^{-1}(\phi) \rangle, \text{ for all } \phi \in \mathcal{S}_*(\mathbb{R}).$$
 (24)

Proposition 9 The generalized Fourier transform \mathcal{F} is a topological isomorphism from $(\mathcal{S}^2_*)'(\mathbb{R})$ onto $\mathcal{S}'_*(\mathbb{R})$.

(18)

M. Jelassi

Let τ be in $(\mathcal{S}^2_*)'(\mathbb{R}_+)$. We define the distribution $\Delta_A \tau$, by

$$\langle \triangle_A \tau, \psi \rangle = \langle \tau, \triangle_A \psi \rangle$$
, for all $\psi \in \mathcal{S}^2_*(\mathbb{R}_+)$.

This distribution satisfy the following property

$$\mathcal{F}(\Delta_A \tau) = -y^2 \mathcal{F}(\tau). \tag{25}$$

Remark 5 (see [20])

i) The generalized convolution product of a distribution S in $D'_*(\mathbb{R})$ and a function ψ in $D_*(\mathbb{R})$ is the function $S *_A \psi$ defined by

$$\forall x \in \mathbb{R}_+, \ S *_A \psi(x) = \langle S_y, \tau_x^A \psi(y) \rangle$$
(26)

ii) Let U be a distribution in $D'_*(\mathbb{R})$ and S a distribution in $\mathcal{E}'_*(\mathbb{R})$. The generalized convolution product of U and S is the distribution in $D'_*(\mathbb{R})$ defined for all ψ in $D_*(\mathbb{R})$ by

$$\langle U *_A S, \psi \rangle = \langle U_x, S *_A \psi(x) \rangle = \langle S_y, U *_A \psi(y) \rangle$$
(27)

iii) Let $k \in \mathbb{N}^*$. Then, for all U in $D'_*(\mathbb{R})$ and S in $\mathcal{E}'_*(\mathbb{R})$, we have

$$\Delta_A^k(U *_A S) = U *_A \Delta_A^k(S) = (\Delta_A^k U) *_A S$$
(28)

iv) let U and S be two distributions in $\mathcal{E}'_*(\mathbb{R})$. Then the function $U *_A S$ belongs to $\mathcal{E}'_*(\mathbb{R})$ and we have

$$\mathcal{F}(U *_A S) = \mathcal{F}(U)\mathcal{F}(S).$$
⁽²⁹⁾

3 The space \mathcal{D}^p_A

Now, we start with the definition of the spaces of \mathcal{D}_A^p .

Definition 4 If $1 \leq p < \infty$, the space \mathcal{D}_A^p is the set of all of C^{∞} and even functions f on \mathbb{R} such that, for all $k \in \mathbb{N}$, $\Delta_A^k \phi$ is in $L_A^p(\mathbb{R}_+)$ which is equipped with the topology generated by the countable norms

$$\gamma_{m,p}^{A}(f) = \max_{0 \le k \le m} \|\Delta_{A}^{k} f\|_{L_{A}^{p}(\mathbb{R}_{+})}, \ m \in \mathbb{N}.$$

A function $f \in \mathcal{E}_*(\mathbb{R})$ is in \mathcal{B}^{∞}_A when $\gamma^A_{m,\infty}(f) < \infty$ for each $m \in \mathbb{N}$, where

$$\gamma_{m,\infty}^A(f) = \max_{0 \le k \le m} \|\Delta_A^k f\|_{L^\infty_A(\mathbb{R}_+)}, \ m \in \mathbb{N}.$$

We denote by \mathcal{D}^{∞}_{A} the subspace of \mathcal{B}^{∞}_{A} that consists of all those functions $f \in \mathcal{B}^{\infty}_{A}$ for which $\lim_{|x|\to\infty} \Delta^{m}_{A} f(x) = 0$ for each $m \in \mathbb{N}$.

44

The space \mathcal{B}^{∞}_{A} is endowed with the topology generated by the system $\{\gamma^{A}_{m,\infty}\}_{m\in\mathbb{N}}$.

Remark 6 i) Let $1 \le p < \infty$. A function $\varphi \in L^p_A(\mathbb{R}_+)$ is in \mathcal{D}^p_A if and only if $(I - \Delta_A)^m \varphi \in L^p_A(\mathbb{R}_+)$ for every $m \in \mathbb{N}$.

ii) A function $\phi \in L^{\infty}_{A}(\mathbb{R}_{+})$ is in \mathcal{B}^{∞}_{A} if and only if $(I - \Delta_{A})^{m} \phi \in L^{\infty}_{A}(\mathbb{R}_{+})$ for every $m \in \mathbb{N}$.

iii) For $0 , we define the generalized Schwartz space <math>S^p_*(\mathbb{R})$ by

$$S^p_*(\mathbb{R}) = \left\{ f \in \mathcal{E}_*(\mathbb{R}) \,/\, \forall \, k, l \in \mathbb{N}, \quad \sup_{x \ge 0} \, (1+x)^l \varphi_0^{-2/p}(x) |f^k(x)| < \infty \right\}.$$

Then, for $q \in [\max\{1, p\}, +\infty]$, $S^p_*(\mathbb{R}) \subset \mathcal{D}^q_A$. In particular, when $\rho = 0$ or $0 , for all <math>q \in [1, +\infty]$, $S^p_*(\mathbb{R}) \subset \mathcal{D}^q_A$.

Proposition 10 ([12]) For every $p \in \mathbb{N}$ and $\varepsilon > 0$, there exists $m_0 \in \mathbb{N}$ such that for any $m \in \mathbb{N}$, $m \ge m_0$, we can find two functions $\chi_m \in D_{*,\varepsilon}(\mathbb{R})$ (the subspace of $\mathcal{D}_*(\mathbb{R})$ consisting of function f such that $supp f \subset [-\varepsilon, \varepsilon]$) and $\Gamma_m \in \mathcal{W}^p_{\varepsilon}(\mathbb{R})$ (the space of function $f : \mathbb{R} \to \mathbb{C}$ of class C^{2p} on \mathbb{R} , even and with support in $[-\varepsilon, \varepsilon]$) such that

$$\delta = (I - \Delta_A)^m \Gamma_m + \chi_m.$$

We start with some topological properties of the spaces \mathcal{D}^p_A .

Proposition 11 i) \mathcal{D}_A^p , $1 \le p \le \infty$ and \mathcal{B}_A^∞ are Fréchet spaces. ii) \mathcal{D}_A^p is continuously contained in \mathcal{D}_A^q , when $1 \le p \le q \le \infty$. iii) If $1 then <math>\mathcal{D}_A^p$ is a reflexive space.

Proof. In Proposition 2.1 [12], the result is proved for the spaces \mathcal{D}_A^p , $1 \leq p < \infty$ and \mathcal{B}_A^∞ . Lets prove that \mathcal{D}_A^∞ is a Fréchet space. let $(u_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in \mathcal{D}_A^∞ . Since $C^0_*(\mathbb{R})$ is a Banach space, then there exists $v_m \in C^0_*(\mathbb{R})$ such that $\triangle_A^m u_n \to v_m$, as $n \to \infty$, in $C^0_*(\mathbb{R})$, for each $m \in \mathbb{N}$. On the other hand by a simple calculation we see that, $\triangle_A^m v_0 = v_m$, $m \in \mathbb{N}$. Which implies that $(u_n)_{n\in\mathbb{N}}$ converge to v_0 in \mathcal{D}_A^∞ . Thus the proof of i) is finished.

ii) Let $\varphi \in \mathcal{D}_A^p$. Then, using Proposition 10, for a > 0 and $n \in \mathbb{N}$, there exist two functions $\chi \in D_*(\mathbb{R})$ and $\Gamma \in \mathcal{W}_a^n(\mathbb{R})$ such that

$$\Delta_A^k \varphi = \delta *_A \Delta_A^k \varphi = \Gamma *_A (I - \Delta_A)^n \Delta_A^k \varphi + \chi *_A \Delta_A^k \varphi, \ k \in \mathbb{N}$$
(30)

Therefore, from proposition 5 i),v) we deduce the result. Moreover, for $1 \le p \le q \le \infty$, there exists c > 0 such that

$$\forall m \in \mathbb{N}, \ \exists m_1 \in \mathbb{N} \text{ satisfying } \gamma^A_{m,q}(\varphi) \le c\gamma^A_{m_1,p}(\varphi).$$
(31)

To see iii) it is sufficient to argue like in [18].

It is well known (see [21]) that for all $f \in L^p_A(\mathbb{R}_+), p \in [1, \infty)$,

$$\lim_{x \to 0} \|\tau_x^A f - f\|_{L^p_A(\mathbb{R}_+)} = 0 \text{ and } \lim_{\varepsilon \to 0} \|f *_A v_\varepsilon - f\|_{L^p_A(\mathbb{R}_+)} = 0.$$
(32)

where

$$v_{\varepsilon} = (\varepsilon A(x))^{-1} A(\frac{x}{\varepsilon}) v(\frac{x}{\varepsilon})$$
(33)

with v is a positive function in $L^1_A(\mathbb{R}_+)$ such that $||v||_{L^1_A(\mathbb{R}_+)} = 1$.

The case $p = \infty$ is given by the following Lemma which we need in the sequel to study the density of the space $D_*(\mathbb{R})$ in \mathcal{D}^p_A , $p \in [1, \infty]$.

Lemma 1 Let $f \in L^{\infty}_{A}(\mathbb{R}_{+})$ such that there exists a continuous function g in $C^{0}_{*}(\mathbb{R})$ satisfying f = g a.e. Then

- *i*) $\lim_{x \to 0} \|\tau_x^A f f\|_{L^{\infty}_A(\mathbb{R}_+)} = 0.$
- *ii)* $\lim_{\varepsilon \to 0} \|f *_A v_{\varepsilon} f\|_{L^{\infty}_{A}(\mathbb{R}_{+})} = 0.$

where v_{ε} is given by (33).

Proof. i) Suppose that $f \in D_*(\mathbb{R})$, then from inversion formula (8) and Proposition 4 v), we deduce that for $x, y \ge 0$

$$|\tau_x^A f(y) - f(y)| \leq \int_0^\infty |\varphi_\lambda(y) \mathcal{F}(f)(\lambda)| |\varphi_\lambda(x) - 1| d\gamma(\lambda)$$
(34)

Now, using mean value theorem and the fact that for $x \ge 0$ and $\lambda \in \mathbb{R}$

$$|\varphi_{\lambda}'(x)| \le C(\lambda^2 + \rho^2)(1+x)xe^{-\rho x}$$
(35)

where C is a positive constant (see proposition II.2 [4]), it follows from (3) and (34) that for $x \ge 0$

$$\|\tau_x^A f - f\|_{L^{\infty}_A(\mathbb{R}_+)} \leq C(1+x)x^2 \|(\lambda^2 + \rho^2)\mathcal{F}(f)\|_{L^1_\gamma(\mathbb{R}_+)}$$
(36)

and this completes the proof for $f \in D_*(\mathbb{R})$.

Now, suppose that $f \in L^{\infty}_{A}(\mathbb{R}_{+})$ such that there exists a continuous function g in $C^{0}_{*}(\mathbb{R})$ satisfying f = g a.e. Then, there exists a sequence $(f_{n})_{n}$ in $D_{*}(\mathbb{R})$ such that

$$\lim_{n \to \infty} \|f_n - f\|_{L^{\infty}_{A}(\mathbb{R}_{+})} = 0.$$
(37)

According to proposition 4 vii), we deduce that for $n \in \mathbb{N}$,

$$\begin{aligned} \|\tau_x^A f - f\|_{L^{\infty}_A(\mathbb{R}_+)} &\leq \|\tau_x^A (f - f_n)\|_{L^{\infty}_A(\mathbb{R}_+)} + \|\tau_x^A f_n - f_n\|_{L^{\infty}_A(\mathbb{R}_+)} + \|f_n - f\|_{L^{\infty}_A(\mathbb{R}_+)} \\ &\leq 2\|f_n - f\|_{L^{\infty}_A(\mathbb{R}_+)} + \|\tau_x^A f_n - f_n\|_{L^{\infty}_A(\mathbb{R}_+)} \end{aligned}$$
(38)

and the result follows by applying Lemma 1 i) for f_n .

ii) Let $f \in L^{\infty}_{A}(\mathbb{R}_{+})$ such that there exists a continuous function g in $C^{0}_{*}(\mathbb{R})$ satisfying f = g a.e. Then, for $x \geq 0$, we have

$$|f *_A v_{\varepsilon}(x) - f(x)| \le \int_0^\infty v_{\varepsilon}(y) |\tau_x^A f(y) - f(x)| A(y) dy$$
(39)

which implies, by putting $t = \frac{y}{\varepsilon}$, that

$$\|f *_A v_{\varepsilon} - f\|_{L^{\infty}_{A}(\mathbb{R}_{+})} \leq \int_{0}^{\infty} v(t) \|\tau^{A}_{t\varepsilon}f - f\|_{L^{\infty}_{A}(\mathbb{R}_{+})}A(t)dt$$

$$\tag{40}$$

But, from Lemma 1 i),

$$\lim_{\varepsilon \to 0} \|\tau_{t\varepsilon}^A f - f\|_{L^\infty_A(\mathbb{R}_+)} = 0 \text{ and } \|\tau_{t\varepsilon}^A f - f\|_{L^\infty_A(\mathbb{R}_+)} v(t) \le 2\|f\|_{L^\infty_A(\mathbb{R}_+)} v(t) \in L^1_A(\mathbb{R}_+).$$

Hence, from (40) and by dominated convergence theorem, we deduce the result.

Proposition 12 $D_*(\mathbb{R})$ is dense in \mathcal{D}^p_A , $p \in [1, \infty]$.

Proof. Let $f \in \mathcal{D}^p_A$, $p \in [1, \infty]$. Then, from (32) and Lemma 1 ii), we have for all $k \in \mathbb{N}$,

$$\lim_{\varepsilon \to 0} \|\Delta_A^k f *_A v_{\varepsilon} - \Delta_A^k f\|_{L^p_A(\mathbb{R}_+)} = 0.$$
(41)

On the other hand, from the density of $D_*(\mathbb{R})$ respectively in $L^p_A(\mathbb{R}_+)$ and $C^0_*(\mathbb{R})$, there exists a sequence $(f_n)_n$ in $D_*(\mathbb{R})$ such that

$$\lim_{n \to \infty} \|f_n - f\|_{L^p_A(\mathbb{R}_+)} = 0.$$
(42)

Let $k \in \mathbb{N}$ and $\delta > 0$, there exist $\varepsilon > 0$ and $n \in \mathbb{N}$ such that

$$\|\triangle_A^k f *_A v_{\varepsilon} - \triangle_A^k f\|_{L^p_A(\mathbb{R}_+)} < \delta/2 \text{ and } \|f_n - f\|_{L^p_A(\mathbb{R}_+)} < \frac{\delta}{2\|\triangle_A^k v_{\varepsilon}\|_{L^1_A(\mathbb{R}_+)}}.$$
(43)

Thus, by virtue of remark 5 iii) and using Proposition 5, it follows that

$$\begin{aligned} \|\triangle_{A}^{k}(f_{n}\ast_{A}v_{\varepsilon}-f)\|_{L_{A}^{p}(\mathbb{R}_{+})} &\leq \|f_{n}\ast_{A}\triangle_{A}^{k}v_{\varepsilon}-f\ast_{A}\triangle_{A}^{k}v_{\varepsilon}\|_{L_{A}^{p}(\mathbb{R}_{+})} + \|\triangle_{A}^{k}f\ast_{A}v_{\varepsilon}-\triangle_{A}^{k}f\|_{L_{A}^{p}(\mathbb{R}_{+})} \\ &\leq \|f_{n}-f\|_{L_{A}^{p}(\mathbb{R}_{+})}\|\triangle_{A}^{k}v_{\varepsilon}\|_{L_{A}^{1}(\mathbb{R}_{+})} + \|\triangle_{A}^{k}f\ast_{A}v_{\varepsilon}-\triangle_{A}^{k}f\|_{L_{A}^{p}(\mathbb{R}_{+})} \\ &\leq \delta \end{aligned}$$

$$(44)$$

Choosing the function v in $D_*(\mathbb{R})$, it follows that for all $\varepsilon > 0$ and all $n \in \mathbb{N}$, $f_n *_A v_{\varepsilon} \in D_*(\mathbb{R})$. And this achieves the proof of the proposition.

In the sequel, we give some result concerning the continuity of the Fourier transform \mathcal{F} and its inverse. We start with the following Lemma deduced from the hypothesis of the function A

Lemma 2

i) For any real a > 0 there exist positive constants $C_1(a), C_2(a)$ such that for all $x \in [0, a]$,

$$C_1(a)x^{2\alpha+1} \le A(x) \le C_2(a)x^{2\alpha+1}$$

ii) For $\rho > 0$,

$$A(x) \sim e^{2\rho x}, \ (x \longrightarrow +\infty)$$

iii) For $\rho = 0$,

$$A(x) \sim x^{2\alpha + 1}, \ (x \longrightarrow +\infty)$$

Theorem 1 The inverse of the Fourier transform \mathcal{F}^{-1} defines a continuous linear map from $\mathcal{D}_*(\mathbb{R})$ into \mathcal{D}^p_A if $p \in \begin{cases} [1, +\infty[, \text{ for } \rho = 0 \\ [2, \infty[, \text{ for } \rho > 0] \end{cases}$.

Proof. According to lemma 2 and using relation (4), it is not hard to see that $S^2_*(\mathbb{R}) \hookrightarrow D^p_A, \ p \in \begin{cases} [1, +\infty[, \text{ for } \rho = 0] \\ [2, \infty[, \text{ for } \rho > 0] \end{cases}$ Thus, the result follows from the fact that, for all $k \in \mathbb{N}, \ \Delta^k_A \mathcal{F}^{-1}$ is continuous

from $\mathcal{D}_*(\mathbb{R})$ into $\mathcal{S}^2_*(\mathbb{R})$.

Let $E_0 = \{ f \in C^0_*(\mathbb{R}) / x^{2k} f \in C^0_*(\mathbb{R}), k \in \mathbb{N} \}$ and $E_1 = \{ f \in L^2_{\gamma}(\mathbb{R}_+) / x^{2k} f \in C^0_*(\mathbb{R}) \}$ $L^2_{\gamma}(\mathbb{R}_+), k \in \mathbb{N}$ equipped respectively with the topology generated by the countable norms

$$\mu_{m,\infty}^{\gamma}(f) = \max_{0 \le k \le m} \|\lambda^{2k} f\|_{L^{\infty}_{\gamma}(\mathbb{R}_{+})}, \ m \in \mathbb{N}.$$

and

$$\mu_{m,2}^{\gamma}(f) = \max_{0 \le k \le m} \|\lambda^{2k} f\|_{L^2_{\gamma}(\mathbb{R}_+)}, \ m \in \mathbb{N}.$$

Thus, E_0 and E_1 are Fréchet spaces and we have

Theorem 2 1) The Fourier transform \mathcal{F} is a continuous from \mathcal{D}^1_A into E_0 . 2) The Fourier transform \mathcal{F} is an isomorphism from \mathcal{D}^2_A onto E_1 . 3) Let $p \in [1, 2]$. Then, for $r \in [1, p]$ and $q \in [1, p']$ with p' is the conjugate exponent of p, there exist c > 0 and $m \in \mathbb{N}$ such that for all $f \in \mathcal{D}^p_A$,

$$\|\mathcal{F}(f)\|_{L^q_{\gamma}(\mathbb{R}_+)} \le c \,\gamma^A_{m,r}(f),$$

 $\gamma^A_{m,r}(f)$ is finite or infinite. In particular, the Fourier transform \mathcal{F} is a continuous from \mathcal{D}^p_A into $L^q_{\gamma}(\mathbb{R}_+), \ q \in [1, p'].$

Proof. For all $f \in \mathcal{D}^1_A$ (resp. $f \in \mathcal{D}^2_A$), we have

$$\mathcal{F}(\Delta_A f) = -\lambda^2 \mathcal{F}(f) \tag{45}$$

Then 1) and 2) follows respectively from (10) and Plancherel Theorem. 3) According to Proposition 3 and using inequality (31), we deduce that, for $r \in [1, p]$, there exist $c_1 > 0$ and $k \in \mathbb{N}$ such that for all $f \in \mathcal{D}_A^p$,

$$\|\mathcal{F}f\|_{L^{p'}_{\gamma}(\mathbb{R}_{+})} \le \|f\|_{L^{p}_{A}(\mathbb{R}_{+})} \le c_{1}\gamma^{A}_{k,r}(f),$$
(46)

 $\gamma_{m\,r}^{A}(f)$ is finite or infinite.

On the other hand, using Holder inequality, it follows that for $q \in [1, p']$ there exist $c_2 > 0$ and $n \in \mathbb{N}$ such that for all $g \in \mathcal{D}_A^p$,

$$\left\|\mathcal{F}g\right\|_{L^{q}_{\gamma}(\mathbb{R}_{+})} \leq c_{2} \left\|\mathcal{F}((I-\Delta_{A})^{n}g)\right\|_{L^{p'}_{\gamma}(\mathbb{R}_{+})}.$$
(47)

Hence, the result follows by combining (46) and (47).

4 Titchmarsh's theorem for the Chébli-Trimèche transfrom ${\cal F}$ in ${\cal D}^2_A$

In [19], Titchmarsh characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms. More precisely, we have:

Theorem 3 [19] Let $\alpha \in (0,1)$ and assume that $f \in L^2(\mathbb{R})$. Then the following are equivalent:

- $1) \ \|f(t+h) f(t)\|_{L^2(\mathbb{R})} = O(h^{\alpha}) \quad \text{as} \quad h \longrightarrow 0.$
- 2) $\int_{|\lambda| \ge r} |g(\lambda)|^2 d\lambda = O(r^{-2\alpha})$ as $r \longrightarrow \infty$. Where g stands for the Fourier transform of f.

In this section, we prove a generalization of Titchmarsh's theorem for the Chébli-Trimèche transfrom \mathcal{F} for functions satisfying the Chébli-Trimèche-Lipschitz condition in \mathcal{D}^2_A .

Putting $V_{\lambda}(x) = \sqrt{A(x)}\varphi_{\lambda}(x)$, we see that V_{λ} satisfies

$$(L_{\alpha} + \chi(x) + \lambda^2)V_{\lambda}(x) = 0,$$

where L_{α} and $\chi(x)$ are defined by

$$(L_{\alpha}u)(x) = u''(x) - \frac{\alpha^2 - \frac{1}{4}}{x^2}u(x)$$

and

$$\chi(x) = \rho^2 - (2\alpha + 1)\frac{B'(x)}{2xB(x)} - \frac{1}{2}\left(\frac{B'(x)}{B(x)}\right)' - \frac{1}{4}\left(\frac{B'(x)}{B(x)}\right)^2.$$

Thus, we have

$$V_{\lambda}(x) \sim x^{\alpha + \frac{1}{2}}, \ V'_{\lambda}(x) \sim (\alpha + \frac{1}{2})x^{\alpha - \frac{1}{2}} \qquad (x \to 0).$$

We assume in this section that χ is holomorphic in a disc $D(0, 2b) = \{z \in \mathbb{C}, |z| < 2b\}, b > 0$. Therefore, from [13], we have:

Theorem 4 The eigenfunction φ_{λ} can be expanded in a Bessel-function series as follows

$$\varphi_{\lambda}(x) = \frac{x^{\alpha + \frac{1}{2}}}{2^{\alpha}\sqrt{A(x)}} \sum_{p=0}^{\infty} \frac{x^{2p} B_p(x)}{2^p \Gamma(\alpha + p + 1)} j_{\alpha + p}(\lambda x)$$
(48)

where B_p are functions defined by a recursive relation and satisfy:

$$|B_p^{(q)}(x)| \le (c/2)^p d^{p-1} b^{1-p-q} (p+q-1)!$$
(49)

for all $x \in [0, b], p = 1, 2, ... and q = 0, 1, 2, ..., where$

$$c = \max\{1 + |2\alpha - 1|, 2\sup(|\chi(z)|, |z| \le 2b)\}, \ d = (b + b^{-1})$$

and $B_0(x) = B_0 > 0$,

Corollary 1 There exist $\eta > 0$, N > 1 and c > 0 such that

for all
$$\lambda > N$$
 and $\lambda x \in [\frac{\eta}{2}, \eta], 1 - \varphi_{\lambda}(x) > c$.

Proof. Firstly it can be observed from inequality (3) and the integral representation (6) that, for $\lambda x \in [0, \frac{\pi}{2}], 0 \leq \varphi_{\lambda}(x) \leq 1$.

Since $\varphi_{\lambda}(0) = 1$, then by virtue of Theorem 4 we deduce that

$$\lim_{x \to 0} \frac{B_0 x^{\alpha + \frac{1}{2}}}{2^{\alpha} \Gamma(\alpha + 1) \sqrt{A(x)}} = 1.$$
 (50)

And from the expansion of the normalized Bessel function

$$j_{\alpha}(x) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(\alpha+n+1)} (\frac{x}{2})^{2n},$$

50

which implies that

$$\lim_{x \to 0} \frac{j_{\alpha}(x) - 1}{x^2} \neq 0$$

and therefore, there exist $\kappa > 0$ and $\sigma > 0$ such that for every $\eta \in (0, \sigma]$, we have

$$\forall x \in \left[\frac{\eta}{2}, \eta\right], \left|1 - j_{\alpha}(x)\right| = 1 - j_{\alpha}(x) \ge \kappa x^2 \ge \kappa \frac{\eta^2}{4}.$$
(51)

Thus, there exists $\delta \in (0, 1)$ such that for all $\lambda, x \ge 0$ satisfying $\lambda x \in [\frac{\eta}{2}, \eta]$ we have

$$0 \le j_{\alpha}(\lambda x) < \delta. \tag{52}$$

and from (50) one can easily see that for $\delta_1 \in (\delta, 1)$ there exist N > 1 such that for $x \leq \frac{\eta}{N}$

$$0 \le \frac{B_0 x^{\alpha + \frac{1}{2}}}{2^{\alpha} \Gamma(\alpha + 1) \sqrt{A(x)}} < \frac{\delta_1}{\delta}.$$
(53)

Combining (52) and (53) we deduce that for $\lambda \ge N$ and $\lambda x \in [\frac{\eta}{2}, \eta]$

$$0 \le \frac{B_0 x^{\alpha + \frac{1}{2}} j_\alpha(\lambda x)}{2^{\alpha} \Gamma(\alpha + 1) \sqrt{A(x)}} < \delta_1.$$
(54)

On the other hand, using the inequality (49), we have for all $p \in \mathbb{N} \setminus \{0\}$

$$|\frac{x^{2p}B_p(x)j_{\alpha+p}(\lambda x)}{2^p\Gamma(\alpha+p+1)}| \le \frac{b}{d}(\frac{cdx^2}{4b})^p\frac{\Gamma(p)}{\Gamma(p+\alpha+1)} \le \frac{1}{\Gamma(\alpha+2)}(\frac{cdx^2}{4b})^p, \ x \in [0, b].$$

Thus, by virtue of (53) and choosing $\eta \leq \min\{\sigma, b, \frac{1}{\sqrt{2}}, \sqrt{\frac{\delta B_0(\delta_2 - \delta_1)}{4\delta_1}}\}$ with $\delta_2 \in (\delta_1, 1)$, and $N \geq \max\{1, \sqrt{\frac{cd}{4b}}\}$, we have for $x \in [0, \frac{\eta}{N}]$

$$\begin{aligned} \left|\frac{x^{\alpha+\frac{1}{2}}}{2^{\alpha}\sqrt{A(x)}}\sum_{p=1}^{\infty}\frac{x^{2p}B_{p}(x)}{2^{p}\Gamma(\alpha+p+1)}j_{\alpha+p}(\lambda x)\right| &\leq \frac{x^{\alpha+\frac{1}{2}}}{2^{\alpha}\Gamma(\alpha+2)\sqrt{A(x)}}\sum_{p=1}^{\infty}\left(\frac{cdx^{2}}{4b}\right)^{p}\\ &\leq \frac{2x^{\alpha+\frac{1}{2}}}{2^{\alpha}\Gamma(\alpha+1)\sqrt{A(x)}}\sum_{p=1}^{\infty}\eta^{2p}\\ &\leq \frac{B_{0}x^{\alpha+\frac{1}{2}}}{2^{\alpha}\Gamma(\alpha+1)\sqrt{A(x)}}\frac{\delta(\delta_{2}-\delta_{1})}{\delta_{1}}\\ &\leq \delta_{2}-\delta_{1}.\end{aligned}$$
(55)

Therefore, according to the expansion of φ_{λ} given by (48) and using inequalities (54) and (55), it follows that for $\lambda \geq N$ and $\lambda x \in [\frac{\eta}{2}, \eta]$

$$1 - \varphi_{\lambda}(x) \ge 1 - \delta_2 > 0,$$

and this achieves the proof of the Corollary.

Definition 5 Let $\delta \in (0, 1)$. A function $f \in \mathcal{D}^2_A$ is said to be in the Chébli Trimèche Lipschitz class, denoted by $Lip(\delta, 2)$, if

$$\forall k \in \mathbb{N}, \ \forall r \in \mathbb{N}, \ \|L_x^k \triangle_A^r f\|_{L^2_A(\mathbb{R}_+)} = O(x^\delta) \quad \text{as} \quad x \to 0,$$

where $L_x f = \tau_x^A f - f$.

To prove the main result of this section we need the following Lemma

Lemma 3 Let $f \in \mathcal{D}^2_A$. Then for every $k \in \mathbb{N}$ and $r \in \mathbb{N}$, we have

$$\|L_x^k \triangle_A^r f\|_{L^2(\mathbb{R}_+)}^2 = \int_0^\infty \lambda^{4r} |1 - \varphi_\lambda(x)|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda)$$

Proof. It is easily to see that for all $k \in \mathbb{N}$

$$L_x^k f(y) = \sum_{i=0}^k (-1)^{k-i} {k \choose i} (\tau_x^A)^i f(y)$$

Thus, by virtue of Proposition 4 v) and using the fact that

$$\mathcal{F}(\triangle_A^r f)(\lambda) = (-\lambda^2)^r \mathcal{F}(f)(\lambda)$$

it follows that

$$\mathcal{F}(L_x^k \triangle_A^r f)(\lambda) = \sum_{i=0}^k (-1)^{k-i} {k \choose i} \mathcal{F}((\tau_x^A)^i \triangle_A^r f)(\lambda)$$
$$= (-\lambda^2)^r \mathcal{F}(f)(\lambda) \sum_{i=0}^k (-1)^{k-i} {k \choose i} \varphi_\lambda^i(x)$$
$$= (-\lambda^2)^r \mathcal{F}(f)(\lambda) (\varphi_\lambda(x) - 1)^k.$$

Hence, from Plancherel formula for \mathcal{F} , we deduce the result.

Theorem 5 Let $f \in \mathcal{D}^2_A$. Then the following are equivalents

i)
$$f \in Lip(\delta, 2)$$
.
ii) $\forall r \in \mathbb{N}, \ \int_{s}^{\infty} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) = O(s^{-2\delta}) \text{ as } s \to +\infty.$

Proof. Suppose that $f \in Lip(\delta, 2)$. According to Corollary 1 we deduce that there exist $\eta > 0$, a > 0 and c > 0 such that for $x \in (0, a)$ and for all $r \in \mathbb{N}$, we have

$$\int_{\frac{\eta}{2x}}^{\frac{\eta}{x}} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) \le \frac{1}{c^{2k}} \int_0^\infty \lambda^{4r} |1 - \varphi_\lambda(x)|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda), \ k \in \mathbb{N}$$

which implies, from Lemma 3, that

$$\int_{\frac{\eta}{2x}}^{\frac{\eta}{x}} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) = O(x^{2\delta}) \quad \text{as} \quad x \to 0.$$

Therefore, there exists C > 0 such that

$$\int_{s}^{2s} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) \le C s^{-2\delta}.$$

Thus, there exists $C_1 > 0$ satisfying

$$\int_{s}^{\infty} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) = \sum_{i=0}^{\infty} \int_{2^{i}s}^{2^{i+1}s} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) \le C_{1} s^{-2\delta}$$

and consequently ii) is proved. Lets prove now that ii) \Rightarrow i). We have

$$\int_0^\infty \lambda^{4r} |1 - \varphi_{\lambda}(x)|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) = \int_0^{\frac{\eta}{x}} \lambda^{4r} |1 - \varphi_{\lambda}(x)|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) + \int_{\frac{\eta}{x}}^\infty \lambda^{4r} |1 - \varphi_{\lambda}(x)|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda).$$

By virtue of i), it follows that

$$\int_{\frac{\eta}{x}}^{\infty} \lambda^{4r} |1 - \varphi_{\lambda}(x)|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) \le 4^k \int_{\frac{\eta}{x}}^{\infty} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda) = O(x^{2\delta}).$$
(56)

On the other hand, estimate $1 - \varphi_{\lambda}(x)$ using the mean value theorem and inequality (5), we get for $x \leq 1$

$$\begin{split} \int_{0}^{\frac{n}{x}} \lambda^{4r} |1 - \varphi_{\lambda}(x)|^{2k} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) &\leq 4^{k} \int_{0}^{\frac{n}{x}} \lambda^{4r} |1 - \varphi_{\lambda}(x)| |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) \\ &\leq C4^{k} x^{2} \left\{ \int_{0}^{\frac{n}{x}} \lambda^{4r+2} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) \\ &+ \rho^{2} \int_{0}^{\frac{n}{x}} \lambda^{4r} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda). \end{split} \right.$$

M. Jelassi

But $\delta < 1$, then we have

$$\begin{aligned} 4^{k}x^{2}\rho^{2}\int_{0}^{\frac{n}{x}}\lambda^{4r}|\mathcal{F}(f)(\lambda)|^{2}d\gamma(\lambda) &\leq 4^{k}x^{2}\rho^{2}\int_{0}^{\infty}\lambda^{4r}|\mathcal{F}(f)(\lambda)|^{2}d\gamma(\lambda) \\ &= 4^{k}x^{2}\rho^{2}\|\Delta_{A}^{r}f\|_{L^{2}_{A}(\mathbb{R}_{+})}^{2} \\ &= O(x^{2\delta}). \end{aligned}$$

Now, by putting $\psi(s) = \int_s^\infty \lambda^{4r} |\mathcal{F}(f)(\lambda)|^2 d\gamma(\lambda)$ and using integration by parts, we obtain

$$\begin{aligned} 4^{k}x^{2} \int_{0}^{\frac{n}{x}} \lambda^{4r+2} |\mathcal{F}(f)(\lambda)|^{2} d\gamma(\lambda) &= 4^{k}x^{2} \int_{0}^{\frac{n}{x}} -s^{2}\psi'(s) ds \\ &= 4^{k}(-\psi(x) + 2x^{2} \int_{0}^{\frac{n}{x}} s\psi(s) ds) \end{aligned}$$

Therefore, using the fact that $\psi(s) = O(s^{-2\delta})$, it is not hard to see that

$$4^{k}x^{2}\int_{0}^{\frac{\eta}{x}}\lambda^{4r+2}|\mathcal{F}(f)(\lambda)|^{2}d\gamma(\lambda) = O(x^{2\delta})$$

and the theorem is proved.

5 Open Problem

The purpose of the future work is to generalize the Titchmarsh's theorem for the Chébli-Trimèche transfrom \mathcal{F} for functions satisfying the Chébli-Trimèche-Lipschitz condition in \mathcal{D}^p_A with $1 \leq p \leq 2$.

Acknowledgements. The author is deeply indebted to the referees for providing constructive comments and help in improving the contents of this paper.

References

- S. Abdullah, On convolution operator and multipliers of distributions of L^p-growth, J. Math. Anal. Appl. 183 (1994) 196-207.
- [2] S. Abdullah, Solvability of convolution equations in \mathcal{D}'_{L^p} , Hokkaido Math. J. **29** (2000) 247-254.
- [3] A. Abouelaz, R. Daher and M. el Hamma Generalization of Titchmarsh's theorem for the Jacobi transform, Facta univerversitatis (NIS) Ser. Math. Inform. 28 No 1 (2013) 43-51.

- [4] A. Achour and K. Trimèche La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0, ∞), Annales de l'Institut Fourier tome 33 4 (1983) 203-226.
- [5] J.J. Betancor and B.J. Gonzalez, Spaces of D_{L^p} type and Hankel convolution, Proc. Amer. Math. Soc. V. **129** N.1 (2001) 219-228.
- [6] W.R. Blom and H. Heyer. Harmonic Analysis of Probability Measures on Hypergroups De Gruyter Studies in Mathematics, Walter de Gruyter, Berlin, NewYork, 1995.
- W.R. Bloom and Z. Xu. Fourier transforms of functions in Schwartz spaces on Chebli-Trim'eche hypergroups Monatsh. Math. 125(1998), 89109.
- [8] W.R. Bloom and Zengfu Xu. Fourier Multipliers for Local Hardy Spaces on Chébli - Trimèche hypergroups Can. J. Math. Vol. 50 (5), (1998) pp. 897928
- [9] H. Chébli, Opérateurs de translation généralisée et semi-groupes de convolution, Lectures Notes in Math., vol. 404 Springer-Verlag (1974) pp. 35-59.
- [10] H. Chébli, Théorème de PaleyWiener associé à un opérateur différentiel sur (0,∞), J. Math. Pures Appl., 58 (1979), pp. 1-19.
- [11] M.G. Cowling, Herzs principe de majoration and the KunzeStein phenomenon, in Harmonic analysis and number theory (Montreal, 1996), CMS Conf. Proc. 21, Amer. Math. Soc. (1997), 7388
- [12] M.Dziri, M.Jelassi and L.T.Rachdi Spaces of DLp type and a convolution product associated with a singular second order differential operator Journal of concrete and applicable mathematics.10No3-4(2012), 207-232.
- [13] A. Fitouhi and M.M. Hamza A uniform expansion for the eigenfunction of a singular second order differential operator SIAM J. Math. Anal.21 No 6(1990), 1619-1632.
- [14] M. Jelassi and H. Mejjaoli, Fractional Sobolev type spaces associated with a singular second order differential operator and applications. *Fract. Calc. Appl. Anal.* 17, No 2 (2014) 401423; DOI: 10.2478/s13540-014-0177-1.
- [15] H. Jarchow, *Locally convex spaces*, Stuttgart: Teubner: (1981).
- [16] R.A. Kunze and E.M. Stein, Uniformly bounded representations and harmonic analysis of the 2 unimodular group, Amer. J. Math. 82 (1960), 162
- [17] D.H. Pahak, On the convolution equations in the spaces of distributions of L_p -growth, Proc. Amer. Math. Soc, **94** (1985) 81-86.

- [18] L. Schwartz, *Théories des distributions*, Hermann, Paris, 1966.
- [19] E. C. Titchmarsh. Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1948, Komkniga, Moscow. 2005.
 (1981), 51-98.
- [20] K. Trimèche, Hypoelliptic distribution on Chébli-Trimèche hypergroups, Global J. of Pure and Applied Mathematics 1, No 3 (2005) 251-271.
- [21] K. Trimèche, *Generalized Wavelets on Hypergroups* Gordon and Breach Science Publishers, 1997.
- [22] Z.Xu. Harmonic Analysis on Chébli-Trimèche Hypergroups PhD Thesis, Murdock Uni, Australia (1994).