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1 Introduction

Let Aj denote the class of the functions of the from

f (z) = z +
∞∑

k=j+1

akz
k (j ∈ N = {1, 2, 3, ....}) , (1.1)
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which are analytic in the open unit disc U = {z : |z| < 1} . We note that A1 =
A. For a function f (z)∈ Aj, let

D0f (z) = f (z) ,

D1f (z) = Df (z) = zf ′ (z) ,

Dnf (z) = D
(
Dn−1f (z)

)
= z +

∞∑
k=j+1

knakz
k, (n ∈ N0 = N ∪ {0}). (1.2)

The differential operator Dn was introduced by Sălăgean [13].
With the help of the differential operator Dn, for 0 ≤ α < 1, 0 ≤ λ ≤ 1,

β ≥ 0 , n ∈ N0 and m ∈ N, let Sj (n,m, λ, α, β) denote the subclass of Aj
consisting of functions f (z) of the form (1.1) and satisfying the condition

Re

{
(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))

′

(1− λ)Dnf (z) + λDn+mf (z)
− α

}
>

β

∣∣∣∣(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))
′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

∣∣∣∣ , z ∈ U. (1.3)

The operator Dn+m was studied by Sekine [14], (see also [8] and [6]). Denote
by Tj the subclass of Aj consisting of functions of the form

f (z) = z −
∞∑

k=j+1

ak z
k (ak ≥ 0, k ≥ j + 1; j ∈ N) . (1.4)

Further, we define the class Qj (m,n, λ, α, β) by

Qj (m,n, λ, α, β) = Sj (m,n, λ, α, β) ∩ Tj

Specializing the parameters α, β, λ, n and m, one can obtain many subclasses
studied earlier by various authors ex. see ([1], [2], [3], [4], [5], [7], [9], [10], [12]
and [15]).

Let f` (z) (` = 1, 2, ..., h) be given by

f` (z) = z −
∞∑

k=j+1

ak,`z
k (ak,` ≥ 0) . (1.5)

Then the quasi-Hadamard product (or convolution) of these functions is de-
fined by (see Kuang et al. [10] and Owa [11])

(f1 ∗ f2 ∗ ... ∗ fh) (z) = z −
∞∑

k=j+1

(
h

Π
`=1
ak,`)z

k.

In this paper we obtain the quasi-Hadamard product results for functions in
the class Qj (m,n, λ, α, β) .
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2 Quasi-Hadamard products

Theorem 1. Let the function f (z) be defined by (1.4). Then f (z) ∈
Qj (m,n, λ, α, β) if and only if

∞∑
k=j+1

kn [1 + λ (km − 1)] [k (1 + β)− (α + β)] ak ≤ 1− α. (2.1)

Proof. Assume that (2.1) holds.Then we must show that

β

∣∣∣∣(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))
′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

∣∣∣∣−

Re

{
(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))

′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

}
≤ 1− α.

We have

β

∣∣∣∣(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))
′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

∣∣∣∣−
Re

{
(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))

′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

}

≤
(1 + β)

∞∑
k=j+1

kn [1 + λ (km − 1)] (k − 1) akz
k−1

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] akzk−1

≤
(1 + β)

∞∑
k=j+1

kn [1 + λ (km − 1)] (k − 1) ak

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] ak

≤ 1− α.

Hence, f (z) ∈ Qj (m,n, λ, α, β) .

Conversely, let f (z) ∈ Qj (m,n, λ, α, β). Then we have

Re


1−

∞∑
k=j+1

kn+1 [1 + (km − 1)λ] akz
k−1

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] akzk−1

− α

 ≥
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β

∣∣∣∣∣∣∣∣
∞∑

k=j+1

kn [1 + λ (km − 1)] (k − 1) akz
k−1

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] akzk−1

∣∣∣∣∣∣∣∣ .
Letting z → 1− along the real axis, we obtain the desired inequality by (2.1).
This completes the proof of Theorem 1.

Theorem 2. If f` (z) ∈ Qj (m,n, λ, α`, β) for each ` = 1, 2, ..., h, then
(f1 ∗ f2 ∗ ... ∗ fh) (z) ∈ Qj (m,n, λ, δ, β) , where

δ = 1−
j(1+β)

h
Π

`=1
(1−α`)

(j+1)n(h−1){1+λ((j+1)m−1)}h−1
h
Π

`=1
[(j+1)(1+β)−(α`+β)]−

h
Π`=1(1−α`)

. (2.3)

The result is sharp for the functions

f` (z) = z− 1− α`
(j + 1)n [1 + λ ((j + 1)m − 1)] [j (1 + β) + (1− α`)]

zj+1 (` = 1, 2, ...., h) .

(2.4)
Proof. For h = 1, we have that δ = α1. For h = 2, Theorem 1 gives

∞∑
k=j+1

kn [k (1 + β)− (α` + β)] [1 + (km − 1)λ]

1− α`
ak,` ≤ 1 (` = 1, 2). (2.5)

Note that, from (2.5), we have

∞∑
k=j+1

kn [1 + λ (km − 1)]

√
2

Π
`=1

(
[k (1 + β)− (α` + β)]

1− α`

)
ak,` ≤ 1 (` = 1, 2).

(2.6)
To prove the case when h = 2, we have to fined the largest δ such that

∞∑
k=j+1

kn [1 + λ (km − 1)] [k (1 + β)− (δ + β)]

1− δ
ak,1ak,2 ≤ 1 (2.7)

or, such that

[k (1 + β)− (δ + β)]

1− δ
√
ak,1ak,2 ≤

√
2

Π
`=1

(
[k (1 + β)− (α` + β)]

1− α`

)
(k ≥ j + 1) .

(2.8)
Further, by using (2.6), we need to find the largest δ such that

[k(1+β)−(δ+β)]
1−δ ≤ kn [1 + λ (km − 1)]

2

Π
`=1

(
[k(1+β)−(α`+β)]

1−α`

)
(k ≥ j + 1) , (2.9)
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which is equivalent to

δ ≤
kn[1+λ(km−1)]

2
Π

`=1
[k(1+β)−(α`+β)]−k(1+β)

2
Π

`=1
(1−α`)+β

2
Π

`=1
(1−α`)

kn[1+λ(km−1)]
2
Π

`=1
[k(1+β)−(α`+β)]−

2
Π

`=1
(1−α`)

or, equivalently, that

δ ≤ 1−
(k − 1) (1 + β)

2

Π
`=1

(1− α`)

kn[1 + λ(km − 1)]
2

Π
`=1

[k (1 + β)− (α` + β)]−
2

Π
`=1

(1− α`)
. (2.10)

Defining the function Ψ(k) by

Ψ(k) = 1−
(k − 1) (1 + β)

2

Π
`=1

(1− α`)

kn[1 + λ(km − 1)]
2

Π`=1 [k (1 + β)− (α` + β)]−
2

Π`=1 (1− α`)
(k ≥ j + 1) ,

(2.11)
we see that Ψ(k) ≥ 0 for k ≥ j + 1. This implies that

δ ≤ Ψ(j + 1) = 1−
j(1+β)

2
Π

`=1
(1−α`)

(j+1)n[1+λ((j+1)m−1)]
2
Π

`=1
[(j+1)(1+β)−(α`+β)]−

2
Π

`=1
(1−α`)

. (2.12)

Therefore, the result is true for h = 2. Next, suppose that the result is true
for any positive integer h. Then we have

(f1 ∗ f2 ∗ ... ∗ fh ∗ fh+1) (z) ∈ Qj (m,n, λ, γ, β) ,

where
γ = 1− {j (1 + β) (1− δ) (1− αh+1)}.

.{(j+1)n[1+λ((j+1)m−1)] [j (1 + β) + (1− δ)] [j(1+β)+(1−αh+1)]−(1−δ) (1− αh+1)}−1,
(2.13)

where δ is given by (2.3). It follows from (2.13) that

γ = 1−
j (1 + β)

h+1

Π
`=1

(1− α`)

(j + 1)nh[1 + λ((j + 1)m − 1)]h
h+1

Π
`=1

[j(1 + β) + (1− α`)]−
h+1

Π
`=1

(1− α`)
.

(2.14)
Thus, the result is true for h + 1. Therefore, by using the mathematical
induction, we conclude that the result is true for any positive integer h.
Finally, taking the functions f`(z) given by (2.4) , we see that

(f1 ∗ f2 ∗ ... ∗ fh) (z) = z −
{

h

Π
`=1

(
1−α`

(j+1)n[j(1+β)+(1−α`)][1+((j+1)m−1)λ]

)}
zj+1

= z −Bj+1z
j+1,
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where

Bj+1 =
h

Π
`=1

(
1− α`

(j + 1)n [1 + λ ((j + 1)m − 1)] [j (1 + β) + (1− α`)]

)
.

Thus, we know that
∞∑

k=j+1

kn [1 + λ (km − 1)] [k (1 + β)− (δ + β)]

1− δ
Bk

=
(j + 1)n [1 + λ ((j + 1)m − 1)] [j((1 + β) + (1− δ)]

1− δ
.

.

{
h

Π
`=1

(
1− α`

(j + 1)n [1 + λ ((j + 1)m − 1)] [j (1 + β) + (1− α`)]

)}
= 1.

Consequently, the result is sharp for the functions f` (z) given by (2.4) .
Putting h = 2, α` = α, in Theorem 2, we have the following corollary
Corollary 1. If f` (z) ∈ Qj (m,n, λ, α, β) (` = 1, 2), be defined by (1.5).

Then (f1 ∗ f2) (z) ∈ Qj (m,n, λ, δ, β) , where

δ = 1− j (1 + β) (1− α)2

(j + 1)n[1 + λ((j + 1)m − 1)] [(j + 1) (1 + β)− (α` + β)]2 − (1− α)2 .

(2.15)
The result is sharp for the functions

f` (z) = z − (1− α)

(j + 1)n [1 + λ ((j + 1)m − 1)] [j (1 + β) + (1− α)]
zj+1(` = 1, 2)

(2.16)
Remark 1. Putting h = 2 and m = 1 in Corollary 1 , we obtain the

following corollary which corrects the result obtained by Shanmugam et al.
[15, Theorem 5.1]

Corollary 2. Let the functions f` (z) (` = 1, 2) defined by (1.5) be in the
class Qj (1, n, λ, α, β) . Then (f1 ∗ f2) (z) ∈ Qj (1, n, λ, γ, β) , where

γ = 1− j(1 + β)(1− α)2

(j + 1)n[(j + 1)(1 + β)− (α + β)]2(λj + 1)− (1− α)2
. (2.17)

The result is sharp.
Putting α` = α(` = 1, 2, ...., h), in Theorem 2 we have the following

corollary.
Corollary 3. If f` (z) ∈ Qj (m,n, λ, α, β) (` = 1, 2, ...., h), then (f1 ∗ f2 ∗

.... ∗ fh) (z) ∈ Qj (m,n, λ, δ, β) , where

δ = 1− j (1 + β) (1− α)h

(j + 1)n(h−1)[1 + λ((j + 1)m − 1)]h−1 [j (1 + β) + (1− α)]h − (1− α)h
.

(2.18)
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The result is sharp for the functions

f` (z) = z− 1− α
(j + 1)n [1 + λ ((j + 1)m − 1)] [j (1 + β) + (1− α)]

zj+1 (` = 1, 2, ...., h) .

(2.19)
Putting j = 1, in Theorem 2 we have the following corollary.

Corollary 4. If f` (z) ∈ Q1 (m,n, λ, α`, β) (` = 1, 2, ...., h), then (f1 ∗ f2 ∗
.... ∗ fh) (z) ∈ Q1 (m,n, λ, δ, β) , where

δ = 1−
(1 + β)

h

Π
`=1

(1− α`)

2n(h−1)[1 + λ(2m − 1)]h−1
h

Π(
`=1

2 + β − α`)−
h

Π
`=1

(1− α`)
. (2.20)

The result is sharp for the functions

f` (z) = z − 1− α`
2n [1 + λ (2m − 1)] (2 + β − α`)

z2 (` = 1, 2, ...., h) . (2.21)

Putting λ = 0, in Theorem 2 we have the following corollary.

Corollary 5. If f` (z) ∈ Qj (m,n, 0, α`, β) (` = 1, 2, ..., h), then (f1 ∗ f2 ∗
... ∗ fh) (z) ∈ Qj (m,n, δ, β) , where

δ = 1−
j (1 + β)

h

Π
`=1

(1− α`)

(j + 1)n(h−1)
h

Π
`=1

[j (1 + β) + (1− α)]−
h

Π
`=1

(1− α`)
. (2.22)

The result is sharp for the functions

f` (z) = z − 1− α`
(j + 1)n [j (1 + β) + (1− α`)]

zj+1 (` = 1, 2, ...., h) . (2.23)

Putting λ = 1, in Theorem 2 we have the following corollary.
Corollary 6. If f` (z) ∈ Qj (m,n, 1, α`, β) = Qj(m,n + 1, α`, β)(` =

1, 2, ..., h), then (f1 ∗ f2 ∗ ... ∗ fh) (z) ∈ Qj (m,n+ 1, δ, β) , where

δ = 1−
j (1 + β)

h

Π
`=1

(1− α`)

(j + 1)(n+m)(h−1)
h

Π
`=1

[j (1 + β) + (1− α)]−
h

Π
`=1

(1− α`)
(` = 1, 2, ...., h) .

(2.24)
The result is sharp for the functions

f` (z) = z − 1− α`
(j + 1)n+m [j (1 + β) + (1− α`)]

zj+1 (` = 1, 2, ..., h) . (2.25)
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Theorem 3. Let f` (z) ∈ Qj (m,n, λ, α, β`) (` = 1, ..., h). Then (f1 ∗ f2 ∗
... ∗ fh) (z) ∈ Qj (m,n, λ, α, η) , where

η =
(j + 1)n(h−1) [1 + λ((j + 1)m − 1)]h−1

h

Π
`=1

[j(1 + β`) + (1− α)]

j(1− α)h−1
+[(α−(j+1)],

(2.26)
the result is sharp for the functions f` (z) (` = 1, 2, ...., h) given by

f` (z) = z− 1− α
(j + 1)n [1 + λ ((j+)1m − 1)] [j (1 + β`) + (1− α)]

zj+1 (` = 1, 2, ...., h) .

(2.27)

Putting β` = β(` = 1, 2, ..., h) in Theorem 3, we get the following corollary.
Corollary 7. Let f` ∈ Qj (m,n, λ, α, β) (` = 1, ..., h). Then (f1 ∗ f2 ∗ ... ∗

fh) (z) ∈ Qj (m,n, λ, α, η) , where

η =
(j + 1)n(h−1) {1 + λ((j + 1)m − 1)]h−1[j(1 + β) + (1− α)]h

j(1− α)h−1
+[(α−(j+1)].

The result is sharp for the functions f` (z) (` = 1, 2, ..., h) given by (2.19).
Theorem 4. Let f` (z) ∈ Qj (m,n, λ, α`, β) (` = 1, ..., h) and suppose that

F (z) = z −
∞∑

k=j+1

(
h∑
`=1

atk,`

)
zk (t > 1, z ∈ U) . (2.28)

Then F ∈ Qj (m,n, λ, γh, β) , where

γh = 1− hj(1−α)t(1+β)

(j+1)n(t−1)[1+λ((j+1)m−1)]t−1[(j+1)(1+β)−(α+β)]t−h(1−α)t

(
α = min

1≤`≤h
{α`}

)
,

(2.29)
and

kn(t−1) [1 + λ (km − 1)]t−1 [k(1 + β)− (α + β)]t ≥
h (1− α)t (k + β(k − 1)).

The result is sharp for the functions f`(` = 1, 2, ..., h) given by (2.4).
Proof. Sines f` (z) ∈ Qj (m,n, λ, α`, β) , in view of (2.1), we obtain

∞∑
k=j+1

[
kn [1 + λ (km − 1)] [k (1 + β)− (α` + β)]

1− α`

]
ak,` ≤ 1 (` = 1, ..., h).

By virtue of the Cauchy-Schwarz inequality, we get

∞∑
k=j+1

[
kn [1 + λ (km − 1)] [k (1 + β)− (α` + β)]

1− α`

]t
atk,` ≤
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(
∞∑

k=j+1

kn [1 + λ (km − 1)] [k (1 + β)− (α` + β)]

1− α`
ak,`

)t

≤ 1. (2.30)

It follows from (2.30) that

∞∑
k=j+1

(
1

h

h∑
`=1

(
kn [1 + λ (km − 1)] [k (1 + β)− (α` + β)]

1− α`

)t
atk,`

)
≤ 1.

By setting
α = min

1≤`≤h
{α`},

therefore, to prove our result we need to fined the largest γh such that

∞∑
k=j+1

kn [1 + λ (km − 1)] [k (1 + β)− (γh + β)]

1− γh

(
h∑
`=1

atk,`

)
≤ 1,

that is that
kn [1 + λ (km − 1)] [k (1 + β)− (γh + β)]

1− γh
≤

1

h

(
kn [1 + λ (km − 1)] [k (1 + β)− (α` + β)]

1− α`

)t
which leads to

γh ≤ 1− h (1− α`)t (k − 1)(1 + β)

kn(t−1) [1 + λ (km − 1)]t−1 [k(1 + β)− (α` + β)]t − h (1− α`)t
.

Now let

G(k) = 1− h (1− α)t (k − 1)(1 + β)

kn(t−1) [1 + λ (km − 1)]t−1 [k(1 + β)− (α + β)]t − h (1− α)t
.

Since G(k) is an increasing function of (k ∈ N) , we readily have

γh = G(j + 1) = 1− hj(1−α)t(1+β)

(j+1)n(t−1)[1+λ((j+1)m−1)]t−1[j(1+β)+(1+α)]t−h(1−α)t
,

we can see that 0 ≤ γh < 1. The result is sharp for the functions f` (z) (` =
1, 2, ..., h) given by (2.4). The proof of Theorem 4 is thus completed.

Putting t = 2 and α` = α (` = 1, 2, ..., h) in Theorem 4, we obtain the
following result.

Corollary 8. Let f` ∈ Qj (m,n, λ, α, β) (` = 1, 2, ..., h) and suppose that

F (z) = z −
∞∑

k=j+1

(
h∑
`=1

a2
k,`

)
zk (z ∈ U) . (2.31)
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Then F (z) ∈ Qj (m,n, λ, γh, β) , where

γh = 1− hj (1− α)2 (1 + β)

(j + 1)n [1 + λ ((j + 1)m − 1)] [(j + 1)(1 + β)− (α + β)]2 − h (1− α)2 ,

and

(j + 1)n [1 + λ ((j + 1)m − 1)] [(j + 1)(1 + β)− (α + β)]2 ≥

h (1− α)2 [(j + 1) + βj].

The result is sharp for the functions f` (z) (` = 1, 2, ..., h) given by (2.4).
By similarly applying the method of proof of Theorem 4, we easily get the

following Theorem 5.

Theorem 5. Let f` ∈ Qj (m,n, λ, α, β`) (` = 1, ..., h) and the function F
be defined by (2.29). Then F ∈ Qj (m,n, λ, α, δh) , where

δh =
(j + 1)n(t−1)[1 + λ((j + 1)m − 1)](t−1)[(j + 1)(1 + β)− (α + β)]t

hj(1− α)(t−1)
+ (α− j − 1)(

β = min
1≤`≤h

{β`}
)
,

and

(j+1)n(t−1)[1+λ((j+1)m−1)](t−1)[(j+1)(1+β)−(α+β)]t ≥ hj(j+1−α)(1−α)(t−1).

The result is sharp for the functions f` (z) (` = 1, 2, ..., h) given by (2.4).

Taking t = 2 and β` = β(` = 1, 2, ..., h) in Theorem 5, we get the following
result.

Corollary 9. Let f` ∈ Qj (m,n, λ, α, β) (` = 1, ..., h) and the function
F be defined by (2.31). Then F ∈ Qj (m,n, λ, α, δh) , where

δh =
(j + 1)n[1 + λ((j + 1)m − 1)][(j + 1)(1 + β)− (α + β)]2

hj(1− α)
+ (α− j − 1),

and

(j+1)n[1+λ((j+1)m−1)][(j+1)(1+β)−(α+β)]2 ≥ h(k−1)(j+1−α)(1−α).

The result is sharp for the functions f` (z) (` = 1, 2, ..., h) given by (2.4).

Finally, we derive some quasi-Hadamard product results for f` (z) ∈Qj (m,n, λ, α, β)
and gs (z) ∈ Qj (m,n, λ, α, β) .
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Theorem 6. Let the functions f` (z) (` = 1, ..., h) defined by (1.4) be in
the class Qj (m,n, λ, α`, β) (` = 1, ..., h) and let the functions gs (z) defined by

gs (z) = z −
∞∑

k=j+1

bkz
k (bk ≥ 0, k ≥ j + 1; j ∈ N) , (2.32)

be in the class Qj (m,n, λ, αs, β) (s = 1, ..., t). Then

(f1 ∗ f2 ∗ ... ∗ fh ∗ g1 ∗ g2 ∗ ... ∗ gt) (z) ∈ Qj (m,n, λ, ψ, β) ,

where

ψ = 1− {j (1 + β)
h

Π
`=1

(1− α`)
t

Π
s=1

(1− αs)}.

.

{
{(j + 1)n(h+t−1)[1 + λ((j + 1)m − 1)](h+t−1)

t

Π
s=1

[j (1 + β) + (1− αs)]

h

Π
`=1

[j (1 + β) + (1− α`)]−
t

Π
s=1

(1− αs)
h

Π
`=1

(1− α`)
}

(2.33)

The result is sharp for the functions f` (z) (` = 1, 2, ..., h) given by (2.5). and
the functions gs (z) given by

gs (z) = z − 1−αs

(j+1)n[1+λ((j+1)m−1)][j(1+β)+(1−αs)]
zj+1 (s = 1, 2, .., t) . (2.34)

Proof. From Theorem 2 we note that, if f (z) ∈ Qj (m,n, λ, δ, β) and
g (z) ∈ Qj (m,n, λ, µ, β) , then (f ∗ g) (z) ∈ Qj (m,n, λ, ψ, β) , where

ψ = 1− {j (1 + β) (1− δ) (1− µ)}.

.{(j+1)n[1+λ((j+1)m−1)] [j (1 + β) + (1− δ)] [j (1 + β)+(1−µ)]−(1− δ) (1−µ)}.
(2.35)

Since Theorem 2 leads to f1 ∗f2 ∗ ...∗fh ∈ Qj (m,n, λ, δ, β) , where δ is defined
by (2.3) and g1 ∗ g2 ∗ ... ∗ gs ∈ Qj (m,n, λ, µ, β) , with

µ = 1−
j(1+β)

t
Π

s=1
(1−αs)

(j+1)n(t−1)[1+λ((j+1)m−1)]t−1
t
Π

s=1
[(j+1)(1+β)−(αs+β)]−

t
Π

s=1
(1−αs)

. (2.36)

Then, we have (f1 ∗ f2 ∗ ... ∗ fh ∗ g1 ∗ g2 ∗ ...... ∗ gt) (z) ∈ Qj (m,n, λ, ψ, β) , where
ψ is given by (2.33) , this completes the proof of Theorem 6.

Letting α` = α(` = 1, 2, ..., h) and αs = α(s = 1, 2, ..., t) in Theorem 6, we
obtain the following corollary.

Corollary 10. Let the functions f` (z) (` = 1, ..., h) defined by (1.4) be
in the class Qj (m,n, λ, α, β) (` = 1, ..., h) and let the functions gs (z) defined
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by (2.32) be in the class Qj (m,n, λ, α, β) . Then we have f1 ∗ f2 ∗ ... ∗ fh ∗ g1 ∗
g2 ∗ ... ∗ gt ∈ Qj (m,n, λ, ψ, β), where

ψ = 1− j(1+β)(1−α)h+t

(j+1)n(h+t−1)[1+λ((j+1)m−1)]h+t−1[j(1+β)+(1−α)]h+t−(1−α)h+t
. (2.37)

The result is sharp for the functions f` (z) given by (2.5) and the functions
gs (z) given by

gs (z) = z − 1−αs

(j+1)n[1+λ((j+1)m−1)][j(1+β)+(1−αs)]
zj+1 (s = 1, 2, .., t) .

Letting h = t = 2 in Colloary 10, we obtain the following corollary.

Corollary 11. Let the functions f` (z) (` = 1, 2) defined by (1.4) be in
the class Qj (m,n, λ, α, β) and let the functions gs (z) (s = 1, 2) defined by
(2.32) be in the class Qj (m,n, λ, α, β) . Then we have (f1 ∗ f2 ∗ g1 ∗ g2) (z) ∈
Qj (m,n, λ, ψ, β) , where

ψ = 1− j (1 + β) (1− α)4

(j + 1)3n[1 + λ((j + 1)m − 1)]3 [j (1 + β) + (1− α)]4 − (1− α)4
.

The result is sharp.

3 Open Problem

The authors suggest to study the properties of the same class Qj (m,n, λ, α, β)
by replacing of f by (f ∗ g).
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