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1 Introduction

In this paper, we consider the first-order singular differential-difference op-
erator on R

Λf =
df

dx
+
A′(x)

A(x)

(
f(x)− f(−x)

2

)
,

where

A(x) = |x|2α+1B(x), α > −1

2
,

B being a positive C∞ even function on R. We suppose in addition that

i) For all x ≥ 0, A(x) is increasing and lim
x→∞

A(x) =∞.

ii) For all x > 0,
A′(x)

A(x)
is decreasing and lim

x→∞

A′(x)

A(x)
= 2ρ ≥ 0.
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iii) There exists a constant δ > 0 such that for all x ∈ [x0,∞), x0 > 0, we
have

A′(x)

A(x)
= 2ρ+ e−δxD(x),

where D is a C∞-function, bounded together with its derivatives.

The generalized Fourier transform is defined for a suitable function f on R
by

FΛf(λ) =

∫
R
f(x)Φλ(−x)A(x)dx

where Φλ is the solution of the differential-difference equation{
Λu = iλu,
u(0) = 1.

For

A(x) = (sinh |x|)2α+1(coshx)2β+1, α ≥ β ≥ −1

2
, α 6= −1

2

we regain the differential-difference operator

Λf(x) =
d

dx
f(x) +

(
(2α + 1) coth(x) + (2β + 1) tanh(x)

)(
f(x)− f(−x)

)
,

which is referred to as the Jacobi-Dunkl operator (see [4, 8]). In this case, the
generalized Fourier transform FΛ coincides with the Jacobi-Dunkl transform.

For A(x) = |x|2α+1, α > −1/2, we regain the differential-difference operator

Dαf =
df

dx
+

(
α +

1

2

)
f(x)− f(−x)

x
,

which is referred to as the Dunkl operator of index α+1/2 associated with the
reflection group Z2 on R. Such operators have been introduced by Dunkl in
connection with a generalization of the classical theory of spherical harmonics
(see [9] and the references therein). In this case, the generalized Fourier trans-
form FΛ coincides with the Dunkl transform of index α+ 1/2 associated with
the reflection group Z2 on R.

Motivated by the treatment in the Euclidean setting of the Paley-Wiener
and Roe’s theorems, we will derive in this paper new real Paley-Wiener theo-
rems for the generalized Fourier transform, on the Lebesgue space L2

A(R) and
on the generalized tempered distribution space S ′2(R). Study the generalized
tempered distributions with the spectral gaps. Finally we prove the Roe’s
theorem in the context of the Dunkl type operator. We note that the real
Paley-Wiener theorems has been studied by many authors for various Fourier
transforms, for examples (cf. [1, 7, 12, 21]) and others.
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The contents of the paper is as follows. In §2 we recall some basic results
about the harmonic analysis associated with the Dunkl type operator on the
real line which we need in the sequel. The §3 is devoted to study the L2

Paley-Wiener theorems for the generalized Fourier transform on the generalized
Schwartz space of functions. In §4 we prove new versions of real Paley-Wiener
theorems associated with the generalized Fourier transform. In §5 we prove the
Roe’s theorem for the Dunkl type operator on R. Finally, in the last section
we study the generalized tempered distributions with spectral gaps.

2 Preliminaries

This section gives an introduction to the harmonic analysis associated with
the Dunkl type operator. The main references are [15, 20].
Notation. We denote by
E(R) the space of C∞-functions on R.
S(R) the Schwartz space of rapidly decreasing functions on R.
Se(R) (resp. So(R)) the subspace of S(R) consisting of even (resp. odd)

functions.
D(R) the space of C∞-functions on R which are of compact support.

2.1 The eigenfunctions of the Dunkl type operator on
the real line

To study the eigenfunctions of Λ, we consider first those of the second-order
singular differential operator on R defined by

L =
d2

dx2
+
A′(x)

A(x)

d

dx
.

Our basic reference about L will be the paper [19] from which we recall the
following result.

Lemma 1 (i) For each λ ∈ C the differential equation

Lu = −(λ2 + %2)u, u(0) = 1, (1)

admits a unique C∞ solution on R, denoted ϕλ.
(ii) For every x ∈ R, the function λ 7→ ϕλ is analytic.
(iii) For every x ∈ R,

e−%|x| ≤ ϕ0(x) ≤ 1. (2)

(iv) There is a positive constant C such that for all λ ∈ C, x ∈ R and
n ∈ N0, we have

| d
n

dλn
ϕλ(x)| ≤ C|x|ne((|Imλ|−%) |x|. (3)
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Remark 1 If A(x) = (sinh |x|)2α+1(coshx)2β+1, α ≥ β ≥ −1
2
, α 6= −1

2
, then

the differential operator L reduced to the so-called Jacobi operator. The eigen-
function ϕλ is the Jacobi function of index (α, β) given by

ϕλ(x) = F (
1

2
(ρ+ iλ),

1

2
(ρ− iλ); α + 1; −(sinh(x))2), (4)

where F is the hypergeometric function 2F1 of Gauss.

Proposition 1 For each λ ∈ C the differential-difference equation

Λu = iλu, u(0) = 1, (5)

admits a unique C∞ solution on R, denoted Φλ given by

Φλ(x) =


ϕ√

λ2−%2(x)− 1
iλ

d
dx
ϕ√

λ2−%2(x) if λ 6= 0

1 if λ = 0.

(6)

The following estimate for the eigenfunction Φλ(x) shall be useful.

Proposition 2 Let % > 0. There exist positive constant C such that for all
x ∈ R and λ ∈ R, with |λ| ≥ % and n ∈ N0, we have

| d
n

dλn
Φλ(x)| ≤ C(1 + |λ|)(1 + |x|)ne−% |x|. (7)

2.2 The generalized Fourier transform

Notations We denote by
LpA(R), 1 ≤ p ≤ ∞, the space of measurable functions f on R satisfying

‖f‖LpA(R) =

(∫
R
|f(x)|pA(x)dx

)1/p

<∞, if 1 ≤ p <∞

‖f‖L∞A (R) = ess sup
x∈R
|f(x)| <∞.

S 2(R), the space of C∞-functions on R such that for all m,n ∈ N

qn,m(f) := sup
x∈R

(coshx)%(1 + x2)m| d
n

dxn
f(x)| <∞.

The topology of S 2(R) is defined by the semi-norms qn,m, m,n ∈ N.
S2
e (R) (resp. S2

o (R)) the subspace of S2(R) consisting of even (resp. odd)
functions.
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Definition 1 The generalized Fourier transform of a function f ∈ L1
A(R) is

defined by

FΛ(f)(λ) =

∫
R
f(x)Φλ(−x)A(x)dx, for all λ ∈ R. (8)

Remarks 1 (i) From (2) we see that S 2(R) ⊂ S(R).
(ii) The generalized Schwartz space S 2(R) is invariant under the differential-

difference operator Λ.
(iii) Due to our assumptions on the function A there is a positive constant

C such that

∀x ∈ R, A(x) ≤
{
C e2%|x| if % > 0
C|x|2α+1 if % = 0

(9)

(iv) The generalized Fourier transform FΛ is well defined on S 2(R).
(v) For all f ∈ D(R), we have

∀λ ∈ C, FΛ(τxf)(λ) = Φλ(−x)FΛ(f)(λ). (10)

Proposition 3 For all f ∈ S2(R) the decomposition

FΛf(λ) = 2FL(fe)(
√
λ2 − %2)− 2iλFLJ(fo)(

√
λ2 − %2), (11)

where J is the integral operator defined by

Jf(x) =

∫ x

−∞
f(t)dt, x ∈ R, (12)

and FL stands for the Fourier transform related to the differential operator L,
defined on S2

e (R) by

FL(f)(λ) =

∫ +∞

0

f(x)ϕλ(x)A(x)dx, λ ∈ R,

ϕλ being the eigenfunction of L as defined by (1).

We shall need the following properties.

Proposition 4 (Transmutation formula)

(i) Let f ∈ S2(R) and g a nice function. Then∫
R

Λf(x)g(−x)A(x)dx =

∫
R
f(x)Λg(−x)A(x)dx. (13)

(ii) For f ∈ S2(R)
FΛ (Λf) (y) = iyFΛf(y), y ∈ R. (14)
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(iii) For f ∈ S2(R)

FΛ (4A f)(y) = −y2FΛ (f)(y), for all y ∈ R, (15)

where 4A is the generalized Laplace operator on R given by

4A f(x) := Λ 2f(x). (16)

Notation. We denote by
Lpc(R+), 1 ≤ p ≤ ∞, the space of measurable functions f on R+ satisfying

‖f‖Lpc (R+) =

(∫
R+

|f(x)|p dx

|c(x)|2

)1/p

<∞, if 1 ≤ p <∞

‖f‖L∞c (R+) = ess sup
x∈R+

|f(x)| <∞,

where c(s) is a continuous function on (0,∞) such that

c−1(s) ∼ k1 s
α+ 1

2 , as s→∞, (17)

c−1(s) ∼
{
k2 s, as s→ 0 if % > 0
k3 s

2α+1, as s→ 0 if % = 0
(18)

for some k1, k2, and k3 ∈ C.
Lpν(R), 1 ≤ p ≤ ∞, the space of measurable functions f on R satisfying

‖f‖Lpν(R) =

(∫
R
|f(x)|pdν(x)

)1/p

<∞, if 1 ≤ p <∞

‖f‖L∞ν (R) = ess sup
x∈R
|f(x)| <∞,

where dν is the measure given by

dν(λ) =
|λ|

4
√
λ2 − %2|c(

√
λ2 − %2)|2

1R\(−%,%)dλ, (19)

with 1R\(−%,%) is the characteristic function of R\(−%, %).

Theorem 1 For all f ∈ D(R), we have

f(x) =

∫
R
FΛ(f)(λ)Φλ(x)dν(λ), (20)

where dν is given by (19).
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Theorem 2 Let f ∈ L1
A(R) such that FΛ(f) belongs to L1

ν(R) then we have
the following inversion formula

f(x) =

∫
R
FΛ(f)(λ)Φλ(x)dν(λ) a.e. x ∈ R.

Theorem 3 (Plancherel formula)

(i) For all f ∈ S2(R), we have∫
R
|f(x)|2A(x)dx =

∫
R
|FΛf(λ)|2dν(λ), (21)

where dν is the measure given by (19).

(ii) The generalized Fourier transform FΛ extends uniquely to a unitary iso-
morphism from L2

A(R) onto L2
ν(R).

3 Paley-Wiener theorems of functions for the

generalized Fourier transform

We begin by the Paley-Wiener theorem for the generalized Fourier transform
on the generalized Schwartz space of functions.

Proposition 5 The generalized Fourier transform FΛ is a bijection from S2(R)
to S(R).

Proof. By [19] we know that the transform FL is bijective from S2
e (R) onto

Se(R). Hence it suffices in view of (11) to show that the map f → λFL(J(f))
is bijective from S2

o (R) onto So(R). But this is immediate. First, because the
operator J is one-to-one from S2

o (R) onto Se(R). Next, since the map f → λf
is one-to-one from Se(R) onto So(R).
Notations. We denote by
S ′2(R) the space of generalized temperate distributions on R, it is the dual

space of S2(R).
E ′(R) the space of distributions on R with compact support.

Definition 2 i) The generalized Fourier transform of a distribution τ in S ′ 2(R)
is defined by

〈FΛ(τ), φ〉 = 〈τ,F−1
Λ (φ)〉, for all φ ∈ S(R). (22)

ii) The inverse of the generalized Fourier transform of a distribution τ in
E ′(R) is defined by

∀ x ∈ R, F−1
Λ (τ)(x) = 〈1R\(−%,%)τλ,Φλ(x)〉. (23)
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From above it is easy to obtain the following.

Corollary 1 The generalized Fourier transform FΛ is a topological isomor-
phism from S ′2 (R) onto S ′(R). Moreover, for all τ ∈ S ′ 2(R), we have

FΛ(Λ τ) = iyFΛ(τ). (24)

and

FΛ(4A τ) = −y2FΛ(τ). (25)

We consider f in L2
A(R). We define the distribution Tf in S ′2(R) by

〈Tf , ϕ〉 =

∫
R
f(x)ϕ(x)A(x)dx, ϕ ∈ S2(R).

Notations. We denote by
L2
A,c(R) the space of functions in L2

A(R) with compact support.
HL2(C) the space of entire functions f on C of exponential type such that

f|R belongs to L2
ν(R).

Theorem 4 The generalized Fourier transform FΛ is bijective from L2
A,c(R)

onto HL2(C).

Proof. i) We consider the function f on C given by

∀ z ∈ C, f(z) =

∫
R
g(x)Φz(−x)A(x)dx, (26)

with g ∈ L2
A,c(R). By derivation under the integral sign and by using the

inequality (7), we deduce that the function f is entire on C and of exponential
type. On the other hand the relation (26) can also be written in the form

∀ y ∈ R, f(y) = FΛ(g)(y).

Thus from Theorem 3 the function f|R belongs to L2
ν(R). Hence f ∈ HL2(C).

ii) Reciprocally let ψ be in HL2(C). From [20] there exists S ∈ E ′(R) with
support in [−a, a], such that

∀λ ∈ R, ψ(λ) = 〈Sx,Φλ(−x)〉. (27)

On the other hand as ψ|R belongs to L2
ν(R), then from Theorem 3 there exists

h ∈ L2
A(R) such that

ψ|R = FΛ(h). (28)

Thus from (27), for all ϕ ∈ D(R) we have∫
R
ψ(y)FΛ(ϕ)(y)dν(y) = 〈Sx,

∫
R

Φy(x)FΛ(ϕ)(y)dν(y)〉.
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Thus using Theorem 2 we deduce that∫
R
ψ(y)FΛ(ϕ)(y)dν(y) = 〈S, ϕ〉. (29)

On the other hand (28) implies∫
R
ψ(y)FΛ(ϕ)(y)dν(y) =

∫
R
FΛ(h)(y)FΛ(ϕ)(y)dν(y).

But from Theorem 3 we deduce that∫
R
FΛ(h)(y)FΛ(ϕ)(y)dν(y) =

∫
R
h(y)ϕ(y)A(y)dy = 〈Th, ϕ〉. (30)

Thus the relations (29),(30) imply

S = Th.

This relation shows that the support h is compact. Then h ∈ L2
A,c(R).

In the following Tf will be denoted by f .

Definition 3 i) We define the support of g ∈ L2
ν(R) and we denote it by

supp g, the smallest closed set, outside which the function g vanishes almost
everywhere.

ii) We denote by
Rg := sup

λ∈suppg
|λ|,

the radius of the support of g.

Remark 2 It is clear that Rg is finite if and only if, g has compact support.

Notations. We denote by
L2
ν,c(R) the space of functions in L2

ν(R) with compact support.

L2
ν,c,R(R) :=

{
g ∈ L2

ν,c(R) : Rg = R
}

, for R ≥ 0.

DR(R) :=
{
g ∈ D(R) : Rg = R

}
, for R ≥ 0.

Definition 4 We define the Paley-Wiener spaces PW 2(R) and PW 2
R(R) as

follows
i) PW 2(R) is the space of functions f ∈ E(R) satisfying

a) 4n
Af ∈ L2

A(R) for all n ∈ N.

b) R4Af := lim
n→∞

||4n
Af ||

1
2n

L2
A(R)

<∞.

ii) PW 2
R(R) :=

{
f ∈ PW 2(R) : R4Af = R

}
.
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The real L2-Paley-Wiener theorem for the generalized Fourier transform
can be formulated as follows

Theorem 5 The generalized Fourier transform FΛ is a bijection
i) From PW 2

R(R) onto L2
ν,c,R(R).

ii) From PW 2(R) onto L2
ν,c(R).

Proof. Let g ∈ PW 2(R). Then from (25) the function

FΛ(4n
Ag)(ξ) = (−1)nξ2nFΛ(g)(ξ) ∈ L2

ν(R), ∀ n ∈ N.

On the other hand from Theorem 3 we deduce that

lim
n→∞

{∫
R
ξ4n|FΛ(g)(ξ)|2dν(ξ)

} 1
4n

= lim
n→∞

{∫
R
|4n

Ag(x)|2A(x)dx

} 1
4n

= R4Ag <∞.

Moreover, by a simple calculations, it is easy to see that FΛ(g) has compact
support with

RFΛ(g) = R4Ag .

Conversely let f ∈ L2
ν,c,R(R). Then ξnf(ξ) ∈ L1

ν(R) for any n ∈ N, and

F−1
Λ (f) belongs to E(R). On the other hand from Theorem 3 we have

lim
n→∞

{∫
R
|4n

A(F−1
Λ f)(x)|2A(x)dx

} 1
4n

= lim
n→∞

{∫
R
ξ4n|f(ξ)|2dν(ξ)

} 1
4n

= R.

Thus F−1
Λ (f) ∈ PW 2(R).

ii) We deduce the result from the i).

Definition 5 Let u be a distribution on R and P a polynomial. Then we let

R(P, u) = sup
{
|P (y)| : y ∈ suppu

}
∈ [0,∞],

where by convention R(P, u) = 0 if u = 0.

We will now study the real L2-Paley-Wiener theorem for the generalized Fourier
transform, for which we need the following key propositions.

Proposition 6 Let P be a polynomial and f ∈ S 2(R). Then in the extended
positive real numbers

lim sup
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≤ R(P,FΛ(f)). (31)
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Proof. Suppose firstly that R(P,FΛ(f)) = 0. Then FΛ(f) = 0, and hence
from Proposition 5, f = 0. Thus (31) is immediately.

Moreover, the inequality (31), is clear when R(P,FΛ(f)) =∞. So we can
assume that

0 < R(P,FΛ(f)) <∞.

Hölder’s inequality gives

||f ||2L2
A(R) =

∫
R
(1 +x2)−1(1 +x2)|f(x)|2A (x)dx ≤ C sup

x∈R
e2%|x|(1 +x2)2m|f(x)|2,

(32)
for m ≥ 1. Thus

||f ||L2
A(R) ≤ C sup

x∈R
e%|x|(1 + x2)m|f(x)|.

Consequently for all n ∈ N, we deduce that

||P n(−iΛ)f ||L2
A(R) ≤ C supx∈R e

%|x|(1 + x2)m|P n(−iΛ)f(x)|
≤ C supx∈R e

%|x|(1 + x2)m
∣∣∣[F−1

Λ

(
P n(ξ)FΛ(f)(x)

)]∣∣∣.
Using the continuity of F−1

Λ we can show that

||P n(−iΛ)f ||L2
A(R) ≤ C sup

ξ∈R

∑
1≤l,j≤M

(1 + ξ2)j
∣∣∣ dl
dξl

[
P n(ξ)FΛ(f)(ξ)

]∣∣∣, (33)

with positive constants C and integer M , independent of n. Using Leibniz’s
rule we deduce that

||P n(−iΛ)f ||L2
A(R) ≤ CnM sup

y∈suppFΛ(f)

|P (y)|n−M ,

with C is a constant independent of n. Hence, from the previous inequalities
we obtain

lim sup
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≤ sup

y∈suppFΛ(f)

|P (y)| = R(P,FΛ(f)).

Proposition 7 Let P be a polynomial. Suppose that P n(−iΛ)f ∈ L2
A(R) for

all n ∈ N0. Then in the extended positive real numbers

lim inf
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≥ R(P,FΛ(f)). (34)

Proof. Fix ξ0 ∈ suppFΛ(f). We can assume that |P (ξ0)| 6= 0. We will show
that

lim inf
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≥ |P (ξ0)| − ε,
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for any fixed ε > 0 such that 0 < 2ε < |P (ξ0)|.
To this end, choose and fix χ ∈ D(R) such that 〈FΛ(f), χ〉 6= 0, and

supp χ ⊂
{
ξ ∈ R : |P (ξ0)| − ε < |P (ξ)| < |P (ξ0)|+ ε

}
.

For n ∈ N, let χn(ξ) = P−n(ξ)χ(ξ). On the follow we want to estimate
||F−1

Λ (χn)||L2
A(R). Indeed as above we have

||F−1
Λ (χn)||L2

A(R) ≤ C supx∈R e
%|x|(1 + x2)m|F−1

Λ (χn)(x)|
≤ C supx∈R e

%|x|(1 + x2)m
∣∣∣[F−1

Λ

(
P−n(ξ)χ

)
(x)
]∣∣∣,

with m ≥ 1. Using the continuity of F−1
Λ we can show that

||F−1
Λ (χn)||L2

A(R) ≤ C sup
ξ∈R

∑
1≤l,j≤M

(1 + ξ2)j
∣∣∣ dl
dξl

[
P−n(ξ)χ(ξ)

]∣∣∣, (35)

with positive constants C and integer M , independent of n. Using Leibniz’s
rule we deduce that

||F−1
Λ (χn)||L2

A(R) ≤ CnM(|P (ξ0)| − ε)−n.

Then, since
〈FΛ(f), χ〉 = 〈FΛ(f), P n(ξ)χn〉

= 〈P n(ξ)FΛ(f), χn〉
= 〈FΛ(P n(−iΛ)f), χn〉
= 〈(P n(−iΛ)f),F−1

Λ (χn)〉.
Hence, from the Hölder inequality we obtain

|〈FΛ(f), χ〉| ≤ C||P n(−iΛ)f ||L2
A(R)||F−1

Λ (χn)||L2
A(R)

≤ CnM(|P (ξ0)| − ε)−n||P n(−iΛ)f ||L2
A(R).

Since |〈FΛ(f), χ〉| > 0, we deduce that

lim inf
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≥ |P (ξ0)| − ε.

Thus

lim inf
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≥ sup

y∈suppFΛ(f)

|P (y)| = R(P,FΛ(f)).

Combining Proposition 6 and Proposition 7 together, we get

Theorem 6 Let P be a non-constant polynomial. For any function f ∈ S 2(R)
the following relation holds

lim
n→∞

||P n(−iΛ)f ||
1
n

L2
A (R)

= R(P,FΛ(f)). (36)
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Definition 6 Let P be a non-constant polynomial, we define the polynomial
domain Up by

Up :=
{
x ∈ R : |P (x)| ≤ 1

}
.

We have the following result.

Corollary 2 Let f ∈ S 2(R). The generalized Fourier transform FΛ(f) van-
ishes outside a domain UP , if and only if,

lim sup
n→∞

||P n(−iΛ)f ||
1
n

L2
A(R)
≤ 1. (37)

Remark 3 If we take P (y) = −y2, then P (−iΛ) = 4A, and Theorem 6 and
Corollary 2 characterize functions such that the support of their generalized
Fourier transform is [−1, 1].

4 Characterization of the functions whose gen-

eralized Fourier transform has support in

antipodal points

Theorem 7 Let u ∈ E(R) ∩ S ′ 2(R). Then the support of FΛ(u) is contained

in the compact Vr :=
{
ξ ∈ R : |P (ξ)| ≤ r

}
for a polynomial P and a constant

r ≥ 0, if, and only if, for each R > r, there exist NR ∈ N0 and a positive
constant C(R) such that

|P n(−iΛ)(u)(x)| ≤ C(R)Rn(1 + |x|)NRe−%|x|, (38)

for all n ∈ N and x ∈ R.

Proof. Assume that support of FΛ(u) is contained in the compact Vr. Let
R > r and let ε ∈ (0, R − r). We choose χ ∈ D(R) such that χ ≡ 1 on an
open neighborhood of support of FΛ(u), and χ ≡ 0 outside VR− ε

3
. As FΛ(u) is

of order N , there exists a positive constant C such that for all x ∈ R

|P n(−iΛ)(u)(x)| =
∣∣∣F−1

Λ

(
P n(ξ)FΛ(u)

)
(x)
∣∣∣

=
∣∣∣F−1

Λ

(
χ(ξ)P n(ξ)FΛ(u)

)
(x)
∣∣∣

= |〈χ(ξ)P n(ξ)FΛ(u)(ξ),Φξ(x)〉|
= |〈FΛ(u)(ξ), χ(ξ)P n(ξ)Φξ(x)〉|
≤ C sup|ξ|≥%

∑
0≤j≤N

∣∣∣Dj
(
χ(ξ)P n(ξ)Φξ(x)

)∣∣∣.
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Thus from the Leibniz formula (7) we obtain that

∀n ∈ N0, |P n(−iΛ)(u)(x)| ≤ C1(R)nN(R− ε
3
)n(1 + |x|)N+2e−%|x|

≤ C2(R)Rn(1 + |x|)N+2e−%|x|.

Conversely we assume that we have (38).
Suppose ξ0 ∈ R is fixed and such that |P (ξ0)| ≥ R + ε, for some ε > 0.

Choose and fix χ ∈ D(R) such that suppχ ⊂
{
ξ ∈ R : |P (ξ)| ≥ R + ε

3

}
.

For n ∈ N, we introduce the function χn defined by χn(ξ) = P−n(ξ)χ(ξ).
We have

〈FΛ(u), χ〉 = 〈FΛ(u), P n(ξ)χn〉 = 〈P n(ξ)FΛ(u), χn〉
= 〈FΛ(P n(−iΛ)u), χn〉
= 〈

(
e%|x|(1 + |x|)−NP n(−iΛ)u

)
, e−%|x|(1 + |x|)NF−1

Λ (χn)〉.

Hence, from the Hölder inequality we obtain

|〈FΛ(u), χ〉| ≤ ||e%|x|(1+|x|)−NP n(−iΛ)u||L∞A (R)||e−%|x|(1+|x|)NF−1
Λ (χn)||L1

A(R).

We proceed as in Proposition 7, we prove that

||e−%|x|(1 + |x|)NF−1
Λ (χn)||L1

A(R) ≤ CnM(R +
ε

3
)−n.

Thus

|〈FΛ(u), χ〉| ≤ C(R)nM
( R

R + ε
3

)n
.

Hence we deduce 〈FΛ(u), χ〉 = 0, which implies that ξ0 /∈ supp FΛ(u).
Thus support of FΛ(u) is contained in the compact Vr.

Notations. Let r > 0, we denote by

Br :=
{
ξ ∈ R : |P (ξ)| < r

}
, Sr :=

{
ξ ∈ R : |P (ξ)| = r

}
.

Theorem 8 Let u = u0 ∈ E(R) ∩ S ′ 2(R), and consider the infinite series
{u−n}n∈N of generalized tempered distributions defined as u−n+1 = P (−iΛ)un,
for a polynomial P and for all n ∈ N. Let r > 0. Assume, for all R ∈ (0, r)
there exist constants NR ∈ N0 and C(R) > 0, such that

∀x ∈ R, |u−n(x)| ≤ C(R)R−n(1 + |x|)NRe−%|x|, (39)

for all n ∈ N. Then suppFΛ(u) ∩Br = ∅.
On the other hand, if suppFΛ(u) ∩ Br = ∅ and suppFΛ(u) is compact, then
(39) holds, for all R ∈ (0, r).
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Proof. Assume that suppFΛ(u) ∩ Br = ∅ and suppFΛ(u) is compact. Let
R ∈ (0, r) and let ε ∈ (0, r−R). Choose χ ∈ D(R) such that χ ≡ 1 on an open
neighborhood of support of FΛ(u), and χ ≡ 0 on VR+ ε

3
. As u = P n(−iΛ)u−n,

we have

|u−n(x)| =
∣∣∣F−1

Λ

(
P−n(ξ)FΛ(u)

)
(x)
∣∣∣

=
∣∣∣F−1

Λ

(
χ(ξ)P−n(ξ)FΛ(u)

)
(x)
∣∣∣

= |〈χ(ξ)P−n(ξ)FΛ(u)(ξ),Φξ(x)〉|
= |〈FΛ(u)(ξ), χ(ξ)P−n(ξ)Φξ(x)〉|
≤ C sup|ξ|≥%

∑
0≤j≤N

∣∣∣Dj
(
χ(ξ)P−n(ξ)Φξ(x)

)∣∣∣.
Thus from the Leibniz formula (7) we obtain that

∀n ∈ N0, |u−n(x)| ≤ C1(R)nN(R + ε
3
)−n(1 + |x|)N+2e−%|x|

≤ C2(R)R−n(1 + |x|)N+2e−%|x|.

Assume that we have (39). For a fixed R ∈ (0, r) let ε > 0. Choose and fix
χ ∈ D(R) such that

suppχ ⊂
{
ξ ∈ R : |P (ξ)| ≤ R− ε

3

}
,

and put χn = P n(ξ)χ. We have

〈FΛ(u), χ〉 = 〈FΛ(u), P−n(ξ)χn〉 = 〈P−n(ξ)FΛ(u), χn〉
= 〈FΛ(u−n), χn〉
= 〈

(
e%|x|(1 + |x|)−Nu−n

)
, e−%|x|(1 + |x|)NF−1

Λ (χn)〉.

Hence, from the Hölder inequality we obtain

|〈FΛ(u), χ〉| ≤ ||e%|x|(1 + |x|)−Nu−n||L∞A (R)||e−%|x|(1 + |x|)NF−1
Λ (χn)||L1

A(R).

We proceed as in Proposition 7, we prove that

||e−%|x|(1 + |x|)NF−1
Λ (χn)||L1

A(R) ≤ CnM(R− ε

3
)n.

Thus

∀n ∈ N, |〈FΛ(u), χ〉| ≤ C(R)nM
(R− ε

3

R

)n
.

Thus we deduce 〈FΛ(u), χ〉 = 0, which implies that suppFΛ(u) ∩Br = ∅.

Combining Theorem 7 and Theorem 8 together, we get
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Corollary 3 Let u = u0 ∈ E(R) ∩ S ′ 2(R), and consider the infinite series
{un}n∈Z of generalized tempered distributions defined as un+1 = P (−iΛ)un, for
a polynomial P and for all n ∈ Z. Let R > 0. Then suppFΛ(u) is contained
in SR, if and only if for all ε > 0, there exist constants Nε ∈ N0 and Cε > 0,
such that

∀x ∈ R, |un(x)| ≤ CεR
n(1 + ε)|n|(1 + |x|)Nεe−%|x| (40)

for all n ∈ Z.

Remark 4 (i) The previous corollary, gives a characterization of the functions
whose generalized Fourier transform has support at the endpoints.

(ii) We note that the results of this section generalize and improve the
version presented in [13, 14].

5 Roe’s theorem associated with Dunkl type

operators

In [16] Roe proved that if a doubly-infinite sequence (fj)j∈Z of functions

on R satisfies
dfj
dx

= fj+1 and |fj(x)| ≤ M for all j = 0,±1,±2, ... and x ∈ R,
then f0(x) = a sin(x+ b) where a and b are real constants.

The purpose of this section is to generalize this theorem for the Dunkl type
operator Λ.

Theorem 9 Suppose P (ξ) =
∑
n

anξ
n is real-valued and let {fj}∞−∞ be a se-

quence of complex-valued functions on R so that

∀ j ∈ Z, fj+1 = P (−iΛ)fj.

(i) Let a ≥ 0, R > 0, and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)ae−%|x|, (41)

where (Mj)j∈Z satisfies the sublinear growth condition

lim
j→∞

M|j|
j

= 0. (42)

Then f = f+ + f− where P (−iΛ)f+ = Rf+ and P (−iΛ)f− = −Rf−. If R (or
−R) is not in the range of P then f+ = 0 (or f− = 0).

(ii) If we replace (42) with

lim
j→∞

M|j|
(1 + ε)|j|

= 0, (43)
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for all j > 0, then the span of (fj)j is finite dimensional.
Moreover, f0 = f+ + f−, where, for some integer N , (P (−iΛ) − R)Nf+ = 0
and (P (−iΛ) +R)Nf− = 0. Thus f+ (or f− ) is a generalized eigenfunction of
P (−iΛ) with eigenvalue R (or −R).

In order to prove Theorem 9 we need the following lemmas:

Lemma 2 Let (fj)j∈Z is be a sequence of functions on R satisfying

fj+1 = P (−iΛ)fj, (44)

|fj(x)| ≤MjR
j(1 + |x|)ae−%|x|, (45)

and

lim
j→∞

M|j|
(1 + ε)|j|

= 0, (46)

for all ε > 0, then

supp(FΛ(f0)) ⊂ SR :=
{
ξ : |P (ξ)| = R

}
.

Proof. First we show that FΛ(f0) is supported in
{
ξ : |P (ξ)| ≤ R

}
.

To do this we need to show that

〈FΛ(f0), φ〉 = 0, if φ ∈ D(R)

and
supp(φ) ∩

{
ξ : |P (ξ)| ≤ R

}
= ∅.

Since supp(φ) is compact, there is some r < 1
R

so that 1
|P (ξ)| ≤ r, for all

ξ ∈ supp(φ). Then

〈FΛ(f0), φ〉 = 〈P jFΛ(f0), φ
P j
〉

= 〈FΛ

(
P j(−iΛ)f0

)
, φ
P j
〉

= 〈P j(−iΛ)f0,F−1
Λ ( φ

P j
)〉.

Choose an integer m with 2m ≥ 2a + 2. A calculation, using the hypothesis
of the lemma and Cauchy-Schwartz inequality, implies

|〈FΛ(f0), φ〉| ≤
∫
R
|P j(−iΛ)f0(x)||F−1

Λ (
φ

P j
)(x)|A(x)dx

≤ CMj supx∈R |e%|x|(1 + x2)mF−1
Λ ( φ

P j
)(x)]|.

Using the continuity of F−1
Λ and the fact that φ is supported in{

ξ : |P (ξ)| ≥ R + ε
}

for some fixed ε > 0, it is not hard to prove that the
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right-hand side of this goes to zero as j →∞ and so 〈FΛ(f0), φ〉 = 0.
To complete the proof we need to show that FΛ(f0) is also supported in{

ξ : |P (ξ)| ≥ R
}
,

which means 〈FΛ(f0), φ〉 = 0 if φ is supported in{
ξ : |P (ξ)| ≤ R

}
.

Here we use (44) to obtain

〈FΛ(f0), φ〉 = 〈FΛ(f−j), P
jφ〉

and the argument proceeds as before.

Lemma 3 We assume that −R is not a value of P (ξ). There exists an integer
N such that

(P (ξ)−R)N+1FΛ(f0) = 0. (47)

Proof. Using Lemma 2 and proceeding as in [11], we prove the result.

Lemma 4 ([6]). Let X be a finite dimensional complex vector space, and let
T : X → X be a linear map with eigenvalues λ1, ..., λp.
Then X = X1 ⊕ ...⊕Xp, where Xj = ker((T − λj)N) and dimX = N .

Proof of Theorem 9
We want to prove (i). Inverting the generalized transform in (47) yields

that
(P (−iΛ)−R)N+1f0 = 0. (48)

This equation implies

span
{
f0, f1, f2, ...

}
= span

{
f0, P (−iΛ)f0, P (−iΛ)2f0, ...

}
= span

{
f0, P (−iΛ)f0, ..., P

N(−iΛ)f0

}
.

We shall now show that we can take N = 0 in (48).
If not then (P (−iΛ) − R)f0 6= 0. Let p be the largest positive integer so that
(P (−iΛ)−R)pf0 6= 0. Clearly p ≤ N. Thus

f := (P (−iΛ)−R)p−1f0 ∈ span
{
f0, f1, ..., fN

}
will satisfy

(P (−iΛ)−R)2f = 0 and (P (−iΛ)−R)f 6= 0. (49)
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Write
f = a0f0 + ...+ aNfN ,

for constants a0, ..., aN . Then

P j(−iΛ)f = a0fj + ...+ aNfN+j.

If
Cj = |a0|R0Mj + ...+ |aN |RNMj+N ,

then this and (41) imply

|P j(−iΛ)f(x)| ≤ CjR
j(1 + |x|)ae−%|x|. (50)

By (42) these satisfy the sublinear growth condition

lim
j→∞

Cj
j

= 0. (51)

An induction using (49) implies for j ≥ 2 that

P j(−iΛ)f = Rj−1jP (−iΛ)f −Rj(j − 1)f = Rj−1j(P (−iΛ)−R)f +Rjf.

Thus

|(P (−iΛ)−R)f(x)| ≤ 1

jRj−1
|P j(−iΛ)f(x)|+R|f(x)|

j
≤ CjR

j
(1+|x|)ae−%|x|+R|f(x)|

j
.

Letting j →∞ and using (51) implies (P (−iΛ)−R)f = 0. But this contradicts
(49). Consequently, N = 0 in (48). This completes the proof in the case that
−R is not in the range of P .

In the case that R is not in the range of P we apply the same argument to
−P (−iΛ) to conclude P (−iΛ)f0 = −Rf0.
In the general case, let L = P 2(−iΛ). Then FΛ(Lf)(ξ) = P 2(ξ)FΛ(f)(ξ).
Lf2p = f2(p+1) and P 2(ξ) 6= −R. Thus we can (as before) conclude, for the
sequence (f2p)p∈Z that

Lf0 = P 2(−iΛ)f0 = R2f0.

Set f+ = 1
2
(f0 + 1

R
P (−iΛ)f0) and f− = 1

2
(f0 − 1

R
P (−iΛ)f0).

Then f = f+ + f−, P (−iΛ)f+ = Rf+ and P (−iΛ)f− = −Rf−. This completes
the proof of (i).

Now we want to prove (ii). We first prove (ii) under the assumption that
P (ξ) 6= −R. Using the growth condition (43) and Lemma 4, we may still

conclude that supp(FΛ(f0)) ⊂ SR :=
{
ξ : P (ξ) = R

}
. But then, as before, we

can conclude that (48) holds. But this is enough to complete the proof in this
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case. A similar argument shows that if P (ξ) 6= R, then (P (−iΛ) +R)Nf0 = 0.
In the general case we again let L = P 2(−iΛ) and P0 = P 2. Then P0(ξ) 6= −R
and the span of (f2j)j is finite dimensional. The map P (−iΛ) takes the span
of (f2j)j onto the span of (f2j+1)j. Thus X is finite dimensional. Any f ∈ X
will have supp(f) inside the set defined by P (ξ) = ±R. From this it is not
hard to show the only possible eigenvalues of P (−iΛ) restricted to X are R
and −R. The result now follows from the last lemma.

Remark 5 (i) If we take P (y) = −y2, then P (−iΛ) = 4A and Theorem 9
give 4Af0 = −Rf0. This characterizes eigenfunctions f of generalized Laplace
operator 4A with polynomial growth in terms of the size of the powers 4j

Af ,
−∞ < j <∞.

(ii) The previous theorem generalizes and improves the version presented
in [13, 14].

Theorem 10 Suppose P (ξ) =
∑
n

anξ
n is a non-constant polynomial with

complex coefficients. Let {fj}∞−∞ be a sequence of complex-valued functions on
R so that

∀ j ∈ Z, fj+1 = P (−iΛ)fj.

1) Let a ≥ 0 and let R > 0. Assume that for all ε > 0, there exist constants
N ∈ N0 and C > 0, such that

∀x ∈ R, |fn(x)| ≤ CRn(1 + ε)|n|(1 + |x|)Ne−%|x| (52)

is satisfied for all n ∈ Z. Then

f0 =
∑
λ∈SR

N∑
j=0

c(λ, j)
dj

dξj |ξ=λ
Φξ, (53)

for constants c(λ, j) ∈ C and N ∈ N.
2) Let a ≥ 0 and let R > 0 and assume that {fj}∞−∞ satisfies

|fj(x)| ≤MjR
j(1 + |x|)ae−%|x|, (54)

where (Mj)j∈Z satisfies the subpotential growth condition

lim
j→∞

M|j|
jm

= 0, (55)

for some m ≥ 0.
We have
(i) If P ′(λp) 6= 0, for all λp ∈ SR, then N < m in (53).
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In particular, if m = 1, then

f0 =
∑
λp∈SR

fλp , where fλp = c(λp)Φλp

.
(ii) If SR consists of one point λ0 and m = 1 in (55), then

P (−iΛ)f0 = P (λ0)f0.

Proof. 1) Assume that {fj}∞−∞ satisfies (52). Then Corollary 3 implies that
the support of FΛ(f0) is contained in the finite set SR. A standard result in
distribution theory, see e.g., [[17], Theorem 6.25], infers that

FΛ(f0) =
∑
λ∈SR

∑
0≤j≤N

c(λ, j)δ
(j)
λ

for constants c(λ, j) ∈ C, and some integer N .
Here δjξ denotes the jth distributional derivative of the delta function δξ at ξ.

The result follows with f0 = F−1
Λ

(∑
λ∈SR

∑
0≤j≤N c(λ, j)δ

(j)
λ

)
.

We want to prove 2) (i). For n ≥ 0, we have

〈fn, χ〉 = 〈FΛ(f0), P n(λ)FΛ(χ)〉,

for any χ ∈ S2(R). Fix λp ∈ SR such that P ′(λp) 6= 0 and let Np be the order of
FΛ(f) at λp. Choose χ ∈ S2(R) such that FΛ(χ) = 1 in a small neighborhood
of λp, and FΛ(χ) = 0 around the points VR\{λp}. Then, for n > Np

〈fn, χ〉 = 〈FΛ(f0), P n(λ)FΛ(χ)〉 = 〈
∑

0≤j≤Np

(
c(λp, j)δ

(j)
λp

)
, P n(λ)FΛ(χ)〉

= c(λp, Np)n
NpP n−Np(λp)(P

′(λp))
Np + ...

plus lower order terms in n. Since |〈fn, χ〉| ≤ CMnR
n for a constant C > 0,

by (54), we have c(λp, Np) = 0 for Np ≥ m by(55).
If we assume that m = 1, then Np = 0 and condition (55) implies that the

condition (40) is satisfied. Thus from the above, Eq. (53) becomes

f0 =
∑
λp∈SR

fλp , where fλp = c(λp)Φλp

for a constant c(λp) ∈ C.
We want to prove 2) (ii). Indeed, as in the above and from the assumptions

on {fj}∞−∞ we prove that

(P (−iΛ)− P (λ0))N+1f0 = 0. (56)
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This equation implies

span
{
f0, f1, f2, ...

}
= span

{
f0, P (−iΛ)f0, P (−iΛ)2f0, ...

}
= span

{
f0, P (−iΛ)f0, ..., P

N(−iΛ)f0

}
.

We shall now show that we can take N = 0 in (56).
If not then (P (−iΛ) − P (λ0))f0 6= 0. Let p be the largest positive integer so
that (P (−iΛ)− P (λ0))pf0 6= 0. Clearly p ≤ N. Thus

f := (P (−iΛ)− P (λ0))p−1f0 ∈ span
{
f0, f1, ..., fN

}
will satisfy

(P (−iΛ)− P (λ0))2f = 0 and (P (−iΛ)− P (λ0))f 6= 0. (57)

Write
f = a0f0 + ...+ aNfN ,

for constants a0, ..., aN . Then

P j(−iΛ)f = a0fj + ...+ aNfN+j.

If we put
Cj := |a0|R0Mj + ...+ |aN |RNMj+N ,

then by (54) we obtain

|P j(−iΛ)f(x)| ≤ CjR
j(1 + |x|)ae−%|x|. (58)

By (55) Cj satisfies the sublinear growth condition

lim
j→∞

Cj
j

= 0. (59)

An induction using (57) implies for j ≥ 2 that

P j(−iΛ)f = jP (λ0)j−1P (−iΛ)f − (j − 1)P (λ0)jf
= jP (λ0)j−1(P (−iΛ)− P (λ0))f + P (λ0)jf.

Thus

|(P (−iΛ)− P (λ0))f(x)| ≤ 1
jRj−1 |P j(−iΛ)f(x)|+ R|f(x)|

j

≤ CjR

j
(1 + |x|)ae−%|x| + R|f(x)|

j
.

Letting j →∞ and using (59) implies (P (−iΛ)− P (λ0))f = 0.
But this contradicts (57). Consequently, N = 0 in (56). This completes the
proof.

Remark 6 The previous theorem is the analogue for the Theorems 1 and 6 of
[2].
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6 Real Paley-Wiener theorems for the gener-

alized Fourier transform on S ′ 2(R)

Let u ∈ S ′ 2(R). We put Γu := inf
{
r ∈ (0,∞] : supp(FΛ(u)) ⊂ [−r, r]

}
.

Theorem 11 Let u ∈ S ′ 2(R). Then the support of FΛ(u) is included in
[−M,M ], M > 0, if and only if for all R > M we have

lim
n→∞

R−2n4n
Au = 0, in S ′ 2(R).

Proof. Let u ∈ S ′ 2(R) and M > 0 such that

lim
n→∞

R−2n4n
Au = 0, for all R > M.

Let ϕ ∈ D(R) satisfy supp(ϕ) ⊂ [−M,M ]c. We have to prove that

〈FΛ(u), ϕ〉 = 0.

Let r > M satisfy ϕ(x) = 0 for all x ∈ [−r, r] and R ∈ (M, r). Then for all
n ∈ N the function x−2nϕ is in D(R) and we can write

〈FΛ(u), ϕ〉 = 〈(−x2)nR−2nFΛ(u), (−x2)−nR2nϕ〉,

and by formula (25), we have

〈FΛ(u), ϕ〉 = 〈FΛ(R−2n4n
A(u)), (−x2)−nR2nϕ〉.

The hypothesis implies that FΛ(R−2n4n
A(u)) → 0 in S ′(R). Moreover from

the Leibniz formula we deduce that (−x2)−nR2nϕ → 0 in S(R). So using the
Banach-Steinhaus theorem we prove that

〈FΛ(u), ϕ〉 = 0.

Conversely, let u ∈ S ′ 2(R) and M > 0 such that suppFΛ(u) ⊂ [−M,M ].
We are going to prove that for all R > M

lim
n→∞

R−2n4n
Au = 0, in S ′ 2(R).

Let M < R and choose % ∈ (M,R) and ψ ∈ D(R) satisfying ψ ≡ 1 on a
neighborhood of [−M,M ] and ψ(x) = 0 for all x /∈ [−%, %]. Then for all
ϕ ∈ D(R) we have

〈FΛ(u), ϕ〉 = 〈FΛ(u), ψϕ〉,
and then

〈FΛ(R−2n4n
A(u)), ϕ〉 = 〈FΛ(u), (−x2)nR−2nψϕ〉.

Finally we deduce the result by using the fact that (−x2)nR−2nψϕ → 0 in
S(R).
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Corollary 4 From the previous theorem we obtain

Γu = inf
{
R > 0 : lim

n→∞
R−2n4n

Au = 0, in S ′ 2(R)
}
.

Let u ∈ S ′ 2(R). We put γu := sup
{
r ∈ [0,∞) : supp(FΛ(u)) ⊂ (−r, r)c

}
.

Theorem 12 Let u ∈ S ′ 2(R) such that (−x2)−nFΛ(u) ∈ S ′(R) for all n ∈ N.

Let un = F−1
Λ

(
(−x2)−nFΛ(u)

)
. Then the support of FΛ(u) is included in

(−M,M)c, M > 0, if and only if for all R < M we have

lim
n→∞

R2nun = 0, in S ′ 2(R).

Proof. Let u ∈ S ′ 2(R) and M > 0 such that

lim
n→∞

R2nun = 0, for all R < M.

Let ϕ ∈ D(R) satisfy supp(ϕ) ⊂ (−M,M). We want to prove that

〈FΛ(u), ϕ〉 = 0.

Let r ∈ (0,M) such that suppϕ ⊂ (−r, r) and R ∈ (r,M). Then for all n ∈ N
the function x2nϕ is in D(R) and we can write

〈FΛ(u), ϕ〉 =
〈
(−x2)−nR2nFΛ(u), (−x2)nR−2nϕ

〉
=
〈
FΛ(R2nun), (−x2)nR−2nϕ

〉
.

The hypothesis implies that FΛ(R2nun)→ 0 in S ′(R).
Moreover from the Leibniz formula we deduce that (−x2)nR−2nϕ→ 0 in S(R).
So using the Banach-Steinhaus theorem we prove that

〈FΛ(u), ϕ〉 = 0.

Conversely, let u ∈ S ′ 2(R) and M > 0 such that suppFΛ(u) ⊂ (−M,M)c.
We are going to prove that for all R < M

lim
n→∞

R2nun = 0, in S ′ 2(R).

Let M > R and choose % ∈ (R,M) and ψ ∈ D(R) satisfying ψ(x) ≡ 1 for
|x| ≥ M+%

2
and ψ(x) = 0 for all |x| ≤ %. Then for all ϕ ∈ D(R) we have

〈FΛ(u), ϕ〉 = 〈FΛ(u), ψϕ〉,

and then
〈FΛ(Rnun), ϕ〉 = 〈FΛ(u), (−x2)−nR2nψϕ〉.

Finally we deduce the result by using the fact that (−x2)−nR2nψϕ → 0 in
S(R).

Corollary 5 From the previous theorem we obtain

γu = sup
{
R > 0, lim

n→∞
R2nun = 0, in S ′ 2(R)

}
.
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7 Open Problem

In [18] Strichartz proved that

Theorem. Let f be a function on Rd such that

∀ j ∈ N, ||(−4+ ||x||2)jf ||L∞(Rd) ≤Mdj.

Then f(x) = Ce−
||x||2

2 .

The purpose of the future work is to generalize this theorem.
In place of oscillator operator −4 + ||x||2 of Rd, we shall extended this to
generalized oscillator operator LA := −Λ2 + |x|2 on R.
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[19] K. Trimèche, Inversion of the J.L. Lions transmutation operators us-
ing generalized wavelets, Applied and Computational Harmonic Analysis,
4(1997), 97-112.
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