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Abstract

In this paper, we define the general class TVn(g;p;q;a;v) of p-
valent functions of higher and derive distortion theorems and mod-
ified Hadamard products for functions belonging to this class.
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1 Introduction

LetT, (n) be the class of functions f(z) of the form:

f2)=2"—= > ap* (4, >0,pe NN={1,2,.}), (1.1)
k=p+n
which are analytic and p-valent in the open unit disc U= {2z € C: |z| < 1}. A
function f(z) € T, (n) is said to be p-valently starlike of order « if it satisfies
the inequality:

2f'(2)
Re{ B }>oz(z€U,O§a<p,p€N). (1.2)
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We denote by S;(n, @) the class of all p-valently starlike functions of order
a. Also a function f(z) € T, (n) is said to be p-valently convex of order « if it
satisfies the inequality:

"
Re{l—i—zj‘é(z)}>a(z€U,O§a<p,p€N). (1.3)

We denote by C,(n, a) the class of all p-valently convex functions of order
a.We note that (see for example Duren [6] and Goodman [§]:

f(z) € Cp(n, ) & P o (n, ).

The classes S;(n, ) and Cy(n, a) were studied by Owa [10].
Let (f % g)(z) denote the Hadamard product (or convolution ) of the func-
tions f(z) and g(z) that is f(z) is given by (1.1) and g(z) is given by:

oo

g(z)=2"— Y bpz"(b > 0). (1.4)
Then -
(frg)(z)=2" = > abz® = (g% [)(2). (1.5)

For functions f (z) defined by (1.1) and g(z) defined by (1.4), Aouf and
Mostafa [2] defined the classes T'S* (¢,p,q,«) and T'C,, (g,p, q, ) as follows:
Definition 1 [2]. Let g (z) with (b > 0) be defined by (1.4). The function
f (2) of the form (1.1) is said to be in the class T'S} (g, p, ¢, ) if and only if

e ( (( *g) ()
((F*g) (=)

and is in the class T'C,, (g, p, ¢, ) if and only if

e (1 REI(EIO) s
((f*g) ()"

)>a (0<a<p—qgpeNgeN;p>q), (1.6)

>>a (0<a<p—qpeN,qgeNyp>q),
(1.7)

where -
FO) =0pq) "= Y d(kq a2, (1.8)
k=p+n

and

5 — {i@—Dm@—h+D m%ox 19)
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It follows from (1.6) and (1.7) that

2fED ()
p—q
Several well-known subclasses of functions are special cases of the classes
TS*(g,p,q,«) and TC, (g,p,q,«) for suitable choices of g(z),q and n. For
example:
() for ¢ = 0 and replacing n+p by m, we have, T'S* (¢, p,0,a) = TC,, (g, m, @)
(Ali et al.[1]);

f9z) € TC, (g,p,q, ) <= € TS} (g.p,q. ). (1.10)

) T (p, @) (Owa [10])

(13) TS ( ,p,U Oé) = { T, (];7 n) (Yamakawa [15]);
En (00 (Owa. [10])

(1ii) TC, ((1 5P 0, O‘) = { CTf(p, n) (Yamakawa [15]);

We also have the following new classes:
(1) for b, = (%)", we get the class:

. o,0) = z n): Re Z(Dgf<z>)(q+1)) a}
TSn(pch ) )_ {f( )ETP( )R < (Dgf(z))(q) > )

where 0 < o < p—¢q,p € N,q,0 € No,p > ¢ and the operator Dj was
introduced and studied by Kamali and Orhan [9] and Aouf and Mostafa [3];

(i1) for by, = (’%(pk_p))m, we get the class:

m +1

(0 FE) Y
Im (N ¢ (9) ’
(L (X0 f(2)

where 0 < a <p—¢q,p e Nygom € Ng,p > ¢q,¢ > 0,\ > 0 and the operator

17" (A, £) was introduced and studied by Catas [4];

(13i) for by, = ("Zﬁ;l) (n > —p) we get the class:

: _ e (2@ )
TS (p,q,a,m) = {f(z) €T,(n): Re ( o (z))(q) ) > a} ,

where 0 < a <p—q,p € N,g € Ng;n > —p;p > q and the operator (77 is the
extended Ruscheweyh derivative of order n which was investigated by Raina

and Srivastava [11];

. . (1) _pla2)y_p-(ar)y_ s .
(iv) for by = (51)k_p(/;;)k,p...(pﬁs)k,p(kip)! > 0(e; € C,j =1,2,.r; 8 € C\
{0,—1,-2,...}; i=1,2,...s) we get the class:

: 2 (Hyo (o) ) <Z>) }
TS (p,q,«a) = z) €T, (n): Re v,
n(p q ) {f( ) € ( ) < (Hr,s (Oél) f)(q) (Z) >

O0<a<p—gqgzeUr<s+lyqrseNy;peN;p>q),

TS! (p,q,a, X\, ¢,m) = {f(z) ETp(n):Re<
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the operator H, ;s (ay) is the Dziok-Srivastava operator (see for details [7]).

2. General Classes Associated with Coefficient
Bounds

Unless otherwise mentioned, we assume in the reminder of this paper that
0<a<p—qnp€NpeNqgeNy,p>gq~v>0and(ih) is given by
(1.9).
In order to prove our results for functions belonging to the class T'V,, (g, p, ¢, @, 7) ,
we shall need the following lemmas given by Aouf and Mostafa [2].
Lemma 1[2, Theorem 1]|. Let a function f(z) be in the class T, (n). Then f
€ TS (g,p,q,) if and only if

o0

> (k—q—a)d(kq)byar <5 (p,q) (p—q—a). (2.1)

k=p+n

The result is sharp for the function f(z) given by

= P _ 5(p’q) (p—q—a) Zn+p
& = S ) ntp—a— @by (22)

Lemma 1[2, Theorem 2|. Let a function f(z) be in the class T, (n). Then
f(z) € TCy(g,p, 4, @) if and only if

> E];:Z; (k—q—a)d(kq) brar <0 (p.q) (p—q— ). (2.3)

The result is sharp for the function f(z) given by

_ d(pg)(p—g—)(p—q) b
IO = Spmrr—g—a@rp-gb Y

Definition 2. A function f (z) defined by (1.1) is said to be in the class TV, (g, p, ¢, o, )
(v > 0) if it satisfies the coefficient inequality:

o

3 (1_%7?’%‘;) (k—q— )6 (kog) byan < 8 (p.a) (p—q— ). (25)

k=p+n

It is easily to observe that

TV, (9,p,q,2,0) =TS (9,p,q,«) and TV, (9,p,¢,«,1) =TC,, (9,0, ¢, @) .
(2.6)

3. Growth and distortion theorems
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Theorem 1. If a function f (z) defined by (1.1) is in the class TV, (g,p,q, @, ), then

) n —g)l(p—qg— . .
5 (p,j) - ' (p, Q) ( +p Q) (p q )+ |Z|n |Z|P—J < ‘f(]) (Z)|
(”+P—J)'(n+p—q—0€)(1—’7+’ynpq>bn+p

, o(p,g)(n+p—q)(p—q—« n i
<o)+ .(p q)(n+p—q)(p—q n)+ | e
(n+p—J)!(n+p—q—oz)(1—7+7 ”)bn+p

(3.1)
The result is sharp for the function f (z)given by

f(z) _ P Y (p, Q) (p —q—- a) P (3'2)
d(n+pq)(n+p—q—a) (1—7+7”+” q) bntp

Proof. In view of Definition 1, we have

(1—7+7"+” ") (m+p—g—a)d(n+p,q) bup
6(p,q) (p—q—a)(n+p)

= (L=7 952 (k=g = )3 (ko) by
<2 d(p.q)(p—q—a)

k=p+n

which readily yields

e — M (p— g —
Z Ma, < d(p,g)(n+p—g)(p—q—a) ‘
k=p+n (TL +p —q—- Oé) (1 -7 + ,yn—&-p q> bn+p

(3.3)

Now, by differentiating both sides of (1.1) j times, we have

f(j)(z): _ Z akz —J
(k2n+p;p,n€N,q,JENo;p>maX{q,j})- (3.4)

Theorem 1 would follow from (3.3) and (3.4), respectively.

Finally, it is easy to see that the bounds in (3.1) are attained for the function
f (2)given by (3.2).

Remark 1. (i) Putting v = 0 and by = 1 in Theorem 1 , we obtain the result
obtained by Chen et al. [5, Theorem 7];

(77) Putting v = 1 and by = 1 in Theorem 1, we obtain the result obtained by
Chen et al. [5, Theorem §].
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4. Radii of close-to-convexity, starlikeness and
convexity

Theorem 2. Let the function f (z) defined by (1.1) be in the class TV, (g,p,q, a,7),
then

(1) f(2) is p—walently close-to-convezr of order ¢ (0 < ¢ <p) in |z| < 1,
where

ry = inf

k>n-+p §(p,q) (p—q—«a) k

L=+ (k=g —a)s (kp) b /- o\ |
{ ( =) (p “0) ()
(i1) f(2) is p—walently starlike of order ¢ (0 < ¢ < p) in |z| < ra, where

rp= inf {<1”+7ﬁ_3>(kqo‘)5(k’p>b’“ (P—%0>}H (4.2)

k>n-tp 6(p,q)(p—q—a) k—¢

(i4i) f(2) is p—valently convex of order ¢ (0 < ¢ < p) in |z| < rs, where

ry= inf {(17+7%><kqa)a(k’p)bk.p(p¢)}kp. (4.3)

k>ntp o(p,q)(p—q— ) k(k—¢)

FEach of these results is sharp for the function f(z) given by (3.2).
Proof. We prove (i) . It is sufficient to show that

f(2)

zp—1

—p‘ép—so (4] <ri:0 <o <p), (4.4)

where r; is given by (4.1), Indeed we find, again from (1.1) that

/

S ) —p‘ < i kay |2F7" .

2Pl
k=p+n
Thus
f (2)
»1 PSP ¢
if
O L (45)
(p—o)



General Class of p-Valent Functions of Higher Order 25

But, by (2.5), (4.5) will be true if

(1—7+7ﬁ> (k—q—a)d(k,p)by

k—p
"z < ’
(p—cp)|| - 6(p,q)(p—q— )
that is, if
() - g - )8 (hp) e (p_90> o
ry = inf )
k>ptn 6(p,q)(p—q— ) k

the proof of (7) is completed. The proof of (ii) and (éi7) is similar to (i) and
will be omitted.

Putting v = 0 in Theorem 2, we obtain the following corollary.

Corollary 1. Let the function f (z) defined by (1.1) be in the class T'S} (g, p,q, @) ,
then

(i) f(z) is p—walently close-to-convex of order ¢ (0 <@ <p) in |z| < ry,

where )
= inf {(kﬁ—q—aﬁ(k,p)bk (p—SO)}’“‘P’

kzpin | 6(pg)(p—q—a) \ K
(i7) f(z) is p—wvalently starlike of order ¢ (0 < ¢ < p) in |z| < ra, where

= S (F9))

(1it) f(z) is p—wvalently convex of order ¢ (0 < ¢ < p) in |z| < rs, where
1
o {(k—q—aﬁ(k,p)bk p(p—w)}’“‘”
rg = in : .
k2pin | 6 (p,q) (p—q—a) k(k—y)
FEach of these results is sharp for the function f(z) given by (2.2).

Putting v = 1 in Theorem 2, we obtain the following corollary.

Corollary 2. Let the function f (z) defined by (1.1) be in the class TC,, (g,p, q, @),
then

(1) f(z) is p—walently close-to-conver of order ¢ (0 <@ <p) in |z| < r,

where )

ry = inf f’%g(k_q_o‘)(s(k?;p)bk (P—w) H)
k>p+n 5(]9,(]) (p_(]—a) -

) 2)is p—uwalently starlike of order ¢ (0 < ¢ < p) in |z| < ro, where
2 2

1

B = 1 R RO LIRS R
Ty = mf{ o(p,q)(p—q— ) (k_gp)} ;

S}
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(1ii) f(z)is p—valently convez of order ¢ (0 < ¢ < p) in |z| < rs, where

_ inf {_];:Z(k_q_@)(s(kap)bk p(p—gp)}kp
rs = 1n .
k>p+n

d(p.a)p—qg—a) k(k—¢)
FEach of these results is sharp for the function f(z) given by (2.4).

5. Closure theorems

Let the functions f, (z) (v =1,2,....) be defined by

fu(z) = 2P — Z aszk(ak,y >0;v=12..1). (5.1)

k=n+p

We shall prove the following results for the closure functions in the class

TV (90,0 ,7) -
Theorem 3. Let the functions f,(z) (v =1,2,..1) defined by (5.1) be in the

class TV, (g,p,q,a, 7). Then the function h(z) defined by

hiz)=Y cfo(?) (cy 2 0), (5.2)

is also in the class TV, (g,p,q,®,7), where

i: c, = 1.
v=1

Proof. According to the definition of h(z), it can be written as

h(z) = Zlcv [zp — Z amzk ]

k=p+n
7 1 0o
— D k
= CyZ" — CylppZ
v=1 v=1 k=p+n
() 1
= 2P — g g Colpp 2" (5.3)
k=p+n v=1

Furthermore, since the functions f, (z) (v = 1,2, ...2) are in the class TV}, (¢, p, q, @, 7) ,
then

o0

> (1_7“‘7%) (k—q—a)d(k,q)brary <0 (p,q) (p—q—a).

k=p+n
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Hence
[o.¢] k - q 7
Yottt —— ) k—a—)5 (k@) bk Y cvano
k=p+n p—4q v=1

-yafs

which implies that h(z) be in the class T'V,, (g,p, ¢, a, 7).
Theorem 4. Let f,(z) = 2P and

> (1—7+7§—:g> (k_q_a)5<k7Q)bkak,v} <6(pg)(p—q—0a),

k=p+n

fe(z) = 2P — d(p.g)(p—q—0)

Fh>n+p). (54)
6 (k. q) (k—q—a) (1—7+vf,%3>bk

Then the function f(z) is in the clsss TV, (g,p,q, «, ) if and only if it can
be expressed in the form:

f = )\ Zp Z )\kfk (55)

k=p+n

where (A, > 0,A\;, >0,k >n+p)and \, + > A\ =1
k=p+n
Proof. Suppose that f(z) is expressed in the form (5.5). Then

FE =M+ 3 A |27 - d(p,q)(p—q—a) : p
k=p+n 5(k,q>(k—q—a)<1_,y+7p_:g>bk
L Z d(p,q)(p—q— ) : v
k=p+n5(l€,q)(k—q—a)<1_,y+,yp_:;7>bk
Hence
< §(k,q)(k—qg—a)(l—v+ k=q)
» q q Y ,Yp—q k 5(p,q)(p—q—a)
) g — . — A
e ) =a =) o (k,q) (k —q—a) (1 -7+ wTZ) bi
= > M=1-X)<1
k=p+n

Then, f(2) TV, (9,p, ¢, . 7) -
Conversely, suppose that f(z) € TV, (g9,p, q,«, 7). We may set

X kg (b—g—a) (1-y k)b .
= S0 —1-a) % (k2p+n),
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where ay, is given by (2.5). Then

f(z)=2P — Z a2

k=p+n
I - 5(p,q) (p—q—a) \

k:,;na(k,q)(k—q—a) (1—7+7]’j%g) b
=27 = ) [ = fu(2)]

k=p+n
= (1=X3)2" = Y Mefu(2)

k=p+n
=0+ ) Mefi(2) = f(2).
k=p+n

This completes the proof of Theorem 4.

6. Modified Hadamard product

For the functions f, (2) (v =1,2) defined by (5.1), we denote by (f1 * f2)
the modified Hadamard product (or convolution) of the functions f; and fo

(fr* f2)(z) = 2" = Z a1 k27" (6.1)

k=p+n

Theorem 5. Let each of the functions f, (z) (v =1,2) defined by (5.1) be in
the class TV, (g,p,q,c,7). Then (f1* f2) (2) € TV, (9,p,q,5,7), where

B (p—q) - n(p—q—0a)’5(p.q)
(1 =7+ 7S (n+p—q— )6 (n+p,q) buyp — (p— g — )" 3 (p, )
(6.2)
The result is sharp for the functions f,(z) (v =1,2) given by
£ (2) = 2= d(p.g)(p—gqg—0a) (0= 1.9).
o(n+pq)n+tp—q—a) (1 —7+7%) brtp
(6.3)

Proof. Emloying the technique used earlier by Schild and Silverman [12], we
need to find the largest [ such that

i (1—7+7§—I;’) (k—q—5)6 (k,q) by
2 5 (p.q)(p—q—B)

k=p+n

A 10k,2 S 1. (64)
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Since f,(2) € TV, (p,q,5,7) (v =1,2), we readily see that

0 <l—v+vﬁﬂ(k—m—®5%ﬂﬁk
2 6(p,a)(p—q—a)

k=p+n

agy <1 (v=1,2). (6.5)

Therefore, by the Cauchy-Schwarz inequality, we obtain

0 (1—7+v%@(k—m—®5%ﬂﬂk
2 6(p,a)(p—aq—a)

k=p+n

Vg, 10k 2 S;l. (6fﬂ

Thus we only need to show that

(k—q—ﬁ)a a (k—q—a) .
—(p—q—ﬁ) k10k2 < —) Vg 10 2, (6.7)

or, equivalently, that

(k—q—a)(p—q—P)
Vot S ) =g ) (68)

Hence, by the inequality (6.6), it is sufficient to prove that

(k—gq—a)(p—q—5)
(p—q—a)(k—q—pB)

0(p,g) (p—q—a)
@—7+7%@(h—4—®5%ﬂﬂk

< (6.9)

It follows from (6.9) that

(k—p)(p—q—)’3(p,q) |
(L=7+ =Dk —q— ) (k,q) by — (p— ¢ — )" 6 (p,q)
(6.10)

B<(p—q)—

Defining the function ® (k) by

(k=p)(p—q- )3 (p.q)
(1= +7=8) (k=g — )25 (k,q) b — (p—q— )’ 6 (p,q)’
(6.11)
we see that ® (k) is an increasing function of k(k > n + p). Therefore, we
conclude from (6.10) that

dk)=p—q) -

B<®(n+p)=(p-—2q)
n(p—q—a)’s(p,q)
(1 =7+ 752D +p —q— )26 (n+9,q) basy — (0 =g — )" 5 (p,q)°
(6.12)
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which completes the proof of the main assertion of Theorem 5.

Puttingy =0 and g (2) = (ffz) (p € N) in Theorem 5, we obtain the following
corollary.

Corollary 3. Let the functions f, (z) (v =1,2) defined by (5.1) be in the class
TSy (p.q, ). Then (fi* f2) (2) € TS} (p.q,B), where

n(p—q—a)’i(p.q . (6.13)

e e =P p) — (-1 = )

The result is sharp.

Remark 2. We note that the result obtained by Chen et al. [5, Theorem 5]
is not correct. The correct result is given by (6.13).

2P
(1-2)

Puttingy =1and g (z) = (p € N) in Theorem 5, we obtain the following

corollary.
Corollary 4. Let the functions f, (z) (v =1,2) defined by (5.1) be in the class
TC, (p,q,). Then (fi* f2) (2) € TC, (p,q, B) , where

n(p—q—a)?s(p,q)

%) (n+p—q—a(n+pq) —(p—q—a)s(pq)
(6.14)

B=({p—q) —
(

The result is sharp

Remark 3. We note that the result obtained by Chen et al. [5, Theorem 6]
is not correct. The correct result is given by (6.14).

Theorem 6. Let the functions f, (z) (v =1,2) defined by (5.1) be in the class
TV, (9,p,q,,7) . Then the function h(z) defined by

h(z)=2F— Z (ap1 +az ) 2, (6.15)
k=p+n

belongs to the class TV, (g,p,q,§,7), where

2n(p—q— )8 (p,q)

5 = (p - q)_ n+p—q

(L= + M2 (n+p—q— @28 (0 +p,q) busy = 2(p— g — )" 6 (p,q)

(6.16)
The result is sharp for the functions f, (z) (v =1,2) given by (6.3).
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Proof. Noting that

2

> (1= +75L) (k=g =) (k.q) by
5 (p,q)(p—q—a)

k=p+n

o0 (1—7+7ﬁ> (k—q—a)d(k q)b
6(p,q)(p—q—a)

S Ak < 1, (617)

k=p+n
for f,(2) € TV, (9,p,q,,y) (v=1,2), then we have

2

o0 - ﬂ o o
[ (=) - g - ) s (ko) b (@, +a2,) <1 (6.18)

2 2 §(p,q)(p—q— )

k=p+n

Thus we need to find the largest & such that
1— k2a) (k—q—a)?6 (k,q)b
(kj—q—f)<1 ’7+7p7q ( q CE) »q4) Ok
(p—qg—¢ ~ 2 3(pq) (p—q—a) ’

that is, that

(6.19)

2(k=p)(p—q—)’d(p.q)
(I=v+ 7D (k—q— )5 (k,q) bk —2(p— ¢ — @)’ 6 (p,q)
(6.20)

§<(p—q) —

Defining the function © (k) by

2(k—p)(p—q—)*5 (p,q)
(I=7+7=)(k—q—a)?0 (k,q) b —2(p—qg— )"0 (p,q)’
(6.21)
we observe that © (k) is an increasing function of k (k > n + p) . Therefore, we
conclude from (6.20) that

Ok)=({p-q9-

£<O(n+p) =({p—q)
2n(p—q— )’ (p,q)
(I=v+ 7 =) (n+p—q— )6 (n+p,q) bup —2(p — ¢ — )* 3 (p,q)’
(6.22)

which completes the proof of Theorem 6.

2P

12

Putting v = 0, and g (z) = (p € N) in Theorem 6, we obtain the following

corollary
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Corollary 5. Let the functions f,(z) (v =1,2) defined by (5.1) be in the
class T'S! (p,q, ). Then the function h(z) defined by (6.16) belongs to the
class T'S? (p,q,0) , where

2n(p—q— @)’ (p, q)
(n+p—qg—a)2(n+p,q) —2(p—q—a)’s(pq)

o=p—q -
Puttingy =1and g (z) = (f_pz) (p € N) in Theorem 6, we obtain the following
corollary.
Corollary 6. Let the functions f,(z) (v =1,2) defined by (5.1) be in the
class TC,, (p,q,a). Then the function h(z) defined by (6.15) belongs to the
class TC,, (p,q,p), where

2n(p—q— )3 (p,q)
(M=) (n+p—q— )2 (n+p.q) —2(p—q—a)’ 3 (p,q)

pP—q

p={p—-q) —

Remarks 4. (i) Putting v = 0 in Theorems 1, 3, 4, 5 and 6, respectively, we
obtain the results obtained by Aouf and Mostafa [2, Theorems 3, 5, 6, 8 and
10, respectively];

(77) Putting v = 1 in Theorems 1, 4, 5 and 6, respectively, we obtain the
results obtained by Aouf and Mostafa [2, Theorems 4, 7, 9 and 11, respectively].

7. Open problem

The authors suggest to study:
[e's) E— q %
Y (=— ) (k—q—a)s(k,q)brar < (p— g — @)5(p, q),
k=n+p r—q

where 0 < a<p—q,n,p e N,pe NjgeNy,p>gqg,v>0and(ih) is given
by (1.9).
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