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In the present paper, the author investigates some subordination
and superordination -preserving properties for analytic functions
associated with generalized multiplier transformations defined on
the space of normalized analytic functions in the open unit disk U.
Several Sandwich-type results associated with this transformations
is also derived.

Keywords: Analytic functions, Univalent functions, Cãtaş operator, Dif-
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1 Introduction

Let H := H(U) be the linear space of all analytic functions in the open unit
disc

U := {z ∈ C : |z| < 1}.

For a ∈ C and n ∈ N = {1, 2, 3, · · · }, let

H[a, n] =
{
f ∈ H : f(z) = a+ anz

n + an+1z
n+1 + · · ·

}
. (1)



Double subordination-preserving properties 113

We denote by A the subclass of the functions f ∈ H[a, 1] normalized with the
conditions f(0) = f ′(0)− 1 = 0 and fp+1(0) 6= 0 (p ∈ N). A function f(z) in
A is said to be univalent in U if f(z) is one to one in U.

Let the functions f and g be members of H. We say that f is subordinate
to g [12] and write

f ≺ g in U or f(z) ≺ g(z) (z ∈ U)

if there exists a Schwarz function w(z), which (by definition) is analytic in
U with w(0) = 0 and |w(z)| < 1 such that

f(z) = g(w(z)) (z ∈ U).

It follows from the Schwarz lemma that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then (see, e.g; [17])

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

We often say that g is the subordinating function and f is the subordinated
function. Or equivalently, g is the dominant and f is the subordinant in the
subordination.

We need the following definitions for our present investigation:

Definition 1.1. (see [12]) Let ψ : C2 −→ C and let h be univalent in U. If
p is analytic in U and satisfies the following differential subordination:

ψ(p(z), zp′(z)) ≺ h(z), (2)

then p is called a solution of the differential subordination (2). A univalent
function q is called a dominant of the solutions of the differential subordination
(2) or more simply, a dominant if p(z) ≺ q(z) for all p satisfying (2). A
dominant q̃ that satisfies q̃(z) ≺ q(z) for all dominants q of (2) is said to be
the best dominant of (2).

Definition 1.2. (see [13]) Let φ : C2 −→ C and let h be analytic in U. If
p and φ(p(z), zp′(z)) are univalent in U and satisfy the differential superordi-
nation:

h(z) ≺ φ(p(z), zp′(z)), (3)

then p is called a solution of the differential superordination (3). An analytic
function q is called a subordinant of the solutions of the differential superor-
dination (3) or more simply, a subordinant if q(z) ≺ p(z) for all p satisfying
(3). A univalent subordinant q̃ that satisfies q(z) ≺ q̃(z) for all subordinants q
of (3) is said to be the best subordinant of (3).



114 Trailokya Panigrahi

Definition 1.3. (see [12], Definition 2.2b, p. 21) We denote by Q the class
of functions f that are analytic and injective on Ū \ E(f), where

E(f) = {ξ : ξ ∈ ∂U and lim
z−→ξ

f(z) =∞}

and are such that f ′(ξ) 6= 0 for ξ ∈ ∂U \ E(f).

Definition 1.4. (see [13]) A function L(z, t) defined on U× [0,∞) is called
a subordination (or a Löwner) chain if L(., t) is analytic and univalent in U
for all t ∈ [0,∞), L(z, .) is continuously differentiable on [0,∞) for all z ∈ U
and L(z, t1) ≺ L(z, t2) for all 0 ≤ t1 < t2 and z ∈ U.

Let A denote the family of normalized functions of the form:

f(z) = z +
∞∑
n=2

anz
n (4)

which are analytic in U. Let f, g ∈ A, where f(z) is defined by (4) and g(z) is
given by

g(z) = z +
∞∑
n=2

bnz
n, (5)

then the Hadamard product (or convolution) of f and g denoted by f ∗ g is
defined by

(f ∗ g)(z) := z +
∞∑
n=2

anbnz
n =: (g ∗ f)(z). (6)

For any real numbers k and λ, Cãtaş [5] defined the multiplier transforma-
tion I(δ, λ, l) on A by the following infinite series:

I(δ, λ, l)f(z) = z+
∞∑
n=2

[
1 + λ(n− 1) + l

1 + l

]δ
anz

n (n ∈ N, δ, λ, l ≥ 0; z ∈ U).

(7)
Finding sufficient conditions using differential subordination for general-

ized multiplier transformation is an important topic of research in Geometric
Function Theory. In recent years, several authors (see, for details, [6], [8]) have
obtained various basic properties such as inclusion, subordination , superordi-
nation, convolution properties of the multiplier transformation defined by (7).
Now using the convolution, we extend the multiplier transformation defined in
(7) to more generalized class as follows:

Define

φδ(λ, l; z) = z +
∞∑
n=2

[
1 + l

1 + λ(n− 1) + l

]δ
zn (δ, λ ∈ R, δ, λ, l ≥ 0; z ∈ U).

(8)
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Corresponding to the function φδ(λ, l; z), we define the function φδ,†(λ, l; z),
the generalized multiplicative inverse of φδ(λ, 1; z) given by

φδ(λ, l; z) ∗ φδ,†(λ, l; z) =
z

(1− z)µ
(µ > 0). (9)

If µ = 1, the function φδ,†(λ, l; z) is the inverse of φδ(λ, l; z) with respect to
the Hadamard product. Using this function we define the family of transforms
Iδ(λ, µ, l) : A −→ A as follows:

Iδ(λ, µ, l)f(z) = φδ,†(λ, l; z) ∗ f(z)

= z +
∞∑
n=2

(µ)n−1
(1)n−1

[
1 + λ(n− 1) + l

1 + l

]δ
anz

n (δ, λ, l ≥ 0, µ > 0; z ∈ U)

(10)

where (a)n is the Pochhammer symbol (or the shifted factorial) defined (in
terms of the familiar Gamma function) by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1 (n = 0)

a(a+ 1) · · · (a+ n− 1) (n ∈ N).

The transformation Iδ(λ, µ, l) generalizes several previously studied familiar
operators. The following are the some of the interesting particular cases:

• for δ = m (m ∈ N0 := N ∪ {0}), λ ≥ 0, l = 0, µ = 1, the operator
Im(λ, 1, 0) = Dm

λ was introduced and studied by Al-Oboudi [2];

• for δ = m, λ = 1, µ = 1, l = 0, the operator Im(1, 1, 0) = Dm was
introduced and studied in [16];

• for δ = m, λ = 1, µ = 1, the operator Im(1, 1, l) = Iml was studied by
Cho and Srivastava [7];

• for δ = m, λ = µ = l = 1, the operator Im(1, 1, 1) = Im was studied by
Uralegaddi and Somanatha [18];

• for δ = m, µ = 1, l = 0, the operator Im(λ, 1, 0) = Dm
λ was introduced

and studied by Acu and Owa [1].

Note that

I0(1, 1, 0)f(z) = f(z) and I1(1, 1, 0)f(z) = zf ′(z) (11)

Iδ+1(1, 1, 0)f(z) = Iδ(1, 2, 0)f(z) = Dδ+1f(z). (12)
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It can be easily shown from (10) that

(1 + l)Iδ+1(λ, µ, l)f(z) = (1− λ+ l)Iδ(λ, µ, l)f(z) + λz[Iδ(λ, µ, l)f((z)]′ (13)

and

µIδ(λ, µ+ 1, l)f(z) = z[Iδ(λ, µ, l)f(z)]′ + (µ− 1)Iδ(λ, µ, l)f(z). (14)

Recently, several authors obtained many interesting results involving various
integral operators associated with differential subordination and superordi-
nation. For example, using the principle of subordination between analytic
functions, Miller et al.[10] and Owa and Srivastava [14] investigated some
subordination- preserving properties for certain integral operators while Bul-
boaca [3, 4] investigated the subordination as well as superordination- preserv-
ing properties of certain non linear integral operators.

Motivated by aforementioned work, in this paper the author obtains the
subordination and superordination- preserving properties associated with the
operator Iδ(λ, µ, l) defined in (10). Several Sandwich-type results involving
this operator are also derived.

2 Preliminaries Lemmas

The proof of the theorems proceed through a number of steps, stated below
as lemmas.

Lemma 2.1. (see [9, 12]) Suppose that the function H : C2 −→ C satisfies
the condition:

<H(is, t) ≤ 0,

for all real s and t ≤ −n(1+s2)
2

, where n is a positive integer. If the function
p(z) = 1 + pnz

n + · · · is analytic in U and

<H(p(z), zp′(z)) > 0 (z ∈ U),

then <{p(z)} > 0 in U.

Lemma 2.2. (see [11]) Let β, γ ∈ C with β 6= 0, and let h ∈ H(U) with
h(0) = c. If <{βh(z) + γ} > 0 for z ∈ U, then the solution of the differential
equation:

q(z) +
zq′(z)

βq(z) + γ
= h(z) (z ∈ U; q(0) = c)

is analytic in U and satisfies <{βq(z) + γ} > 0 (z ∈ U).



Double subordination-preserving properties 117

Lemma 2.3. (see [12]) Let q ∈ Q with q(0) = a and let p(z) = a+anz
n+· · ·

be analytic in U with p(z) 6= a and n ≥ 1. If p is not subordinate to q, then there
exists the points z0 = r0e

iθ ∈ U and ξ0 ∈ ∂U \ E(f) for which p(Ur0) ⊂ q(U),

p(z0) = q(ξ0), and z0p
′(z0) = mξ0q

′(ξ0) (m ≥ n ≥ 1)

where Ur0 = {z ∈ C : |z| < r0}.

Lemma 2.4. (see [13]) Let H[a, 1] = {f ∈ H : f(0) = a, f ′(0) 6= 0} and
q ∈ H[a, 1], ψ : C2 −→ C. Also set ψ(q(z), zq′(z)) ≡ h(z). If L(z, t) =
ψ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩Q, then

h(z) ≺ ψ(p(z), zp′(z)) (z ∈ U)

implies that
q(z) ≺ p(z) (z ∈ U).

Furthermore, if the differential equation ψ(q(z), zq′(z)) = h(z) has a univalent
solution q ∈ Q, then q is the best subordinant.

Lemma 2.5. (see [15]) The function L(z, t) : U× [0,∞) −→ C of the form

L(z, t) = a1(t)z + a2(t)z
2 + · · ·

with a1(t) 6= 0 for all t ≥ 0 and limt−→∞ |a1(t)| = ∞ is a subordination chain
if and only if

<
[
z∂L(z, t)/∂z

∂L(z, t)/∂t

]
> 0 (z ∈ U; 0 ≤ t <∞).

3 Main Results

Theorem 3.1 contains subordination results for the integral operator Iδ(λ, µ, l)
defined by equation (10).

Theorem 3.1. Let f, g ∈ A and Suppose that

<
{

1 +
zφ′′(z)

φ′(z)

}
> −η (z ∈ U) (15)

where

φ(z) :=

[
Iδ+1(λ, µ, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
(16)

and η is given by

η =
λ2 + α2(1 + l)2 − |λ2 − α2(1 + l)2|

4αλ(1 + l)
(α > 0, l ≥ 0, λ > 0). (17)
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Then the subordination condition:[
Iδ+1(λ, µ, l)f(z)

Iδ(λ, µ, l)f(z)

] [
Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ+1(λ, µ, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
(18)

implies that [
Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ(λ, µ, l)g(z)

z

]α
. (19)

Moreover, the function
[
Iδ(λ,µ,l)g(z)

z

]α
is the best dominant.

Proof. Let us define the functions F (z) and G(z) in U by

F (z) :=

[
Iδ(λ, µ, l)f(z)

z

]α
and G(z) :=

[
Iδ(λ, µ, l)g(z)

z

]α
(z ∈ U) (20)

respectively. Now, we show that, if the function q(z) is defined by

q(z) := 1 +
zG′′(z)

G′(z)
(z ∈ U), (21)

then
<{q(z)} > 0 (z ∈ U).

Taking the logarithmic differentiation on both sides of the second equation in
(20) and using the identity (13) for g ∈ A in the resulting equation, we get

φ(z) = G(z) +
λzG′(z)

α(1 + l)
(22)

where the function φ(z) is defined in (16).
Differentiating both sides of (22) with respect to z gives

φ′(z) =

(
1 +

λ

α(1 + l)

)
G′(z) +

λ

α(1 + l)
zG′(z). (23)

From (21) and (23) after simplification yields

1 +
zφ′′(z)

φ′(z)
=1 +

zG′′(z)

G′(z)
+

zq′(z)

q(z) + α(1+l)
λ

=q(z) +
zq′(z)

q(z) + α(1+l)
λ

≡ h(z) (z ∈ U). (24)

Therefore, it follows from (15) and (24) that

<
{
h(z) +

α(1 + l)

λ

}
> 0 (z ∈ U). (25)
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Hence by Lemma 2.2 we deduce that the differential equation (24) has a solu-
tion q ∈ H(U) with h(0) = q(0) = 1.
Let us define the function

H(u, v) = u+
v

u+ α(1+l)
λ

+ η, (26)

where η is given by (17). From (15), (24) and (26) it follows that

<{H (q(z), zq′(z))} > 0 (z ∈ U).

Now we proceed to prove that

<{H(is, t)} ≤ 0 for all real s and t ≤ −(1 + s2)

2
. (27)

From (26), we have

<{H(is, t)} = <

{
is+

t

is+ α(1+l)
λ

+ η

}

=
t
(
α(1+l)
λ

)
∣∣∣is+ α(1+l)

λ

∣∣∣2 + η

≤ − ψη(s)

2
∣∣∣is+ α(1+l)

λ

∣∣∣2 (28)

where

ψη(s) =

(
α(1 + l)

λ
− 2η

)
s2 − α(1 + l)

λ

(
2η
α(1 + l)

λ
− 1

)
. (29)

For η given by (17), we observe that the coefficient of s2 in the quadratic
expression ψη(s) given by (29) is positive or equal to zero. Moreover, the
discriminant ∆ of ψη(s) in (29) is given by

∆

4
= −4

α(1 + l)

λ
η2 + 2

[
1 +

α2(1 + l)2

λ2

]
η − α(1 + η)

λ

which, for assumed value of η given by (17) gives

∆ = 0,

and so that the quadratic expression for s in ψη(s) given by (29) is a perfect
square. Therefore, it follows from (28) that

<{H(is, t)} ≤ 0

(
s ∈ R, t ≤ −1 + s2

2

)
. (30)
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Thus by application of Lemma 2.1, we conclude that

<{q(z)} > 0 (z ∈ U).

That is the function G(z) defined by (20) is convex (univalent) in U.
Next, we will prove that the subordination condition (18) implies that

F (z) ≺ G(z) (z ∈ U) (31)

for the functions F and G defined by (20). Without loss of generality, we can
assume that the function G(z) is analytic, univalent on Ū and G′(ζ) 6= 0 for
|ζ| = 1. Otherwise, we replace F and G by Fr(z) = F (rz) and Gr(z) = G(rz)
respectively for r ∈ (0, 1) . Then these new functions satisfy the conditions of
the theorem on Ū. Thus we need to prove that Fr(z) ≺ Gr(z) for all r ∈ (0, 1),
which the result (31) follows by letting r −→ 1−.
To prove (31), let us define the function L(z, t) by

L(z, t) := G(z) +
1 + t
α(1+l)
λ

zG′(z) (z ∈ U; 0 ≤ t <∞). (32)

Since G is convex in U and α(1+l)
λ

> 0, we obtain

∂L(z, t)

∂z

∣∣
z=0

= G′(0)

[
1 +

1 + t
α(1+l)
λ

]
=

[
1 +

1 + t
α(1+l)
λ

]
6= 0 (z ∈ U; 0 ≤ t <∞).

This shows that the function

L(z, t) = a1(t)z + · · ·

satisfies the conditions a1(t) 6= 0 for all t ∈ [0,∞) and limt−→∞|a1(t)| = ∞.
Furthermore,

<

{
z∂L(z,t)
∂z

∂L(z,t)
∂t

}
= <

{
α(1 + l)

λ
+ (1 + t)q(z)

}
> 0 (z ∈ U).

Thus, by virtue of Lemma 2.5, L(z, t) is a subordination chain. Hence, it
follows from Definition 1.4 that

φ(z) = G(z) +
zG′(z)
α(1+l)
λ

= L(z, 0)

and
L(z, 0) ≺ L(z, t) (z ∈ U; 0 ≤ t <∞).

This implies that

L(ζ, t) /∈ L(U, 0) = φ(U) (ζ ∈ ∂U; 0 ≤ t <∞). (33)
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Now suppose that the function F is not subordinate to G, then by Lemma 2.3
there exists two points z0 ∈ U and ζ0 ∈ ∂U such that

F (z0) = G(ζ0) and z0F
′(z0) = (1 + t)ζ0G

′(ζ0) (0 ≤ t <∞). (34)

Hence, we have

L(ζ0, t) = G(ζ0) + (1 + t)
ζ0G

′(ζ0)
α(1+l)
λ

= F (z0) +
z0F

′(z0)
α(1+l)
λ

=

[
Iδ(λ, µ, l)f(z0)

z0

]α [
Iδ+1(λ, µ, l)f(z0)

Iδ(λ, µ, l)f(z0)

]
∈ φ(U),

by virtue of the subordination condition (18). This contradicts to (33). Thus,
the subordination condition (18) must imply the subordination given by (31).
Considering F = G, we see that the function G(z) is the best dominant. Thus,
the prove of Theorem 3.1 is completed.

Letting δ = m, λ = µ = 1 in Theorem 3.1 we obtain the following result:

Corollary 3.2. Let f, g ∈ A and suppose that

<
(

1 +
zφ′′(z)

φ′(z)

)
> −η1, (35)

where

φ(z) =

[
Im+1
l g(z)

Iml g(z)

] [
Iml g(z)

z

]α
(36)

and η1 is given by

η1 =
1 + α2(1 + l)2 − |1− α2(1 + l)2|

4α(1 + l)
. (37)

Then the subordination condition:[
Im+1
l f(z)

Iml f(z)

] [
Iml f(z)

z

]α
≺
[

Im+1
l g(z)

Iml g(z)

] [
Iml g(z)

z

]α
(38)

implies [
Iml f(z)

z

]α
≺
[

Iml g(z)

z

]α
(39)

and the function
(

Iml g(z)

z

)α
is the best dominant.

Taking l = 0 in Corollary 3.2, we have
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Corollary 3.3. Let f, g ∈ A and suppose that

<
(

1 +
zφ′′(z)

φ′(z)

)
> −η2, (40)

where

φ(z) =

[
Dm+1g(z)

Dmg(z)

] [
Dmg(z)

z

]α
(41)

and η2 is given by

η2 =
1 + α2 − |1− α2|

4α
. (42)

Then the subordination condition[
Dm+1f(z)

Dmf(z)

] [
Dmf(z)

z

]α
≺
[

Dm+1g(z)

Dmg(z)

] [
Dmg(z)

z

]α
(43)

implies [
Dmf(z)

z

]α
≺
[

Dmg(z)

z

]α
(44)

and the function
(

Dmg(z)
z

)α
is the best dominant.

Putting δ = m = 0 in Corollary 3.3 and using the relation (11) we get the
following results:

Corollary 3.4. Let f, g ∈ A and suppose that

<
(

1 +
zφ′′(z)

φ′(z)

)
> −η3, (45)

where

φ(z) =

[
zg′(z)

g(z)

] [
g(z)

z

]α
(46)

and η3 is given by

η3 =
1 + α2 − |1− α2|

4α
. (47)

Then the subordination condition:[
zf ′(z)

f(z)

] [
f(z)

z

]α
≺
[
zg′(z)

g(z)

] [
g(z)

z

]α
(48)

implies [
f(z)

z

]α
≺
[
g(z)

z

]α
(49)

and the function
(
g(z)
z

)α
is the best dominant.
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By employing the same technique as in the proof of Theorem 3.1 and using
the identity (14) instead of (13), we obtain the following theorem.

Theorem 3.5. Let f, g ∈ A and µ > 0. Suppose that

<
{

1 +
zψ′′(z)

ψ′(z)

}
> −σ1 (50)

where

ψ(z) =

[
Iδ(λ, µ+ 1, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
(51)

and σ1 is given by

σ1 =
1 + α2µ2 − |1− α2µ2|

4αµ
(α > 0). (52)

Then, the subordination condition:[
Iδ(λ, µ+ 1, l)f(z)

Iδ(λ, µ, l)f(z)

] [
Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ(λ, µ+ 1, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
,

(53)
implies that [

Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ(λ, µ, l)g(z)

z

]α
. (54)

Moreover, the function
[
Iδ(λ,µ,l)g(z)

z

]α
is the best dominant.

Putting δ = m, µ = λ = 1, l = 0 in Theorem 3.5 and using the relation
(12) we obtain the result of Corollary 3.3.

As we know if f is subordinate to h, then h is superordinate to f . Now
we investigate a dual problem regarding Theorem 3.1 in the sense that the
subordinations are replaced by superordinations.

Theorem 3.6. Let f, g ∈ A and λ > 0. Suppose that

<
{

1 +
zφ′′(z)

φ′(z)

}
> −η (55)

where

φ(z) =

[
Iδ+1(λ, µ, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
(56)

and η is given by (17). If the function
[
Iδ+1(λ,µ,l)g(z)
Iδ(λ,µ,l)g(z)

] [
Iδ(λ,µ,l)g(z)

z

]α
is univalent

in U and
[
Iδ(λ,µ,l)g(z)

z

]α
∈ Q, then the superordination condition:[

Iδ+1(λ, µ, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
≺
[

Iδ+1(λ, µ, l)f(z)

Iδ(λ, µ, l)f(z)

] [
Iδ(λ, µ, l)f(z)

z

]α
,

(57)
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implies that [
Iδ(λ, µ, l)g(z)

z

]α
≺
[

Iδ(λ, µ, l)f(z)

z

]α
. (58)

Moreover, the function
[
Iδ(λ,µ,l)g(z)

z

]α
is the best subordinant.

Proof. The proof of the theorem follows the same lines as that of Theorem
3.1. We will give only main steps.

Let the functions F, G and q are defined by (20) and (21) respectively. As
in the proof of Theorem 3.1, we have

<{q(z)} > 0 (z ∈ U).

That is G is defined by (20) is convex (univalent) in U. Next, to arrive at our
desired result, we show that G ≺ F . For this purpose, we defined the function
L(z, t) as (32).

Since G is convex and α(1+l)
λ

> 0, by applying a similar method as in
Theorem 3.1 we deduce that L(z, t) is a subordination chain. Therefore, by
using Lemma 2.4, we conclude that the superordination condition (57) must
imply the superordination G ≺ F . Moreover, since the differential equation

φ(z) = G(z) +
zG′(z)
α(1+l)
λ

= ϕ(G(z), zG′(z))

has a univalent solution G, it is the best subordinant of the given differential
superordination. This completes the proof of Theorem 3.6.

Letting δ = m, λ = µ = 1 in Theorem 3.6 we obtain the following:

Corollary 3.7. Let f, g ∈ A and suppose that

<
(

1 +
zφ′′(z)

φ′(z)

)
> −η1,

where

φ(z) =

[
Im+1
l g(z)

Iml g(z)

] [
Iml g(z)

z

]α
and η1 is given by (37). If the function

[
Im+1
l g(z)

Iml g(z)

] [
Iml g(z)

z

]α
is univalent in U

and
[
Iml g(z)

z

]α
∈ Q, then the superordination condition:

φ(z) =

[
Im+1
l g(z)

Iml g(z)

] [
Iml g(z)

z

]α
≺
[

Im+1
l f(z)

Iml f(z)

] [
Iml f(z)

z

]α
implies [

Iml g(z)

z

]α
≺
[

Iml f(z)

z

]α
and the function

(
Iml g(z)

z

)α
is the best subordinant.
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Putting l = 0 in Corollary 3.7 we get

Corollary 3.8. Let f, g ∈ A and suppose that

<
(

1 +
zφ′′(z)

φ′(z)

)
> −η2,

where

φ(z) =

[
Dm+1g(z)

Dmg(z)

] [
Dmg(z)

z

]α
and η2 is given by (42). If the function

[
Dm+1g(z)
Dmg(z)

] [
Dmg(z)

z

]α
is univalent in U

and
[
Dmg(z)

z

]α
∈ Q, then the superordination condition:

φ(z) =

[
Dm+1g(z)

Dmg(z)

] [
Dmg(z)

z

]α
≺
[

Dm+1f(z)

Dmf(z)

] [
Dmf(z)

z

]α
implies [

Dmg(z)

z

]α
≺
[

Dmf(z)

z

]α
and the function

(
Dmg(z)

z

)α
is the best subordinant.

Letting δ = m = 0 in Corollary 3.8 and using the relation (11) we get the
following results:

Corollary 3.9. Let f, g ∈ A and suppose that

<
(

1 +
zφ′′(z)

φ′(z)

)
> −η3,

where

φ(z) =

[
zg′(z)

g(z)

] [
g(z)

z

]α
and η3 is given by (47). If the function

[
zg′(z)
g(z)

] [
g(z)
z

]α
is univalent in U and[

g(z)
z

]α
∈ Q, then the superordination condition:[

zg′(z)

g(z)

] [
g(z)

z

]α
≺
[
zf ′(z)

f(z)

] [
f(z)

z

]α
implies [

g(z)

z

]α
≺
[
f(z)

z

]α
and the function

(
g(z)
z

)α
is the best subordinant.
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By using the same technique as in the proof of Theorem 3.6 and using the
identity (14) instead of (13), we obtain the following:

Theorem 3.10. Let f, g ∈ A and µ > 0. Suppose that

<
{

1 +
zψ′′(z)

ψ′(z)

}
> −σ1 (59)

where

ψ(z) =

[
Iδ(λ, µ+ 1, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
(60)

and σ1 is given by (52). If the function
[
Iδ(λ,µ+1,l)g(z)
Iδ(λ,µ,l)g(z)

] [
Iδ(λ,µ,l)g(z)

z

]α
is univalent

in U and
[
Iδ(λ,µ,l)g(z)

z

]α
∈ Q, then the superordination condition:[

Iδ(λ, µ+ 1, l)g(z)

Iδ(λ, µ, l)g(z)

] [
Iδ(λ, µ, l)g(z)

z

]α
≺
[

Iδ(λ, µ+ 1, l)f(z)

Iδ(λ, µ, l)f(z)

] [
Iδ(λ, µ, l)f(z)

z

]α
,

(61)
implies that [

Iδ(λ, µ, l)g(z)

z

]α
≺
[

Iδ(λ, µ, l)f(z)

z

]α
. (62)

Moreover, the function
[
Iδ(λ,µ,l)g(z)

z

]α
is the best subordinant.

Combining Theorems 3.1, 3.6 and Theorems 3.5, 3.10, we obtain the fol-
lowing ”Sandwich-type theorems”.

Theorem 3.11. Let f, gk ∈ A (k = 1, 2) and suppose that

<
{

1 +
zφ′′k(z)

φ′k(z)

}
> −η (63)

where

φk(z) =

[
Iδ+1(λ, µ, l)gk(z)

Iδ(λ, µ, l)gk(z)

] [
Iδ(λ, µ, l)gk(z)

z

]α
(µ, λ, α > 0, l ≥ 0; z ∈ U)

(64)

and η is given by (17). If the function
[
Iδ+1(λ,µ,l)f(z)
Iδ(λ,µ,l)f(z)

] [
Iδ(λ,µ,l)f(z)

z

]α
is univalent

in U and
[
Iδ(λ,µ,l)f(z)

z

]α
∈ Q, then the condition:[

Iδ+1(λ, µ, l)g1(z)

Iδ(λ, µ, l)g1(z)

] [
Iδ(λ, µ, l)g1(z)

z

]α
≺
[

Iδ+1(λ, µ, l)f(z)

Iδ(λ, µ, l)f(z)

] [
Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ+1(λ, µ, l)g2(z)

Iδ(λ, µ, l)g2(z)

] [
Iδ(λ, µ, l)g2(z)

z

]α
(65)
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implies that[
Iδ(λ, µ, l)g1(z)

z

]α
≺
[

Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ(λ, µ, l)g2(z)

z

]α
. (66)

Moreover, the function
[
Iδ(λ,µ,l)g1(z)

z

]α
and

[
Iδ(λ,µ,l)g2(z)

z

]α
are respectively the

best subordinant and the best dominant.

Theorem 3.12. Let f, gk ∈ A (k = 1, 2) and µ > 0. Suppose that

<
{

1 +
zψ′′k(z)

ψ′k(z)

}
> −σ1 (67)

where

ψk(z) =

[
Iδ(λ, µ+ 1, l)gk(z)

Iδ(λ, µ, l)gk(z)

] [
Iδ(λ, µ, l)gk(z)

z

]α
(λ, α > 0, l ≥ 0; z ∈ U)

(68)

and σ1 is given by (52). If the function
[
Iδ(λ,µ+1,l)f(z)
Iδ(λ,µ,l)f(z)

] [
Iδ(λ,µ,l)f(z)

z

]α
is univalent

in U and
[
Iδ(λ,µ,l)f(z)

z

]α
∈ Q, then the condition:[

Iδ(λ, µ+ 1, l)g1(z)

Iδ(λ, µ, l)g1(z)

] [
Iδ(λ, µ, l)g1(z)

z

]α
≺
[

Iδ(λ, µ+ 1, l)f(z)

Iδ(λ, µ, l)f(z)

] [
Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ(λ, µ+ 1, l)g2(z)

Iδ(λ, µ, l)g2(z)

] [
Iδ(λ, µ, l)g2(z)

z

]α
(69)

implies that[
Iδ(λ, µ, l)g1(z)

z

]α
≺
[

Iδ(λ, µ, l)f(z)

z

]α
≺
[

Iδ(λ, µ, l)g2(z)

z

]α
. (70)

Moreover, the function
[
Iδ(λ,µ,l)g1(z)

z

]α
and

[
Iδ(λ,µ,l)g2(z)

z

]α
are respectively the

best subordinant and the best dominant.

By taking δ = m and λ = µ = 1 in Theorem ?? we obtain the following
corollary.

Corollary 3.13. Let f, gk ∈ A (k = 1, 2) and suppose that

<
{

1 +
zφ′′k(z)

φ′k(z)

}
> −η1

where

φk(z) =

[
Im+1
l gk(z)

Iml gk(z)

] [
Iml gk(z)

z

]α
(z ∈ U)
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and η1 is given by (37). If the function
[
Im+1
l f(z)

Iml f(z)

] [
Iml f(z)

z

]α
is univalent in U

and
[
Iml f(z)

z

]α
∈ Q, then the condition:[

Im+1
l g1(z)

Iml g1(z)

] [
Iml g1(z)

z

]α
≺
[

Im+1
l f(z)

Iml f(z)

] [
Iml f(z)

z

]α
≺
[

Im+1
l g2(z)

Iml g2(z)

] [
Iml g2(z)

z

]α
implies that [

Iml g1(z)

z

]α
≺
[

Iml f(z)

z

]α
≺
[

Iml g2(z)

z

]α
,

and the function
[
Iml g1(z)

z

]α
and

[
Iml g2(z)

z

]α
are respectively the best subordinant

and the best dominant.

By putting l = 0 in Corollary 3.13, we have:

Corollary 3.14. Let f, gk ∈ A (k = 1, 2) and suppose that

<
{

1 +
zφ′′k(z)

φ′k(z)

}
> −η2

where

φk(z) =

[
Dm+1gk(z)

Dmgk(z)

] [
Dmgk(z)

z

]α
(z ∈ U)

and η2 is given by (42). If the function
[
Dm+1f(z)
Dmf(z)

] [
Dmf(z)

z

]α
is univalent in U

and
[
Dmf(z)

z

]α
∈ Q, then the condition:[

Dm+1g1(z)

Dmg1(z)

] [
Dmg1(z)

z

]α
≺
[

Dm+1f(z)

Dmf(z)

] [
Dmf(z)

z

]α
≺
[

Dm+1g2(z)

Dmg2(z)

] [
Dmg2(z)

z

]α
implies that [

Dmg1(z)

z

]α
≺
[

Dmf(z)

z

]α
≺
[

Dmg2(z)

z

]α
,

and the function
[
Dmg1(z)

z

]α
and

[
Dmg2(z)

z

]α
are respectively the best subordinant

and the best dominant.

Further, by letting δ = m = 0 in Corollary 3.14 and using the relation (11)
we get the following result:

Corollary 3.15. Let f, gk ∈ A (k = 1, 2) and suppose that

<
{

1 +
zφ′′k(z)

φ′k(z)

}
> −η3
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where

φk(z) =

[
zg′k(z)

gk(z)

] [
gk(z)

z

]α
(z ∈ U)

and η3 is given by (47). If the function
[
zf ′(z)
f(z)

] [
f(z)
z

]α
is univalent in U and[

f(z)
z

]α
∈ Q, then the condition:[
zg′1(z)

g1(z)

] [
g1(z)

z

]α
≺
[
zf ′(z)

f(z)

] [
f(z)

z

]α
≺
[
zg′2(z)

g2(z)

] [
g2(z)

z

]α
implies that [

g1(z)

z

]α
≺
[
f(z)

z

]α
≺
[
g2(z)

z

]α
,

and the function
[
g1(z)
z

]α
and

[
g2(z)
z

]α
are respectively the best subordinant and

the best dominant.

4 Open Problem

The author suggests to introduce different operator on the function and study
the above results in the context of the modified operator.
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