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Abstract
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1 Introduction

We consider a root system R in R? R, a fixed positive subsystem and
k a non-negative multiplicity function defined on R, the Cherednik operators
T;,j =1,2,..,d, (see [2]), are defined for f of class C'(R?) by

TH(w) = 5 @)+ 3 T (1) = foua)) = pf().

where (.,.) is the usual scalar product, o, is the orthogonal reflection in the

1
hyperplane orthogonal to «, p = 3 Z koo and k is invariant by the finite
aER 4
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reflection group W generated by the reflections o,, @ € R.

For d = 1 and W = Z, the root system is R = {—2a, o, o, 2a}, with « the
positive root. We will take the normalization a = 2. The positive root system
is R, = {a,2a}. The Cherednik operator is defined for f in C*(R) by

2k, 4koq

TH fla) = /(@) + ( e @) = f=0)) = pf (@)

1— € 9oz

with p = ks + kao-
It is also equal to

TR f(z) = f'(2)+((katkaa) coth(z) +kaa tanh(2)){ f(2) = f (=)} = pf (=2),
(1)
with £, > 0 and ks, > 0. More precisely there are three cases
- 1st case : ko > 0, ko, = 0, which corresponds to the positive root system
R+ = {a} (the reduced case).
- 2nd case : k, = 0, ko, > 0, which corresponds to the positive root system

RJr = {20&}
- 3rd case : k, > 0, koo, > 0, which corresponds to the positive root system
Ry ={a,2a}.

The operator (1) is a particular case of the operator

T () = /() + (a coth(x) + bo tanh(){/(2) = F(~2)} — pf (=),

with ag > 0,00 > 0 and p = ag + by.
This operator is called the Jacobi-Cherednik operator.

In this paper, we recall the main results of the Harmonic Analysis associated
with the Jacobi-Cherednik operator T"*) we introduce the Hypergeometric
Fourier transform of distributions and we study the Jacobi-Cherednik convo-
lution product on space of distributions (see [8,10]).

These results have permitted to study the regularity of the solution U of the
convolution equation on the form

% *p k! U= W,

where V in &'(R) and U, W in D'(R). More precisely, we will give a condition
on the Hypergeometric Fourier transform of the distribution V in order that
the distribution ¢ will be given by a function fA, f € E(R), whenever W is
given by a function gA, g in E(R), where A is the weight function associated
to the operator T"*) and £(R) is the space of C*-functions on R. In the case
of the classical Fourier transform on R, this regularity was first studied by L.
Ehrenpreis (see [3]) and next by L.Hérmander (see [5]). In [7,9] the authors
have studied this regularity in the cases of the Dunkl operators on R? and the
Jacobi-Dunkl operator on R.
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2 Preliminaries

The Jacobi-Cherednik operator is a differential-difference operator 7"+,
defined on R by

flz) — f(=x)

TER) f(x) = f'(x) 4 (k coth(z) + k' tanh(z)) 5

with p = k + k.
We denote by GE\k’k),)\ € C, the unique solution on R of the differential-
difference equation

TEDy(z) = —idu(z) (1.1)
u(0) = 1
It is called the Jacobi-Cherednik kernel and is given by
Vr e R G(k’k,)(:t) = gp(kfé’klfé)(x) S igo(kfé’klfé)(x) (1.2)
P A p—ixdx ’

where gof\a’ﬂ ) is the Jacobi function defined by

p+iX p—iA
2 72

@&a’ﬁ)(x) =5 Fi( s+ 1;sinh® z),

with o F} is the Gauss hypergeometric function (see [6]).
The function Gg\k’k) is multiplicative on R in the sense

R
where,
Kk,k’(x7y7 Z)A(Z)dzv Zf Ty 7A 0
dulif ) (z) = § dou(2), ify=0 (1.4)
doy(z), if t=20
with dd, the Dirac measure at x, A the function defined by
A(z) = Ay_1 po_1(2) = (sinh |2])?F (cosh | 2]) %, (1.5)
and Ky a continuous function on | — |x| — |y|, —||z| —[y||[V]||=] — |y]], |z| +|y]],
with support in Iy, = [—|z| = |y[, —[[z[ = |y[[JU[|z| = [y]], [] + |y[], defined by
D(k+ 1
Kip(z,y,2) = (k+3) | sinh 2 sinh y sinh 2| 721 x

-~ J/al(k — kN (k)

/ (1 — cosh® z — cosh® y — cosh? z + 2 cosh @ cosh y cosh 2 cos )" !
0
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-0y, +oxX.  ,+toX, .+ % coth z coth y coth z(sin x)?](sin x)2* ~'dy,

if x,y, 2 € R\{0} satisfying the triangular inequality ||z|—|y|| < |z| < |z|+|y],
and Ky (2,9, 2) = 0 otherwise and o, _ is the function given, for z,y,z € R
and y € [0, 7], by

cosh x cosh y — cosh z cos y

if 0
Oy = sinh z sinh y by 7 .
0, ifxy =0

(For more details refer to [1]).
The function G(Ak’k) has the following Laplace type integral representation
: l=! .
Vo e R\{0}, GV (@) = [ Kiwl(z,y)e ™y, (1.6)
—la

where Ky i/ (z,y) is the function given by

2T (k — K + 3)

Kiw(2,y) = NG 27 (sinh 2)2* %) (cosh z—cosh y) "% ~sg(z) (e*—e¥).
(1.7)
Moreover, the function GE\k’k) satisfies
—(k.k") (kKD
Ve e RVAEC, G () =G5 ' (2). (1.8)
vz e R,VA € R, |GV (2)] < M, (1.9)

where M is a positive constant.

Notations. We denote by :
- £(R) the space of C*-functions on R.
- D(R) the space of C*°-functions on R with compact support.
- PW(C) the space of entire functions on C which are of exponential type and
rapidly decreasing.
We provide these spaces with the classical topology.
We consider also the following spaces.
- D'(R) the space of distributions on R.
- &'(R) the space of distributions on R with compact support.

The Jacobi-Cherednik intertwining operator Vi x is defined on E(R) by

||

Vo € R\{0}, Viw(9)(z) = K (2, 9)9(y)dy, (1.10)

— x|
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where the function Ky (z,y) is given by relation (1.7).
The operator Vj, i is a topological isomorphism from £(R) onto itself satisfying
the transmutation relation

/ d

The dual *V 4 of the Jacobi-Cherednik intertwining operator Vj ;s is defined
on D(R) by

/R Viw (F)(y)g(y)dy = /R f(@)Viw (9)(2)A(x)da. (1.12)

The operator ‘Vj, 4 possesses the following integral representation

V€ R, Wi (f)(y) = / f@) Ky (e, ) Az, (113)

|z]>|y]

with K} the function defined by (1.7).
The operator ‘Vj. 4 is a topological isomorphism from D(R) onto itself satis-
fying the transmutation relation

, d
Yy € R, "V (THF) 4 2p8)(g) = %( Viw (9)) (),

where S is the operator on D(R) given by
Ve e R, S(g)(x) = g(—x). (1.14)
Definition 2.1 The operator 'Vj, ;s is defined on E'(R) by
(Viw(V),0) = (V,Viw(9)), ¢ € ER). (1.15)
This operator satisfies the following properties.

Proposition 2.1 i) The transform Vi, is a topological isomorphism from
E'(R) onto itself. Its inverse is given by

(Viw(V),8) = (V.Viw(9), 6 € D(R). (1.16)

ii) Let Tra be the distribution of E'(R) given by the function fA, with f in
D(R) and A is the function given by the relation (1.5). Then, we have

Viw (Tya) = Tev, w0 (f)- (1.17)

iii) Let T, be the distribution of E'(R) given by the function g in D(R). Then
we have,
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Definition 2.2 The Hypergeometric Fourier transform H is defined for f in
D(R) by

VA EC, H(H(A) = /R F@)GE) () A(x)de. (1.19)

Theorem 2.1 The transform H is a topological isomorphism between D(R)
and PW(C). The inverse transform is given by

wveR,H%wcwzzégmwaﬁﬁk—@cmxAmm

where,
p d)\
CewNdA == D) e P
th
o oo 2T )
Cle, k! = i — Kk ixy’ o '
D(E52) T ()
See ([1,8]).

Proposition 2.2 i) For A € C and f in D(R), we have

Hf)A) = 2Fpp (f)(N) +2(p + iA) Frpr (T o) (A),

where, f. (resp. f,) denotes the even (resp. the odd) part of f, J is the
operator given by

Jfo = / fo(t)dta
and Fy s the Jacobi transform defined by

—+00

VAER, FrN) = | F@)ol D (@) A(w)da. (1.21)
0
ii) We have
H(f)=Fo Viwp(f), feDR), (1.22)

where F is the classical Fourier transform of functions given by
YAER, F(h)(\) = / h(x)e *dz, h € D(R).
R

Definition 2.3 The Hypergeometric Fourier transform of a distribution )V in
E'(R) is defined by

VAER, HV)(A) = (V, Gy, (1.23)
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Proposition 2.3 For V in £'(R), the function H(V) belongs to E(R) and we
have

H(V) = .FO tVM/(V), (124)

where F is the classical Fourier transform of distributions defined for U in
E'(R) by ,
YA ER, FU)N) = U, e ).

Definition 2.4 Let x € R and f in D(R), the Jacobi-Cherednik translation
operator T:Ek’kl) 1s defined by

B (f) () = / F(2)du(2), (1.25)

where dug’f@k/) is given by the relation (1.4).
Proposition 2.4 i) We have

Yo,y € R, rEGE () = GE) (2)GF) (). (1.26)

xT

ii) For each x € R, the dual of the Jacobi-Cherednik translation operator T, is
the operator ', given on D(R) by

Vy € R, ‘m(f)(y) = () (—y). (1.27)
iii) For f in D(R), we have
H( TR = GE @M, (1.28)

Definition 2.5 The Jacobi-Cherednik convolution product of f and g in D(R)
18 defined by

Wy ER, [ gly) = / L () )g(@) Alx)dz.  (1.29)

R

Proposition 2.5 i) The Jacobi-Cherednik convolution product is commuta-
tive and associative.

ii) Let f and g be in D(R) with support respectively in [—a,al,a > 0 and
[—b,b],b > 0. Then the function f g belongs to D(R) with support in
[—(a+b),a+b] and we have

VA ER, H(f *kr 9)(A) = H(F) (N H(g)(A). (1.30)

Definition 2.6 The Jacobi-Cherednik convolution product of a distribution U
in D'(R) and a function ¢ in D(R) is the function U . ¢ in E(R) defined by

Vo € R, U s ¢(x) = U, ) (0)(y)). (1.31)

xT
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Proposition 2.6 i) If U = T4 is the distribution in D'(R) given by the
function fA, with f in E(R), we have

i) IfU is in E'(R) and ¢ in D(R), then, the function Uy ¢ belongs to D(R).

Definition 2.7 Let U be in D'(R) and V in E'(R). The Jacobi-Cherednik
convolution product of U and V is the distribution in D'(R) defined by

Ui V,8) = V,, Uy, 75D 0) ) = U, (V,, 5 (9)())), 6 € D(R).

(1.33)
The convolution product * 4 satisfies the following properties.
Proposition 2.7 i) Let U be in E'(R) and f in D(R). Then,
U *p g 7},4 = ﬁu*kyk,f)A, (1-34)

where Ty, ., 54 is the distribution in E'(R) given by the function (U %y
A.

ii) The Jacobi-Cherednik convolution product of distributions is commutative
and associative.

Proposition 2.8 Let U and V be in E'(R). The distribution U *xx V belongs
to E'(R) and we have

th,k’ (U *pe k! V) = th,k’ (U) * th,k’ (V)7 (1-36)

where x s the classical convolution product of distributions on R.

Remark 2.1 For the Hypergeometric Fourier transform of distributions on R
associated to the Cherednik operators and the Cherednik convolution product
of distributions on R?, see [10].

Definition 2.8 The Jacobi-Cherednik operator T**) is defined on £'(R) by
(THU, 6) = U, (T +2p8)9)), (1.37)

with S is the operator given by (1.14).
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3 Convolution equations
Let V be in £'(R), we consider the convolution equations of the form
% Kk k! U= W, (2.1)

where U and W are in D'(R).

In this section we shall study the regularity of the solutions of the equation
(2.1). More precisely, we will give a condition on the Hypergeometric Fourier
transform of the distribution V in order that the distribution ¢ will be given
by a function fA, f € E(R), whenever W is given by a function g.A, g in E(R).

Definition 3.1 We say that the distributionV in E'(R) satisfies the H-property

if,

i) We have,
, |Imz|
lim —— = +o00, where Z ={z€ C,H(V)(z) =0}.
z€Z

ii) There exist n, M > 0 such that
|HV)(A)| > [A7", for all |N| > M.

Theorem 3.1 Let V be in E'(R) such that Z = {z € C,H(V)(z) = 0} is infi-
nite and W given by a function gA, g € E(R). Then, the following assertions
are equivalent :

a) U is given by a function fA, [ € E(R).
b) V satisfies the H-property.

We shall deduce the proof of this theorem from the following three propo-
sitions.

Proposition 3.1 Let V be in E'(R) satisfying the H-property. Then the asser-
tion b) implies the assertion a).

We need the following Lemma to show this Proposition.

Lemma 3.1 Let V be in E'(R). If V satisfies the H-property then, there exists
a parametriz for V, that is, there exist W in E'(R) and ¢ in D(R) such that

0=V W+ Tpa,

where § is the Dirac distribution at 0.
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Proof.
By using (1.24) the H-property can also be written in the form

i) We have,

I
lim ylnﬂrj = 400, where Z ={z € C, F( th7k/(V))(z) =0}.

|z| =00

z€Z

ii) There exist n, M > 0 such that
IF (Vi (V)N = AT, for all [A] = M.

We see that the H-property is true for the distribution ‘Vj (V) in £'(R) in
the case of the classical Fourier transform F. Then from [5], there exists a
parametrix for ‘Vj x/(V), that is, there exists W) in &' (R) and 1) in D(R) such
that

0= th,k/(V) * Wo + 7;[,0 (22)

As the operator 'V}, 1 is a topological isomorphism from &'(R) onto itself, from
(2.2),(1.18), we deduce that

0= Viw(V)* Viw (Vg M) + Vi (Vi (Ti)),
thus,
o= th,k'(V) * th,k’(W> + th,k'(%A)a (2.3)

with W = Vi (W,) and ¢ = 'V, (), the distribution W and the function
¥ belong respectively to &'(R) and D(R).

On the other hand from (1.36), the relation (2.3) can also be written in the
form

thT,j,(é) =V *pe k! W + 7:/;A.

But,
Vi (8) =46,

then,
0= V*k,kl W—F%A.

Proof of Proposition 2.1.
Let U be in D'(R). Assume that V x4 U is given by a function g.A, with
g in &(R). From Lemma 2.1, we have

0=V W+ Tya,
with W in &'(R) and ¢ in D(R). Thus,

U = L{*k,k/é
= U % (V K g W + 7:11_/4)
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By using the commutativity and the associativity of the Jacobi-Cherednik
convolution product in £'(R), we obtain

Z/{ = Z/{ *k7k, (V *k,k" W) +Z/{ *k‘,k’ %A
= Wi VrpwU)+U x40 Typa,

Then,
U =W sy Tga+U sp40 Ty

From (1.34), we obtain
U = Tows,, g+t i) A-
AsU € D'(R), ¢ € D(R), W € &'(R) and g € E(R), then
(W s g +U 0 ) € E(R).

Proposition 3.2 Let V be in E'(R) such that Z = {z € C,H(V)(z) = 0}
is infinite and YW given by a function gA, g € E(R). Then, the assertion a)
implies that V satisfies the i) of the H-property.

Proof.
Suppose that the i) of the H-property is not hold. Then, there exists a
sequence {z, }neny C C and a positive constant M such that

Vn € N, H(V)(z,) =0 and |[Imz,| < MIn|z,|.

Let ¢ be in D(R). According to Theorem 1.1, there exists b € N such that
for every p € N, we find a constant C}, > 0, so that for all z € C such that
|z] > 1, we have

[H(9)(2)] < Cpexp(b|Imz| — pln|z]).

If we take p € N, such that p > Mb+ 1, we get

Vn €N, |za||H(¢)(2n)| < C. (2.4)
+o0

Let {a, }nen be a complex sequence such that the series Z |a,| is convergent.
n=0

We consider the sequence {X, },en of distributions in D'(R), given by

q
Xy = Z n 7Tzn|G’,(zI;’k,)A'
n=0
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For all ¢,r € N, ¢ > r, we have

q

(X d) —(Xnd) = (D an T, g0 409)
n=r+1

= > el HOE).

n=r+1
Thus, using (2.4) we obtain
q
(X, 0) = (X, 0)| < G, Z; jan] — 0. (25)

Then, {(X,, ¢)}sen is a Cauchy sequence in R, and we have

(X, 9) — L(9).

q——+00

We deduce that L is a distribution X" in D'(R) and X, converges to X in D'(R)
as ¢ tends to infinity. Then,

r=2 T\ ) (2:6)
n=0
and from (2.5), we deduce
400
(X0 <G lanl. (2.7)
n=0

From (1.33),(2.6) and Proposition 1.4 ii), we have
Vow X.6) = Vo, 750 (0)0))

= (Vi Z an|zn|Ggﬁ7k,)(_x)%(gb)(zn»'

n=0

From Definition 1.3, we obtain

+oo
<V ke k! X, ¢> = Z an’Zn’H<¢) (Zn)<vx> Giﬁ’k/)(—x»-
n=0

= ) an|zaH(9) (2)H (V) (20)
= 0,
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where V is the distribution in £'(R) defined by

V)= (V,9), ¢e€&R),
with
Vr e R, ¢(x) = p(—x).

Thus,
% *p k! X =0. (28)

As the distribution & is given by a function fA, with f in £(R). Then,
X =Tra. (2.9)
We have,
vn e N, GEF)(0) = 1.

Thus, for all m > 0, we have

vneN, sup |GEF)(z)] > 1. (2.10)

Zn
z€[—m,m]

On the other hand, by using (2.7),(2.9) we obtain

+o00o
sup [ f(2)] < Cp ) lanl.
n=0

z€[—m,m]

Thus,
Vn €N, |z,| sup |Ggi’k/)(x)| < C,.

x€[—m,m]

From this relation and (2.10), we deduce that
Vn €N, [z, <G,
which is a contradiction with the choice of the sequence {z, }nen.

Proposition 3.3 Let V be in E'(R) and W given by a function gA, g € E(R).
Then, the assertion a) implies that V satisfies the condition i) of the H-
property.

Proof.
Assume that the ii) of the H-property is not hold. Then we can find a
sequence { A, tnen C R such that |A\,|™™ > 2" and

Vn e N, [HV) ()| < Al ™ (2.11)
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We consider the sequence {U,},en of distributions in D'(R) given by

p
Up =D Tose
n=0

Let ¢ be in D(R). For all p,q € N with p > ¢, we have

p

Uy ) = U, ) = D (Toemn )

n=q+1

Thus,
Uy, ) = Uy, ) = > HW) (). (2.12)

But from Theorem 1.1, the function H(¢) is rapidly decreasing. Then, there
exists a positive constant C' such that

¥A € R U0 < 1

then,
C
Vn € N, ()] < o

By applying this relation to (2.12), we obtain

1
— — 0.
2" g—+oo

‘(up’¢> - <Z’{q7w>| S C Z

n=q+1

Thus, {{Uy, V) }pen is a Cauchy sequence in R and we have

(Up, ) — L)

p——+00

We deduce that L is a distribution in D'(R) and U, converges to U in D'(R)
as p tends to infinity. Thus,

+00
M2 T
and for all ¥ € D(R), we have

U0y =" HW)(\). (2.13)
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Now, we shall prove that the distribution V %4, U of D'(R) is given by a
function fA, with f in £(R).

By making a proof similar to those which have given the relation (2.8), we
obtain

(Vs U, ) = /w G () A(t)dt.

By using (1.9), the fact that w is in D(R) and H (V) satisfies (2.11), we can
interchange the series and the integral and we obtain

Vet = | ZH (1) At

Thus, the distribution V %, U is given by function fA with
Vt e R, f(t) Z?—l A) G (8).

From relations (2.11),(1.1) we deduce that f is in E(R).

In the following we want to show that the distribution ¢/ is not given by
a function g.A, with ¢ in £(R). Proceeding by contradiction, we take an even
function x in D(R) such that x(0) = 1 and H(x) is positive. For all 1 € R, we
consider

(k_lvk/_l) (k“_lvk,_l)
{ou 27 PUX) = Upu *7 TN, (2.14)
VY
where gpflk 2¥72) i5 the Jacobi function. By using (2.13), we obtain
(h—2 K1) R, (Lol
(ou U,x) =Y Mgy X) () (2.15)
n=0
o bbb

But, as x and gpi 2’ are even, then 7-[( X) is also even and from

Proposition 1.2 i), we have

1
k—1 K —

1/1
Vv e R, H(p! (k=2 =3)

20w) = 2Few (8 ) ),

(k,l K —L

Hipn ")) =2 / on T el T T () (@) At)dE. (2.16)

11
But from [6], the function go,(f 2k 2)(t),t € R, admits the following product
formula, with respect to the variable pu,
(k=3.k'=3) (k=1 k-1) (k=LK' =1) d§
\V/[LJ/ € R-i—a P ? : (t)SDV : : (t) :/ 905 : ? (t)u(ﬂ’a Vaf)—ga
Ry [E%e3]

(2.17)
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where ¢y, 5 is defined by (1.20) and $(y, v, ) is an even positive function on
R x R x R. It is given by the relation

(k=3 k=3) \ (h=3k-1) \ (k=}w-1)
o) = [ el D@l P @l Y @) A,
Ry

and satisfies

/R U, v, S)L =1 (2.18)

|ch e (€)1

By using (2.17) and Fubini-Tonelli’s theorem, the relation (2.16) can be written
in the form,

141 ~Llr-1) d
ek Ml 00 =2 [ o[ xd A0
Ry R, |crp (§)]
Then,
1l d
A P00 = [ Wn RO s 219)
R ’Ck,k’(f)‘
Thus, for all p, v € R, the function ”H(go,(f_% kl_é)x)(u) is positive.

1l
By taking v = \,, and by replacing H(gpfﬁ 2k ~3)

(2.19), we get from (2.15)

X)(An) by its expression

dg

(k—%,k’—l
<()0M Z u :U’a )‘mg) ( >(£)‘Ck,k’(£)‘2

g1
As the function p — (go,(f =2y ,X) and those of the second member are

positive, then by applying (2.17),(2.15) and by using Fubini-Tonelli’s theorem
we deduce that

(-1 h—1 dp s _ %
L g - Z/RJ/MW’ M e MO @

n=0

_ dg
- Z OO EE

But from Theorem 1.1, we have
d§
| He0©) s =0 =1,
R4

Then,
~li-1 d
/ AL VY S e ———— (2.20)
Ry

dg

2
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On the other hand, as the distribution i is given by a function g.A, with g in
E(R), then from (2.14), we have

(k’—l k_/_l (k‘ lk/ 1)
{on U = (Taven )

_ / XD (1) At dr

(k 1k/ 1)

- / ge XL 1) Atyt,

when g, is the even part of g.
Thus,

TR ) = H(gox) ().

By integrating the two members of the preceding relation with respect to the

d
measure ﬁ, we obtain from Theorem 1.1
Cl ket (M
(k=1 .k'—1) dp / dp
@ UX)— 5 = [ H(gex
/]R< g >|Ckz,k'(u)|2 |Ck exw ()2
= 9:(0)x(0)
= 9(0)-

This contradicts the result given by (2.20). Hence, the distribution ¢ is not
given by a function gA, with g in £(R).

4 An example of regular solution of convolu-
tion equation

We consider the distribution V given by

¥ UL 7 1 aps)ens), (3.1)

where T = T**) ig the Jacobi-Cherednik operator, ¢ is the Dirac distribution
at 0 and S the operator defined on &'(R) by

S(X) =X,
with X is the distribution on £'(R) given by
(X,0) = (X,9), p € ER),
where ¢ is the function defined on R by
p(x) = o(—x).
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Proposition 4.1 The distribution V given by (3.1) belongs to ' (R).

Proof.
We consider the sequence {V,, }men of distributions in &'(R) given by

n=0

n

((;3! (T + 2p8)2" (5.

Let ¢ be in £(R). From Definition 1.8, we have

(T +209)(8).¢) = —(6,T(¢))
= ~T(5)(0).

Then, for all n € N\{0}, we obtain
(T +2p5)*(5), ) = T () (0). (3.2)

From (3.2), we have for all m,q € N with m > ¢,

m

O%W%W%WFZE:%%§WMWWU (3.3)

By applying the formula
p(z) — o(—z) = x/ ¢ (uz)du,
—1
to the following expression
p(r) — o(—1)
2

we deduce from (3.3) that for all K compact of R, there exists C' > 0 such
that

T(¢)(x) = ¢'(x) + {k coth(x) + k' tanh(z)} — pp(—a),

e 1
(Vs 0) = Vi)l < Coamc(0) 3 oy 572 0
n=q+1 ’

where p () = sup  |p™(2)].
0<n<m
zeK
Thus, {V, }men is a Cauchy sequence in R and we have
(Vm, ) —  L(ep).

m——+00

We deduce that L is a distribution in &'(R) and V,, converges to V in £'(R)
as m tends to infinity.
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Proposition 4.2 We consider the convolution equation
% e k! U= W,

with V given by (3.1). If W is given by a function gA, g € E(R), then U is
given by a function fA, f € E(R).

Proof.
To show this result, from Theorem 2.1, it is enough to show that V satisfies
the H-property. By using (3.2) and (1.1), we have

V2 eC, HWV)(z) = (V,GER)
= (—1)"

= 2 (Q:L), (T + 2pS) @ (5), GHR))

n=0

B Z (2n)!

n=0 ’

3

(8, T (GEH))

X (—1)" (i)
_ Z( )" (i2)

Then, the set
km
Z={2€C,H(V)(z) =0} = {ZT,/{ €z}

is infinite and we have

_ |Imz|
lim =
|z]—o0 In |Z‘
z€Z

Then, the distribution V satisfies the i) of the H-property.
Finally, the fact that
VA € R, cosh(A) > 1,

shows that the distribution V satisfies the ii) of the H-property.

5 Open problems

5.1 Problem 1

Define and characterize the spaces of Jacobi-Cherednik multiplication and
convolution operators on the generalized temperate distributions spaces 8’ (R).
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5.2 Problem 2

Characterize hypoelliptic convolution-equations in &'3(R) for the Jacobi-
Cherednik theory on the real line.
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