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Abstract

In this paper we study the differential-difference
Jacobi-Cherednik operator defined by

T F(0) = f'(6) + (kcotf — K tan6) (f(6) — F(—60)) — i(k + K f(~0).

jec (53]

)
k

)
where k > 0 and k' > 0, and the operator which intertwines T™" )
and the derivative operator 0 Estimates for the eigenfunctions of

the operator T"™*) are also given.

Keywords: Jacobi-Cherednik operator, Laplace formula, Estimates for the
Jacobi-Cherednik kernel, Intertwining operator, Intertwining dual operator.
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1 Introduction

For a crystallographic root system R in R?, a fixed positive subsystem R, and
a nonnegative multiplicity function k defined on R, the Cherednik operator
([1],19], [10]) in the direction ¢ € R? is defined, for f € C*(R%), by

Tef (@) = 0cf(x) + 3 ko €) s () — Flou(a)) — {9.8) f(2),

aERL

where (.,.) is the usual scalar product, o, is the orthogonal reflexion in the

1
hyperplane orthogonal to o, p := 3 Z koo and the function k is invariant
aER
by the finite reflection group W generated by the reflections o, (a € R).

Thanks to these operators, G.J. Heckmann and E.M. Opdam developped
a theory generalizing harmonic analysis on symmetric spaces ([5], [6], [9]).
Important results have yet been obtained in this direction ([10]) but despite
to recent interesting results ([11]), applications remain restricted, in particular
for lack of precise information on the eigenfunctions of these operators T¢. One
of the main obstacle is that no Laplace formula with a positive kernel is known
for the eigenfunctions (or the so called Opdam-Cherednik kernel) equivalently
no positive operator intertwining 7 and the derivative operator O, is known
for the moment. As a contribution towards this fondamental question and via
the study of a more general differential-difference operator, L. Gallardo and
K. Trimeche gave in [4] a complete solution for the case d = 1.

In the present paper, we give a solution for the case of a bounded interval.
More precisely, we consider the differential-difference operator, which we will

call the Jacobi-Cherednik operator, defined for f € C* (] —g, g D, by

TER)F(0) = f'(0)+(k cot(0) — k' tan(6)) (£(0)— f(—0))—i(k+k) f(=0), (1)
for § € ] —g, g [\ {0} and T®F) £(0) = (2k + 1)£/(0) — i(k + k') £(0) !, where

k>0 and k' > 0 are two parameters satisfying the following condition :

(C): either ' =0 <k, or 0 <k’ <k. (2)

'Note that T(k’k/)f is a continuous function on }fg, g [
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For every A € C, let us denote by G(Ak’k/) the unique solution of the eigenvalue

problem o)
TR F) = iNf(0),
{ [0 = 1 ®)

Noting that G()\k’k,) can be expressed in terms of Jacobi functions and using
results obtained by T.H. Koornwinder ([7]), we show that there exists a

continuous kernel K*#*)(9, ¢) (0 € } —g, g [\ {0}, =10 <o < |0|> which we
call Laplace kernel, such that for all A € C and 6 € ] —g, g [ \ {0},
Gy = [ K®(6, ¢)edg. (4)
-6

We can deduce precise estimates on the function Gf\k’k,) which allows the

Jacobi-Cherednik kernel (A, 0) — Gf\k’k,)(ﬁ) to be considered as a good kernel
for the Fourier-Opdam transform.
We then study the associated intertwining operator defined by

16l

VERF©) = [ KE(0,0)(9) do,
—lol
f TT (k.k) o . -
or 0 € ]—5, 5 [ \ {0} and V™) f(0) := f(0). It intertwins the operators
, d
T+ and 0 on the space of C*° functions, that is
/ / ! d
T &KV (RE) ¢y (RET) 5
for all "™ function f. Moreover, we show that is a topological automorphism of
™ . ™ T .

the space £ (] 53 D (of complex valued C'* functions on } —53 [ carrying

the topology of uniform convergence on compact sets of all derivatives) and
N\ -1
we determine explicitely the inverse automorphism (V(k’k )> . We also study

the dual operator 'V **) defined, on the space of all continuous function

g: ]—g, g [ — C with compact support, by
voe | -2 0, vEIg() = / K®H)(9, ¢)g(0) (sin(|6]))? (cos 6" do.
272 61>1¢]

T
We show that it is a topological automorphism of the space D (] 55 D
of complex valued C*° functions with compact support and it satisfies the
following unusual intertwining relation :

Vg e D (] _ D oty (TW’“’) 42k + k:’)S) g= d% ty k)

T
272
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S5 1) by S9(6) == g(=9).

In a forthcoming paper we study the Fourier-Opdam transform
associated to the Jacobi-Cherednik kernel, we prove a Fourier inversion
formula, a Plancherel theorem and a Paley-Wiener theorem and we show how
the intertwining operator VR can be used to define generalized
translation operators and a convolution structure naturally associated to the
Jacobi-Cherednik operators.

where S is the operator defined on D (] —

In the sequel, we always suppose that the parameters k and £’ satisfy the
condition (C') given by (2) and we denote by p:=k+ k' > 0.

2 The Jacobi-Cherednik kernel

Proposition 2.1. For every A € C, the eigenfunction equation (3) has a
unique solution of the form

/ k—1k -1 i d k—1k'—1
Ge) = R (cos(26)) A_p@[m;p (cos(20))] (6)
(k—3.k'—1) . +p . (k+1.k'+3)
- R¥ (cos(20)) + zm Sln(QH)RA,(Sﬁ) (cos(20)),7)
™ T
ve |33l

where R(f;’f) is the Jacobi function of index («v, B) given by
2

Rgof’f)(cos(ZH)) = oF (_p ; )\, P ; A

;a+ 1; (sin 0)2) ,

where o Fy is the Gaussian hypergeometric function
(see [7, p.147, formula 2.3).

Proof. In order to simplify notations let us denote by

k-1 k-1 )
27 /
Q.
- P

T = T"), () = R(A_pf 2)(cos.(29)), G:=p— 3

In view of [7], the function ¢ satisfies the differential equation

©"(0) +2(kcotd — K tand) @' () = —(\* — p?)p, 0 € } —g, g [ ~ {0}.

Using the fact that ¢ is even and ¢’ is odd on ] —g, g [, we immediately deduce

that TG = i\G. As G(0) = 1, this proves that G satisfies the eigenfunction
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equation (3). In order to see that it is the unique solution, it remains to show
. 1 ™ T . .
that if h € C' G 55 D is a solution of

Th(f) = 0,
Ui = o ©
1
then h = 0. Let us denote by h.(0) := i(h(ﬁ) + h(—0)) and
1
ho(8) := §(h(€) —h(—0)) respectively the even and odd parts of h. Taking into

account that the function ¢(#) := k cot  —k’ tan 6 is odd on } —g o~ [ {0}, the

function h satisfies (8) if and only if it satisfies the two following COHdIthHS

{h;(9)+2Q(6’)ho(9)—iﬂhe(—9> =0 9)
and h.(6) — ipho(=6) = 0
{ ¢ h((,%o ; O? (10)

From the equation (10) we deduce that h, € C? G —g, g D and
h!(0) = —iph!(f) and by introducing this value in the equation (9), we see
that h. satisfies the following second order differential equation :

10 + 200 ~ o) =0
he(()) = 0, h,e(O) = 0,

which admits a unique solution h, = 0. Then, by (10), h, = 0 and so h = 0.
The second expression (7) follows from the formula giving the derivative of
®. O

Examples 2.2. For all \ € C and 0 € ]—g, g [, we have

B ;o % 1y sin(\0)
1. If k=1 and k' =0, then R,>, (008(20)) g and
GO (g — sin(\0) i sin(Ad) cosf  cos(A0)
A Asind -1 A(sin 6)2 sinf /)’

2sin(A0)
Asin(26)

) .
)
LD g o | Sin(AG) i 2sin(Af) cos(20)  cos(A0)
a0 =2 5m Ty 2( A(sin(20))? sin(20)>]

2. If k=K =1, then R(ﬁ 22)<COS(29))
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As an interesting direct consequence of Proposition 2.1, we now present a
functional relation between the eigenfunction Gf\k’k,) and the Jacobi
function R(A’;%’k/_%)(cos(%)) which can be compared to the relation between
the functions G, and F) of E.M. Opdam in [9], p.89.

Corollary 2.3. For all A € C and 6 € } — we have

7T7T|:
2'20U

=G (0) = p (A TOH) REH (cos(26)),

2
where p(A, X ) := —iX + Al

Proof. Formula (1) applied to ¢(0) = R(A];%’k/_%)(cos(Zﬁ)) implies
¢'(0) = )o(0) + ipp(0). From (6), we immediately deduce that

(A — p)G’(k o )(9) = —iT* ) 5(0) + Ap(0), which is the announced result. [

3 Laplace representation formula for the
Jacobi-Cherednik kernel

From the explicit expression of the eigenfunctions given by Proposition 2.1,
and using the integral representation of the Jacobi functions obtained by
T.H. Koornwinder in [7], we will obtain a Laplace integral representation of

the function G(Ak’k/) which we will call the Jacobi-Cherednik kernel. We first
recall the result of T.H. Koornwinder.

1
Theorem 3.1. For all A € C, 0 € }0,5[7 a > —5 and B € R, the Jacobi

function R(f‘;’f) has the following integral representation [7] :
2

R (cos(20)) / K0, ¢) cos(A\o) do, (11)

2

275D + 1)
Val(a+1)
1 cosf — cos ¢

o F7 (Oé +6,a—Bia+ = W) 1)_91(0). (12)

(sin 8) 72*(cos 6) =@+ (cos(2¢) — cos(26))*~

X
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This kernel can also be written in the following forms [8] :
1
1. If —5 < B < o,
2a_2’8+%r(04 + 1)
VaT(a—pB)r(B+ 3)
0
X (/ sin t(cos(2t) — cos(26))°~Y2(cos ¢ — cost)* P dt)
\

]
X 1_g0/(0). (13)

K0, ¢) (sin 6)~2*(cos §) %

1
2. [f—§<ﬁ:0¢,

K7(6,6) = %@in@e»2a<cos<2¢>—cos<2e>>a1/21]_0,9[@-
(14)

o 20‘+%F 1 . “2a a—1
K(() ’5)(«9,¢) = Wa:_%))(sm 0)**(cos ¢ — cos ) 21)g0/(0). (15)

Remark 3.2. The function 6 — R(f‘;’f)(cos(%)) is even on } —g, g [ The
2
kernel Kéa’ﬂ)(Q, ¢) is even in the variable ¢ but we can also extend it in an
even, function in the variable 6 by defining K\*? (6, ¢) .= K™ (6], ¢) if

0 € }—g,O[; in fact this is equivalent, in view of (12), to define (sin @) >*
by (sin@) 2> := ((sinf)?)~* = (sin(|0]))">* if 6 € ]—g,()[. In the sequel, we

always consider that Kéa’ﬁ)(ﬁ, ®) is so defined for all 0 € }—g, g [ \ {0} and

—10| < ¢ < |0 and is even in both variables 6 and ¢. Formulas (12), (15), (14)
and (27) are then valid with 0 replaced by |0 and we can write

[
vee]_g,g[\{o}, R(f:f)(cos(%))zé |elKé""ﬁ)(&ob)ei”*dczi (16)

In his paper [7], p.150, T.H. Koornwinder also gives a Laplace representation

d a o
formula for the derivative — R&;”f)(cos(%))} but it is not adequate for our
2

do

purpose. We will derive here a crucial integral formula adapted to our problem.
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1
Theorem 3.3. For all \ € C, ee]—g,g[\{()}, a,fER; —5<f<a

1
and o > —5 we have

1 d o,
eyl LA
som 16| 0 i\
- % /_w (p%w’) " isgn<¢)88iv(’¢l)) o o
where

0|
Wy(v) = / KPPt 0)Agp(t)dt, 0<wv<]d), (18)
sgn(f) denotes the sign of 0 and

Vit € ]o, g [ Aas(t) = 22O+ (gin £)205 (005 £)2041, (19)

1 1
Proof Let A € C, 0 € |07, a8 € R —3 < 8 < a, a > — and

0(0) = R(;;’f)(cos(%)). Let us consider the Jacobi operator
2

1 d d
Apg=———1[A — .
Y Aap() de< a*‘*(”de)

By (11) and the equality A, s0(0) = —(A\* — p®)¢(0), we have

1 )\2_p2

[% 0
Y0 = / Bopolt)Anslt) it = 5 [ o) a,0)

N iﬁ /(/KW W)COSWW) Aas(t) dt.

By Fubini-Tonelli’s theorem, we can write

0 0
2(0) = - ( / Ké“@(t,(b)Aa,ﬁ(t)dt) cos(\G)do.
0 ¢
Therefore
1 , . )\—l-p a,g)
0= 2 ([ R0 @) oo o

Integration by parts gives

< KDt ) Aa s(t) dt) cos(Ae) do

/ 2 ( [ RS0 A0 0) ) 500006,

_/\Tgp —
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Since the fonction ¢’ is odd on ] —g, g [, then for all 4 € ]—g, g [ \ {0},

_pomid) [ ( " KD 1.0) At dt) cos(Ag)ds
)Jo \ s

__sen(f) le'ﬁ o1 s) -
Aavﬁ(|9|)/o (/qs Ko (8 0) Aap(t) dt (M) do.

16
Finally, if we denote by ¥, the function v — K( )(t, v) A, 5(t) dt,

0 <wv < |0|, we verify immediately that

1
—)\—pSO (9)

~ sgn(f) 101 0]
~ 240506 </| PRal(9 cos(h0) o — [ senl) o) sin(0) do
and this finishes the proof. —

We can now derive a formal expression for the kernel K**)(6, ¢) announced
in formula (4) in the introduction.

Corollary 3.4. For all A € C and 0 € }—g —[ {0}, we have

, 16| / ‘
Gf\k’k )(9) = K&K (0, $)e™? d, (20)
—lol
where
’ 1 k—1 k-1
KERN0.0):= 3 [KO( H0.0)
Sgn(@)sgn(gb) 0 101 (k_l k;/_l)
T A L. (oo Ko Ap_1 1 (t)dt
A1 (8)ov \ J, (t:0) Ay -y (B)dt | (|91)
6]
sgn (6 kol g1
ZH Ké 2 2)(t7¢)Ak—%,k’—%<t> dt 1]_|9M9H(¢),
k—%,k’—%ﬂ )
(21)
Kékféyku%) s as in Theorem 3.1 and Ak—%,k’—% is given by (19).

Proof. This follows immediately from (6), (16) and Theorem 3.3. O
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4 Explicit form of Laplace kernel

In this section we give an explicit expression of the function K **) (0, ¢) defined
by (21) which will be called Laplace kernel.

4.1 The case k' =0 < k.

Theorem 4.1. For all 0 € ]—g, g [ N A0} and —|0| < ¢ < |0|, we have
(k=3:=3) 2T(k+3) —2k+1 k—1
1. K, 0,0) = W(sm(w)) (cos¢ —cos )" > 0.
2.
K(k,O) — K(k_%’_%) Sin ( 2 iu. 29
(97 (b) 0 (97 ¢) sin @ e 2 ( )
3.
0 < [KE0(0,0) = S K0 (0,0) < KTV (0,0) (29)
T
Proof. Let § € } - 5[\ {0} and —|6] < ¢ < |8]. We denote by

Ko(6,6) == Ky *2(0,9), K(8,6) == K*0(8,6) and A(t) := A,y _, (1),

0<t< g to simplify notations. By (15),

= (C(sin 2k (cos ¢ — cos )T = —2’“F(l{:+%)
Ko (0, ¢) = Ci(sin([6])) ™" (cos ¢ 0", Ci: NGOR

As p=kand A(t) = 2%*(sint)*, 0<t< g, we have

16 2k
Ko(t,v)A(t)dt = 017(00511 — cos 6)*

and

16l
% Ko(t,v)A(t)dt = —C12%  sinv(cosv — cos0)F!, 0 <v < z

v
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Then by (21), we get

K(0,¢9) = %(sin(|9|))_2k+l(cos ¢ — cos )1
san(0)sen(@) sin(lgl) _san(6)(cos é — cos )
<1 SO O
= ésgn(@)(smﬂﬂ)) #(cos ¢ — cos 0)F
X [8151 6 + sin ¢ + i(cos ¢ — cos 0)]
= iésgn(@)(s1n(|€|)) *(cos ¢ — cos 0)F (e — ')
sin (2£2) 5 4

= Kg(@, gzﬁ)ﬁezT .

0+
n (5%)
As 0 < = < 1 and Ky(6,¢) > 0, then

S11

0 < |K(0,0)] = e 7 K(0,0) < Ko(0,0).

4.2 The case 0 < k =K.

Theorem 4.2. For all 0 € ] 72r ;r[ {0} and —|0] < ¢ < |0, we have
1.

K 0,0) = %<Sin<2|9|>>—2k+1<cos<2¢> — cos(26))*"

> 0.
2. 0
KR, 6) = KF2572) (g ) Sl;;(;;;b) ) (24)

3.

0 < [KFR (0, 0)| = eI KEN (9, 0) < m@) KT (6,0), (25)

where

(26)
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Proof. Let 0 € } —g,g[ {0} and —|0| < ¢ < |#|. We denote by
k—3 k-2
Ko(0,0) == Kg " 72(0,0), K(0,6) = K" (0,6) and A(t) = Ay 1,

0<t< g to simplify notations. By (14),

(1),

1
2

Ko(6,6) = Cafsin(2l6]))*+ (cos(26) — cos(20)) L, Cyim > L0 t2)

V()
As p =2k and A(t) = 2% (sin(2t))?*, 0<t< g, we have
10| 2k—1
Ko(t,v)A(t)dt = Cy ? (cos(2v) — cos(26))"
and
o [’ 2k k—1 4
g Ky(t,v)A(t)dt = —C527" sin(2v)(cos(2v) — cos(20))", 0<wv < 5

Then by (21), we get

K(0,9) = 5 (3111(2\6\))’2“1((:08(2(;5) — cos(26))"!
" [1 sgn(f)sgn(¢) sin(2|¢|) n sgn(0)(cos(2¢) — cos(26))

. sin(2]0]) ' sin(2]0])

= gsgnw)<Sm(2|9|))—2k(cos(2¢) — cos(26))F1

X [351(29) + sin(2¢) + i(cos(2¢) — cos(26))]

= ifsgn(&)(sin(2|0|))_2k(cos(2¢) — cos(20))F 7 (e — 2i0)
— Kaff0) e,

%<1. If%<|0|<g,then

As Ky(6,¢) > 0, then

If0<|9|§g,then0<

sin(f + ¢) 1

0< sin(26) <sin(2|6’|)'

0 < |K(0,9)] = eI K(@0, ) < m(0)Ko(0, d),

where m(0) is given by (26). O
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4.3 The case 0 < k' < L.

Theorem 4.3. For all 0 € ]—g, g [ N A0} and —|0| < ¢ < |0|, we have
1y 1 QkF k 1 /
1K 0,0 BE ) (sin(|o])) 2+ cos0)

~ /al(k — KD (K)

x (cos p—cos )+ /1 S 1—g)F (14 ws o ds >0
0 2 cos 0 '
(27)

2 (k4 ))
~ /Al (k— KYT(K + 1)

2. K"(0,9) sgn(6) (sin(|6])) " (cos )"+ +Y

X (cos ¢ 9)1c-1 /1 k,_l(l )k—k:’—l 14 cos ¢ — cos b K=t
COoS ¢ — COoS s — 5 —r
0 2cos b

X [k’ sin(20) + sin ¢ s[(k + k") (cos ¢ — cosf)s + 2k cos 0]

+ i(k+ k') (cos g — cosB)s[(cos ¢ — cosb)s + 2 cos 9]] ds. (28)
/ L+ V2)(k+K) (e-Lr-1y
(kK < ( 2k =3
KE0(0,0)| < T KT T 0,0). (29)
™ T
Proof. Let 6 € } — 5[\ {0} and —|6] < ¢ < |8]. We denote by
Ko(0,0) = Ky > 72(0,0), K(0,0) = K&¥)(0,¢) and A(t) == Ay 1 4 1(8),

0<t< g to simplify notations. By (27),

Ko(8, ) = Cy(sin(|6])) 7>+ (cos 8) > T L1 o (6, 19)).

here Gy = 2 TR T 8) e 01011
where 3'_\/%F(k—k’)F(k’) an v e U, ,

16|
I w(0,0) == / sin w(cos(2w) — cos(20))¥ "L (cos v — cosw)FF 1 duw.
The equality cos(2w) — cos(20) = 2((cosw)® — (cos#)?) and the change of
variables cosw = cos @ + s(cosv — cosf), 0<s <1 give
Lew(0,0) = 22% Y (cos §)¥ ~(cosv — cos §)F!

1
X / skl’l(l — s)k’k/’1(1 + sz)kl’l ds,
0
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where

cosv — cos b

0< Z, = ,
2cosf

0<w<|b.

16]
We now compute, for v € [0, |6]], the integral / Ko(t,v)A(t) dt which appears

in the second and third terms in the right hand side of formula (21). As
p=k+k At) =22 ) (sint)*(cost)?*' | 0<t< g and by using Fubini’s
theorem, we have

) , 6]
KO (t, U)A(t) dt = 0322(k+k )—1 / Sin(Qt)Ich/ (t, ’U) dt

, 6]
= (22K -1 / sin(2t)

v

t
X (/ sin w(cos(2w) — cos(2t))¥ " (cos v — cosw)F T+ dw> dt

16| 16
= (22 k)1 / / sin(2t)(cos(2w) — cos(2t))* dt)

x (cos v — cos w)* ¥ L sin w dw
14 t=|0|
_ 21 91T (cos(2w) — cos(2t))*
v 2k/ t=w
x (cos v — cosw)* ¥~ sinw dw

(322 (k+k'=1) 16|
— T

C 22(k+k’—1)
=2 17 L1 w11(0,0)

(cos(2w) — cos(20))¥ (cos v — cos w)* L sin w dw

and

0

— Ty ps1(0,v) = —ksinv(cosv — cos 0) " pyy w41 (0,0)
—2% =1L (cos 0) 1 (cos v — cos ) sin v

X 1 sSFHH 1 — s)F M1+ Z,5)F L ds

= —022’“/((:05 ) (cosv — cos 0)FLsinv

1
X / s (1 — ) K11 4+ Z,s)¥ Uk + (k4 k) Z,s] ds.
0
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From (21), we get

1 sgn(f)

~(sin(16])) 7+ (cos 0) ™ (cos ¢ — cos ) - sin((0])

= (52
/ SR L1 4 Zs)V' -
¥

K(0,9)

sgn(f) sin(|0|) + sgn(¢) sin(|p|)s[k + (k + k') Zs]

+i(k + k") (cos ¢ — cosB)s(1 + Zs)} ds,

cos ¢ — cos 6

ith 7 =
W 2 cos 0

. Hence, we get (28). For all s €]0, 1], we have

K'sgn(0) sin(2|6|) + sgn(¢) sin(|¢|) s[2k cos 0 + (k + k') (cos ¢ — cos 6)s]

+i(k + k") (cos ¢ — cos 0)s[2cos @ + (cos ¢ — cos 0)s]

< {k' sin(2]6|) + sin(|¢|)[2k cos 0 + (k + k") (cos ¢ — cos §)]

+(k + k') (cos ¢ — cos0)[2 cos + (cos ¢ — cosb)]

= sin(|¢])[(k + £')(cos ¢ — sin(|¢])) + (k — k') cos 6]

+sin(|0])[(k + k) sin(|0]) + 2k’ cos 0]

<sin(|0])[(k + k') + (k — k") cos 0] + sin(|0])[(k + k") sin(|6]) + 2k cos )]
= (k+ k") sin(|0])(1 + cos 6 + sin(|6\))ﬂ

— (k + K)sin(|6)]) (1 +V/2cos (|9| - Z>>

< (14 V2)(k + k') sin(]0]).

Then, we get (29). O

5 Estimates for the Jacobi-Cherednik kernel

In this section we give some properties of the Jacobi-Cherednik kernel G(Ak’kl) (0)
in the following cases :

5.1 The case k' =0 < k.

Proposition 5.1.

_1_1
YAEC, V0 e }—5 g{ (GE(6)] < 2R3 (cos(26)).
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Proof. This follows immediately from formulas (4), (23), (16) and the fact
that

D
G0y =1=R"*777).

2

[
Lemma 5.2. Let 6 € }—5 5[ {0} and
10|
I.(0) ::/0 (cos ¢ — cos 0)F 1 dp. (30)
Then we have
1.
_\/_F() oh1 R AU
I.(0) N >(s in(|0))* " 2 Fy <k,l<:,k:+ 3 <sm (;)) > :
(31)
2.
+o0 k—1
B(0) =2 (s> [ g @)
3.

vV L'(k) VAT
2Tk + L )(Sm(’e’)) < I(0) < o (® +1)(sm(\e\)) . (33)

Proof. We get (31) in view of [3], p.383, 999, and [2], p.64, formula (23). We
deduce (32) from [3], p.383, 1002 and 938. As

+o0 tkfl +o00 tkil
B(k, k) = —dt < dt
(k. k) /o (14t)% _/0 (1 + 2t cosf + t2)k
too gkl 1 [k k
< / —————dt=-B|=,=- ],
o (AT 2)F 27\ 22

22k—1 1 )
(see [3], p.948), I'(2k) = NG L'(k)r <k+ 5) (see [3], p.938) and by using

(32), then we obtain (33). O

Theorem 5.3.
Tk +3)
k+1

(%59)

o=

T (k—%1-1)
- = < 2’ 2 <
V@G} 2,2[, 1—R—§ (cos(20)) <

=5
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—E, T [ ~ {0}. We have

Proof. Letﬁe} 575

k—

NI

R
2

1 o,
D (cos(20)) = / K399, 6) dg
0

- w(sin(wm_%“.’k(@), (34)

where I; () is given by (30). To finish the proof we use (33) and the equality

2k + )T (5) _ VAL(k +3)

TOr D ()
O
Corollary 5.4.
VAEC, Ve } —g, g [ G0 0)] < %emllel.
2
Proof. Proposition 5.1 and Theorem 5.3 give the result. [

Remarks 5.5.

1. From (4), (23) and (16) we get

’ %)(COS(ZQ)).

N[
N

Vo ¢ } —g,g[\ (0}, 0<e 360 09) < 2R,

1
2

_1_1 1 0 ;
2. v0e |25 BY T (cos(20)) = o1 (k,k;k‘+§; (Sin <%)> )

5.2 The case 0 < k =k
Proposition 5.6.

e we|-TI[ (o) < 2m@)e MRS D cos(on)),

where m(0) is given by (26).

Proof. This follows immediately from formulas (4), (25), (16) and the fact

that (bl h 1)
k.k —2hT3
G 0) =1=R", (1).
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Theorem 5.7. For all 6 € ]—g, g [, we have

(k,l _1

(cos «9)1_”““(2’“”““) <R’ )1—max(2kz,k+1).

(cos 6

Proof. Let 0 E}—g —[ {0}. We have

1 1 k l
R(lcl;ﬁ’kfi)(cos(%)) = %(Sinﬂﬂ))_%“(cos g)~2k+1
o k-1
X / (cos ¢ — cos§)F! (M) do.
0

0 k
By using (cos #)max(*:—1.0) < (msqb%) < (cos 0)Mn*+=19) and (34) we

get

(cos §) 1D p-372) (og00)) < RET3RTH) (0o5(26))
2 1
< (COS 9)1 max(2k,k+1) R(}i 2 E)(COS(QG)).

2

Now Theorem 5.3 gives the result. O]

Corollary 5.8. For all A € C and 0 € }—g, g [, we have

)| < 2wk + 3)
- (T(E)?

where m(0) is given by (26).

|Gg\k’k)(9

m(‘g) (COS 8)1—max(2k,k+1) e|S‘s)\||9| ’

Proof. Proposition 5.6 and Theorem 5.7 give the result. [
Remark 5.9. From (4), (25) and (16) we get

Vo € ]—g : [ {0h 0< e GER ) < 2m(o)RY, 2472 (cos(20)),
where m(0) is given by (26).
5.3 The case 0 < k' < k.
Proposition 5.10. For all A € C and 0 € } —g, g [, we have

(ek) | < (L V2)(k +K)
|G’\ <9)| - 2k’ cos 0

. _ 1y 1
eIJAH@\Rﬁ%ﬂ“ 2 (cos(26)).
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Proof. This follows immediately from formulas (4), (29), (16) and the fact
that

k. k' (k=5.k'~3%)
G0y =1=R" 22 (1),
2

Theorem 5.11. For all 6 € ]—g g[, we have

(COS 9)1—min(2k’,k”+1) < R(kk:k/k/ )(008(20)) w( 9)1—max(2k’,k’+1).
(I (%))
Proof. Let 0 € ]—— —[ {0}, ¢ €]—10],10], Z = cos¢ — cosf and s €]0, 1.
2’ T 2cosf ’

We have
cos¢+cos€<1+cose 1
2cos  — 2cosf cosf’
So, (cos )™ =L0) < (1 4 Z5)M 1 < (cos @) m*'=L0) - By using (27), we
get
1 1 _1
(COS 0)1 min(2k’ k" +1) R(’i 39 2)(008(20))

l<1l+Zs<14+7=

m

1L Y 1 _ 1
< R(kk%’, )(008(29)) < (cos @) max(2k'k +1)RY12’ 2)(008(29)).

2

Now Theorem 5.3 gives the result. O
Corollary 5.12. For all A € C and 6 € } —g, g [, we have

/ 1
GH0)] < (1+V2)ym(k +k )E(k T3 () PSR4 O,
2k (T (%57))
Proof. Proposition 5.10 and Theorem 5.11 give the result. O]

Remark 5.13. In view of Theorem 5.7, we remark that Theorem 5.11 is
also valid for k = K'.

6 The Jacobi-Cherednik intertwining

operator
" . , T
Definition 6.1. For every continuous function f : } —53 [ — C, we define
10|
: (kk") - T
v = |, K@@ i o€ [T 2N 0h g
f(0) if 6 =0.
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For functions ey : 6 — ¢, X € C, we have Ve, = G®F) and by (3) we
remark that

/ ! ! d
TERIYy ke, = prikk )@ex. (36)

This is the intertwining relation (5) for functions f = e). The aim of this

z, T D and to show
272
T

that V' is an automorphism of £ G —53 D The main tool is the general form

(21) of the Laplace kernel K*®*) (0, ¢) in terms of the kernel K(6, ¢) as given
by Theorem 3.1. This kernel Kj is the Laplace kernel associated to the Jacobi
functions Rg%’k/_%)(cos(%)) (see (11)). By a result of K. Trimeche ([12]),
we know tha’g the operator Ky associated with the kernel K, and defined on

Ee G —g, g D (the space of even functions f € £ <] ;T 5 D) by

section is to extend this relation to functions f € £ G —

[

™
K if ——, =
Kot0) = { | Ho®:0)f(@)do it 0e|-Z 5N gy
£(0) if =0
. . . . ™ T . .
is the unique topological automorphism of &, G 33 D that intertwines the
2
second derivative 02 and the extended Jacobi operator A — p?, where
1 d d T
Ai=———|A(0])— e |—=, = 0 38
s (A). 0e]-TI[Non @

and A(]0]) := Ap_1/2,0—1/2(|0]). In other words, for all f € &, (] —g, g D’ we

have

d2
AK = Ko
Kof (0> = f (O)
In order to simplify notations, we will simply write K (6, ¢) := K(k’k/)(e, b),
Vo= VE) and T .= T®*). We also use the notations intr%d%ced in the
above sections. In addition we will consider the space &, ( | —=, =) of odd

272
C* complex valued functions on }—g, g[ and we suppose that the spaces

Ee G —E, T D and &, G —g, g D carry the induced topology of € G —E, T D

22 22
For every function f € & <] —g, g D we will denote by f. and f, respectively,
its even and odd parts, that is
T 1 1
e =22 S0) = SO+ F(=0)),  £(0) == 5(F(8) = F(=0)).
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2°2

Theorem 6.2. For all f € £ (] —g, g D, we have

VS = Kofe + Kol Gol T+ 1), (10)

where I 1s the primitive operator, which vanishes at 0, defined by

:/O¢f(t)dt

and I is the operator given by
0
= | 1@y costoto — o)) de,

Proof. 1) Let f € & G—g,g[) and 0 € ]—g 5[ {0}. By (21), we get

6]
V(o) = / (K(0,0) + K(6,—9)) f(6) do
6]

0

11 rlo|

Ko(t, 9)A(t) dt f(¢) do,
(41)

and applying Fubini’s theorem to the second integral of (41), we see that

VO) = Kof(0) + A n(6 / ! ( / Kot d¢A(t)dt)
g

B . ( 16
= Kof(0) + i [ Karaw
16| 2 .
~ kaf @)+ i [k (5 +2) DO A@
16|
— Kaf(6) + g5 [ A0 A d, (12)

d2
where we have used that the unique solution of (W +p > =f,

u(0) = 0, u/(0) = 0is u = I(If) and the intertwining relation (39) to deduce
(42). But for g € &, (] —g, g D, it is easy to see that for all 6 € } —g, g [,

16l d
i / Ag(t) A dt = 9(0). (43)
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By applying this formula to the function g = KoI(If), the result of the theorem
follows from (42).

ii) Let f € &, (]—g,gD and@G} ;T g[ {0}. We have

6]
V(o) = / (K (6. 6) — K(6,~))[(6) do

~sgn() ol 9 [
Tk & ( [ Kot w)A() dt) (6)1(6)do

~ sgn(0) 6] 10| /
- A(|0|)/0 <¢ Ko(t, 9)A(t) dt)f(@dd), (44)

by a trivial integration by parts. But if we interchange integrations in (44) we
obtain

sgn(6) / o
Vf(0) = Ko f")(t)A(t) dt. 45
d? d? ~
But if in (45) we note that f' = (d92 +p ) If, we replace K (d92 ,02> If
by AKoI f and we apply once again the formula (43) to the function g = Kolf,

the announced result follows immediately from (45). O

Now consider the application ¥, : £ G _rr D — & <] —g ' D defined for

272
J=1fe+ fo by
\ijf:fe"i_ip]fe"i_fo- (46)

We clearly have (U, f). = f., (V,f)o =ipl fo+ f, and (40) can then be written

VI = Kol(Bf)) + ol (W,1)) = ®(W, ) = BoW,f,  (4)

where @ : £ (] g, g D — & G —g, g D is the operator defined for all
f=tfo+foce(]-5.5]) by

(f) ’CO(fe) + ICO (fo) (48)

We precise the structure of V' in the following lemma :
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Lemma 6.3. The operators ¥, and ® defined by formulas (46) et (48) are

rr D and their inverses are given by

t hi SG—ﬁ
automorphisms of 573

\11;1 =V_, and
) =K )+ TR (L), F=fe+foe(]-5.5]) (9

where 17" is the inverse operator of I given by

f*w)=10(§%~%f)(m~

Proof. For f € € Q —g, g D, we immediately see that ¥_,(¥,f) = f,so ¥, is
a bijection and \Ilp_l = V_,. The continuity of ¥, follows from the continuity

on 5(]—%,%[) of the applications f ~— f., f — f, and f —— [f..
The assertion concerning ® follows from the fact that f. — KCo(fe) is an

d -
automorphism of &, G —g, g D and f, — @KOI (fo) is an automorphism of
& (] —g, g D, the formula giving ® ! is clear. O

We can now summarize the above discussion in the form of the following
theorem :

Theorem 6.4. The intertwining operator V is a topological automorphism
™ T . -1 - .
of the space € G 513 D and the inverse operator V" is given by

VI = KM —ipIKg e+ TG e fe(]-55]) 60)
Proof. By Lemma 6.3 and formula (47), V is an automorphism. The form of
V=0 od ! follows also from Lemma 6.3 and (46). O

As a consequence of the isomorphism Theorem 6.4, we can now prove the
intertwining property announced in (5) and in the beginning of this section.

Theorem 6.5. The operator V' is the unique continuous operator on

£ Q —g, g D satisfying

wesG—g D,JszV%fsmiVﬂ@zf@. (51)

ro| 3
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Proof. Let us denote by P the linear subspace of £ (] —g, g D generated by
the functions ey : # — ¢’ when A € C. By (36) and the linearity of V and
T, for every p € P, we have

d
TV = VL) 52
p iy (52)

But P is dense? in £ G —g, g D So if (pn)n is a sequence in P converging to
d d

f e 5(];%%[), we have V@pn — V@f and Vp, — Vf (n = +00)

in £ (] 55 D as V is continuous. By Lemma 6.6 below, we deduce that

TV p, — TV f uniformly on compact sets. From (52) with p = p,, and passing

to the limit as n — +o00, we then obtain (51). Now if W is another continuous

operator on & G—g, g D satisfying (51), for all A\ € C, by unicity in the
eigenfunction equation (3), we must have W(ey) = G_;» = V (ey), so
W(p) =V(p) forallp e Pand V =W as P is dense in & <]—g, g D The
only thing that remains to be proved is the following lemma :

Lemma 6.6. If (f,). is a sequence of functions of C" (] —g, g D and
fect <] —g, g D are such that f, — f and f] — f" uniformly on compact
sets, then T f, — T f uniformly on compact sets.

Proof. Fix A € }O,g[ and for g a continuous function on }—g, g [, write
llg||a = sup |g(8)|. If f € C* (] —E, T D by a Taylor-Lagrange expansion of
0]<A 22
order 1 at point 0, we clearly see
0) — f(—0
sup [FOZIEE] <o), (53)
|o]<A
If we write
, 0 0 f0)—f(=0) .
Tf(O)=f'(0)+2i (kl " + k:’l n e%@) 3 —i(k+K)f(0)
and let
2 | k 0 + K 0 = M < 400
;&% 1 — —2i0 1+ e—2i0 - ’

2This known result is an easy consequence of the Hahn-Banach theorem using the fact

that the dual & G fg, T T

= D of £ (] fz, T D is the space of the distributions on }77, 7[
) 2 2°2 2°2
with compact support.
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we immediately see that

T fo = Tflla < |1fn = Flla+ 2MI[f, = flla+ (k4 )| fo = flla

and the result follows clearly. m

7 The dual of the Jacobi-Cherednik
intertwining operator

We denote by D (] —g, g D (resp. D.(] —g, g[) and D, (] —g, g D) the space

of complex valued f € € —g, g D with compact support

(resp. ’;heﬁsubspaces D Q ;g, g D NnE& (] —g, g D and
(-350ne(-550)

Definition 7.1. For all continuous function g : } 55 [ — C with compact
support we define the dual 'V of the operator V by
T
vwe|-3.3[ = [ Keogoaihas. 6y
101> |¢|

Proposition 7.2. The operator 'V is the unique operator satisfying

wee(l-g 30 weo( 530

/_ TV 90)AG0) Ao = [ f(6)V (o) do. (55)

_
2

NJE]

Proof. The relation (55) follows immediately from Fubini’s theorem by
interchanging integrations in the right hand side of (55) and the unicity of the

function Vg satisfying (55) for all f € D (] —g, g D, is clear. O

Theorem 7.3. For all g € D G —g, g D, we have

Vo= Kolg — inI(g)) + 55 Kol (a0)) (50)

where 'KCy is the dual of the operator Ky considered in (37) and J is the
0

primitive operator which vanishes at —g i.e. Jgo(0) = / go(t)dt.

_T
2
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2
72 7we

Proof. 1) Suppose g = g. € D, G —g,
have

D For f = f. 656(}—

| X

7
2

/ CV1.(0).(0)A(6)]) db

s
2

Ko(fe)(0)ge(0)A(|0]) 0

Ko(fe)(0)g.(0)A(]6]) d6

™

*1(6) Koge(o) do

I
[\
[NE )

/_ 1.(6) Koge(6) do.

NIE]

™

If feé& G—z zD, we have /2 V£(@)g(0)A(|0])dd = 0 as the function

272 _=x
under the integral sign is odd. ’
.. T T T
ii) Suppose g = g, € D, G —5 §D For f = f. € &, G —5 ED’ by (43), we

have
/_2er<9>0 Al6]) do = ip zi/co T(11.)(0)g,(0)A(|6]) db

0]
—ip [ sen®) ( / AT (Lf)(H)A ()dt) 6,(6) o

=2z'p/0g (/Oemco (I1)()A(R)d ) ,(6) .

d2
By integrating by parts and using the fact that AKy = Ky <@ +p )

Wl

(VB 1\3\

(VB

2

(see (39)) and <% +p ) I(If.) = f., we get

/_ "V 1.(0)g.(0) A(l0]) db = —2ip / * Kofu()T9,(0) A(t) dt

(ME]

— 2 /O * 1.(6) Kool J90)(6) do

——ip [ £(6)'KolJg,) (@) do



5[ 71

The Jacobi-Cherednik operator on } —g, 5
For f=f,eé& <] —g '3 D by (43), we have

[ vaemanna = [ Gl omoac)
/ KT (1,)()00(6)A(01) 6

> / ( / AT (0AT) ) 0 0) .

2
By integrating by parts and using the fact that A, = Ky (ﬁ +p )

2

(see (39)) and <% +p ) If, = f!, we get

/ "V 1,(0)g0(0) A(J0]) db = —2 / * Ko(£)(1) Tao(t) A(t) dt

_ g / " 16) Kol Jg0)(6) db

[

g
_9 /0 1o(9) 25K T g,) (6) d

)

SE

D andg—ge+go€DG g

| N

iii) Finally for f = f.+ f, € € (]—g,
using i) and ii) and the fact that

V[(0)g(0) =V fe(0)ge(0) + V fo(0)ge(0) +V fe(0)g0(0) + V fo(0)g0(0),

we get / "V 0)9(0)A(6]) do

[SIE]

gD, the result of the theorem
O

NG

This relation being true for all f € D (] —

follows.
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Remark 7.4. By [12], we know that the operator 'Kq is an automorphism of
the space D, G —g, g D . As a consequence of the preceding theorem we deduce
that 'V is a linear and continuous operator of D G —%, g D into itself. We
will see in the next result that it is indeed an automorphism of D 55 D

Theorem 7.5. The operator 'V is an automorphism of D G —g, g D The

1mverse operator is given by

T T _ _ . d —
VgeD(]—§7§D, Vg = Ko (g —ipgo) + 25 'K (o). (57)

Proof. The result follows from the easily verified relation

erp(}—g,g[), Wl f = o YLy (58)
e . T
and from the fact that "ICy is an automorphism of D, G 35 D O
T
Theorem 7.6. For all g € D G 513 D, we have
d
"WA(T +2ipS)g = — Vg, (59)

do

where S is the operator defined by Sg(6) := g(—0).
For the proof we need the following lemma :

Lemma 7.7. For all f € £ (]—g, g D and g € D (]—g, g D, we have

jus

/ S TrO)g0) AN = — / C 1(O)Tg(6)A(0])d0

~
2

[VE]
VB

~ 2ip / FO)g(~0)A(0)do.  (60)

Wl

Proof. Tt follows from (1) that we have

T1(6) = 50) + @) G0 (10) ~ F-0) ~inf(-6), #]-F.5]
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2°2
Then we get
/ Ti0)s0) AN = [ £(0)9(6)A(0]) o
5 04 50) 0o
—ip [ F-opg@0) . (62)

Integrating by parts on ] —g, O[ and ]0,
side above, we obtain

NN

[ the first integral in the right hand

jus

" 1(0)g(0)A(6]) db = / ’

Wl

(63)
By changing variable # into —6 in the integrals /2 sgn(0)A'(16])(f(—0))g(0) db

Jus
2

and | f(=0)g(0)A(|0]) df the result of the lemma follows easily from (62).

_
2

]

Proof of the Theorem 7.6. Let f € & (] —g, g D and g € D G —g, g D
Repeated integration by parts, the definition of ‘V, the intertwining relation
and Lemma 7.7 give

z d

1) Valordo =~ [ 1o Ve(o)do

s
2

[ v s ai i = [ v iAo

us —
2

Wl

- / TV HOTg0)A(0) A0 +2ip [V F(0)g(~0)A(6]) db

_
2

ISERCTF

= [ f()'V(Tg(¢)+ 2ipg(—9)) do.

INIE]

This relation being true for all f € D (] — ,gD, the result of the theorem
follows. u

b |
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8 Open problems

8.1 Problem 1
Find a positive constant C, which does not depend on # and ¢, such that

K0 0,0)| < CRSTH(6,0),

where 6 € } —g, g [ ~ {0} and —|0] < ¢ < |6].

1 g0

8.2 Problem 2

/ BVt
Write a relationship between K®*) and Kék 2k 2), like (22) and (24), in the
case 0 < k' < k.
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