Int. J. Open Problems Complex Analysis, Vol. 6, No. 3, November, 2014 ISSN 2074-2827; Copyright ©ICSRS Publication, 2014 www.i-csrs.org

The Jacobi-Cherednik operator on $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$

Frej CHOUCHENE

Department of Mathematics, Faculty of Sciences of Monastir, Street of the environment, 5019 Monastir, Tunisia e-mail: frej.chouchene@fsm.rnu.tn

Léonard GALLARDO

Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 6083 Université de Tours, Campus de Grandmont, 37200 Tours, France e-mail: leonard.gallardo@lmpt.univ-tours.fr

Khalifa TRIMÈCHE

Department of Mathematics, Faculty of Sciences of Tunis, CAMPUS, 2092 Tunis, Tunisia e-mail: khlifa.trimeche@fst.rnu.tn

Received 1 July 2014; Accepted 2 October 2014

Abstract

In this paper we study the differential-difference Jacobi-Cherednik operator defined by

$$T^{(k,k')}f(\theta) := f'(\theta) + (k\cot\theta - k'\tan\theta)\left(f(\theta) - f(-\theta)\right) - i(k+k')f(-\theta),$$

$$f \in C^1\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$$
,

 $f\in C^1\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right),$ where k>0 and $k'\geq 0,$ and the operator which intertwines $T^{(k,k')}$ and the derivative operator $\frac{d}{d\theta}$. Estimates for the eigenfunctions of the operator $T^{(k,k')}$ are also given.

Keywords: Jacobi-Cherednik operator, Laplace formula, Estimates for the Jacobi-Cherednik kernel, Intertwining operator, Intertwining dual operator.

2010 Mathematical Subject Classification: 34K99, 42A99, 47B38, 58J99.

1 Introduction

For a crystallographic root system R in \mathbb{R}^d , a fixed positive subsystem R_+ and a nonnegative multiplicity function k defined on R, the Cherednik operator ([1], [9], [10]) in the direction $\xi \in \mathbb{R}^d$ is defined, for $f \in C^1(\mathbb{R}^d)$, by

$$T_{\xi}f(x) := \partial_{\xi}f(x) + \sum_{\alpha \in R_{+}} k_{\alpha} \langle \alpha, \xi \rangle \frac{1}{1 - e^{-\langle \alpha, x \rangle}} \left(f(x) - f(\sigma_{\alpha}(x)) - \langle \rho, \xi \rangle f(x), \right)$$

where $\langle .,. \rangle$ is the usual scalar product, σ_{α} is the orthogonal reflexion in the hyperplane orthogonal to α , $\rho := \frac{1}{2} \sum_{\alpha \in B_{+}} k_{\alpha} \alpha$ and the function k is invariant

by the finite reflection group W generated by the reflections σ_{α} ($\alpha \in R$).

Thanks to these operators, G.J. Heckmann and E.M. Opdam developped a theory generalizing harmonic analysis on symmetric spaces ([5], [6], [9]). Important results have yet been obtained in this direction ([10]) but despite to recent interesting results ([11]), applications remain restricted, in particular for lack of precise information on the eigenfunctions of these operators T_{ξ} . One of the main obstacle is that no Laplace formula with a positive kernel is known for the eigenfunctions (or the so called Opdam-Cherednik kernel) equivalently no positive operator intertwining T_{ξ} and the derivative operator ∂_{ξ} , is known for the moment. As a contribution towards this fondamental question and via the study of a more general differential-difference operator, L. Gallardo and K. Trimèche gave in [4] a complete solution for the case d = 1.

In the present paper, we give a solution for the case of a bounded interval. More precisely, we consider the differential-difference operator, which we will call the Jacobi-Cherednik operator, defined for $f \in C^1\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$, by

$$T^{(k,k')}f(\theta) := f'(\theta) + (k\cot(\theta) - k'\tan(\theta))(f(\theta) - f(-\theta)) - i(k+k')f(-\theta), (1)$$

for $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } T^{(k,k')}f(0) := (2k+1)f'(0) - i(k+k')f(0)^{-1}, \text{ where } k > 0 \text{ and } k' \geq 0 \text{ are two parameters satisfying the following condition :}$

(C): either
$$k' = 0 < k$$
, or $0 < k' \le k$. (2)

¹Note that $T^{(k,k')}f$ is a continuous function on $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

For every $\lambda \in \mathbb{C}$, let us denote by $G_{\lambda}^{(k,k')}$ the unique solution of the eigenvalue problem

 $\begin{cases}
T^{(k,k')}f(\theta) &= i\lambda f(\theta), \\
f(0) &= 1.
\end{cases}$ (3)

Noting that $G_{\lambda}^{(k,k')}$ can be expressed in terms of Jacobi functions and using results obtained by T.H. Koornwinder ([7]), we show that there exists a continuous kernel $K^{(k,k')}(\theta,\phi)$ $\left(\theta\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\setminus\{0\},\;-|\theta|\leq\phi\leq|\theta|\right)$ which we call Laplace kernel, such that for all $\lambda\in\mathbb{C}$ and $\theta\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\setminus\{0\},$

$$G_{\lambda}^{(k,k')}(\theta) = \int_{-|\theta|}^{|\theta|} K^{(k,k')}(\theta,\phi) e^{i\lambda\phi} d\phi. \tag{4}$$

We can deduce precise estimates on the function $G_{\lambda}^{(k,k')}$ which allows the Jacobi-Cherednik kernel $(\lambda,\theta)\longmapsto G_{\lambda}^{(k,k')}(\theta)$ to be considered as a good kernel for the Fourier-Opdam transform.

We then study the associated intertwining operator defined by

$$V^{(k,k')}f(\theta) := \int_{-|\theta|}^{|\theta|} K^{(k,k')}(\theta,\phi)f(\phi) d\phi,$$

for $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } V^{(k,k')}f(0) := f(0).$ It intertwins the operators $T^{(k,k')}$ and $\frac{d}{d\theta}$ on the space of C^{∞} functions, that is

$$T^{(k,k')}V^{(k,k')}f = V^{(k,k')}\frac{d}{d\theta}f,$$
(5)

for all C^{∞} function f. Moreover, we show that is a topological automorphism of the space $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ (of complex valued C^{∞} functions on $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ carrying the topology of uniform convergence on compact sets of all derivatives) and we determine explicitly the inverse automorphism $\left(V^{(k,k')}\right)^{-1}$. We also study the dual operator ${}^tV^{(k,k')}$ defined, on the space of all continuous function $g:\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\longrightarrow \mathbb{C}$ with compact support, by

$$\forall \phi \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[, \quad {}^{t}V^{(k,k')}g(\phi) := \int_{|\theta| > |\phi|} K^{(k,k')}(\theta,\phi)g(\theta)(\sin(|\theta|))^{2k}(\cos\theta)^{2k'} d\theta.$$

We show that it is a topological automorphism of the space $\mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ of complex valued C^{∞} functions with compact support and it satisfies the following unusual intertwining relation:

$$\forall g \in \mathcal{D}\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right), \quad {}^{t}V^{(k,k')}\left(T^{(k,k')} + 2i(k+k')S\right)g = \frac{d}{d\theta} \, {}^{t}V^{(k,k')}g,$$

where S is the operator defined on $\mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ by $Sg(\theta):=g(-\theta).$

In a forthcoming paper we study the Fourier-Opdam transform associated to the Jacobi-Cherednik kernel, we prove a Fourier inversion formula, a Plancherel theorem and a Paley-Wiener theorem and we show how the intertwining operator $V^{(k,k')}$ can be used to define generalized translation operators and a convolution structure naturally associated to the Jacobi-Cherednik operators.

In the sequel, we always suppose that the parameters k and k' satisfy the condition (C) given by (2) and we denote by $\rho := k + k' > 0$.

2 The Jacobi-Cherednik kernel

Proposition 2.1. For every $\lambda \in \mathbb{C}$, the eigenfunction equation (3) has a unique solution of the form

$$G_{\lambda}^{(k,k')}(\theta) = R_{\frac{\lambda-\rho}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)) - \frac{i}{\lambda-\rho} \frac{d}{d\theta} \left[R_{\frac{\lambda-\rho}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)) \right]$$

$$= R_{\frac{\lambda-\rho}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)) + i \frac{\lambda+\rho}{2(2k+1)} \sin(2\theta) R_{\frac{\lambda-(\rho+2)}{2}}^{(k+\frac{1}{2},k'+\frac{1}{2})}(\cos(2\theta)), (7)$$

$$\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

where $R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}$ is the Jacobi function of index (α,β) given by

$$R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}(\cos(2\theta)) := {}_{2}F_{1}\left(\frac{\rho-\lambda}{2},\frac{\rho+\lambda}{2};\alpha+1;(\sin\theta)^{2}\right),$$

where $_2F_1$ is the Gaussian hypergeometric function (see [7], p.147, formula 2.3).

Proof. In order to simplify notations let us denote by

$$T:=T^{(k,k')}, \quad \varphi(\theta):=R_{\frac{\lambda-\rho}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)), \quad G:=\varphi-\frac{i}{\lambda-\rho}\varphi'.$$

In view of [7], the function φ satisfies the differential equation

$$\varphi''(\theta) + 2\left(k\cot\theta - k'\tan\theta\right)\varphi'(\theta) = -(\lambda^2 - \rho^2)\varphi, \quad \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}.$$

Using the fact that φ is even and φ' is odd on $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we immediately deduce that $TG = i\lambda G$. As G(0) = 1, this proves that G satisfies the eigenfunction

equation (3). In order to see that it is the unique solution, it remains to show that if $h \in C^1\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$ is a solution of

$$\begin{cases}
Th(\theta) = 0, \\
h(0) = 0,
\end{cases}$$
(8)

then h = 0. Let us denote by $h_e(\theta) := \frac{1}{2}(h(\theta) + h(-\theta))$ and

 $h_o(\theta) := \frac{1}{2}(h(\theta) - h(-\theta))$ respectively the even and odd parts of h. Taking into account that the function $q(\theta) := k \cot \theta - k' \tan \theta$ is odd on $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}$, the function h satisfies (8) if and only if it satisfies the two following conditions:

$$\begin{cases}
h'_o(\theta) + 2q(\theta)h_o(\theta) - i\rho h_e(-\theta) &= 0, \\
h(0) &= 0
\end{cases}$$
(9)

and

$$\begin{cases}
h'_e(\theta) - i\rho h_o(-\theta) &= 0, \\
h(0) &= 0.
\end{cases}$$
(10)

From the equation (10) we deduce that $h_e \in C^2\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $h''_e(\theta) = -i\rho h'_o(\theta)$ and by introducing this value in the equation (9), we see that h_e satisfies the following second order differential equation:

$$\begin{cases} h''_e(\theta) + 2q(\theta)h'_e(\theta) - \rho^2 h_e(\theta) = 0, \\ h_e(0) = 0, h'_e(0) = 0, \end{cases}$$

which admits a unique solution $h_e = 0$. Then, by (10), $h_o = 0$ and so h = 0. The second expression (7) follows from the formula giving the derivative of φ .

Examples 2.2. For all $\lambda \in \mathbb{C}$ and $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

1. If
$$k = 1$$
 and $k' = 0$, then $R_{\frac{\lambda-1}{2}}^{(\frac{1}{2}, -\frac{1}{2})}(\cos(2\theta)) = \frac{\sin(\lambda\theta)}{\lambda\sin\theta}$ and

$$G_{\lambda}^{(1,0)}(\theta) = \frac{\sin(\lambda\theta)}{\lambda\sin\theta} + \frac{i}{\lambda - 1} \left(\frac{\sin(\lambda\theta)\cos\theta}{\lambda(\sin\theta)^2} - \frac{\cos(\lambda\theta)}{\sin\theta} \right).$$

2. If
$$k = k' = 1$$
, then $R_{\frac{\lambda^{-2}}{2}}^{(\frac{1}{2},\frac{1}{2})}(\cos(2\theta)) = \frac{2\sin(\lambda\theta)}{\lambda\sin(2\theta)}$ and

$$G_{\lambda}^{(1,1)}(\theta) = 2\left[\frac{\sin(\lambda\theta)}{\lambda\sin(2\theta)} + \frac{i}{\lambda-2}\left(\frac{2\sin(\lambda\theta)\cos(2\theta)}{\lambda(\sin(2\theta))^2} - \frac{\cos(\lambda\theta)}{\sin(2\theta)}\right)\right].$$

As an interesting direct consequence of Proposition 2.1, we now present a functional relation between the eigenfunction $G_{\lambda}^{(k,k')}$ and the Jacobi function $R_{\frac{\lambda-\rho}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta))$ which can be compared to the relation between the functions G_{λ} and F_{λ} of E.M. Opdam in [9], p.89.

Corollary 2.3. For all $\lambda \in \mathbb{C}$ and $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

$$(\lambda - \rho)G_{\lambda}^{(k,k')}(\theta) = p\left(\lambda, T^{(k,k')}\right) R_{\frac{\lambda - \rho}{2}}^{(k - \frac{1}{2}, k' - \frac{1}{2})}(\cos(2\theta)),$$

where $p(\lambda, X) := -iX + \lambda I$.

Proof. Formula (1) applied to $\varphi(\theta) = R_{\frac{\lambda - \rho}{2}}^{(k - \frac{1}{2}, k' - \frac{1}{2})}(\cos(2\theta))$ implies $\varphi'(\theta) = T^{(k,k')}\varphi(\theta) + i\rho\varphi(\theta)$. From (6), we immediately deduce that $(\lambda - \rho)G_{\lambda}^{(k,k')}(\theta) = -iT^{(k,k')}\varphi(\theta) + \lambda\varphi(\theta)$, which is the announced result. \square

3 Laplace representation formula for the Jacobi-Cherednik kernel

From the explicit expression of the eigenfunctions given by Proposition 2.1, and using the integral representation of the Jacobi functions obtained by T.H. Koornwinder in [7], we will obtain a Laplace integral representation of the function $G_{\lambda}^{(k,k')}$ which we will call the Jacobi-Cherednik kernel. We first recall the result of T.H. Koornwinder.

Theorem 3.1. For all $\lambda \in \mathbb{C}$, $\theta \in \left]0, \frac{\pi}{2}\right[$, $\alpha > -\frac{1}{2}$ and $\beta \in \mathbb{R}$, the Jacobi function $R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}$ has the following integral representation [7]:

$$R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}(\cos(2\theta)) = \int_0^\theta K_0^{(\alpha,\beta)}(\theta,\phi)\cos(\lambda\phi) d\phi, \tag{11}$$

where

$$K_0^{(\alpha,\beta)}(\theta,\phi) = \frac{2^{-\alpha+\frac{3}{2}}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}(\sin\theta)^{-2\alpha}(\cos\theta)^{-(\alpha+\beta)}(\cos(2\phi)-\cos(2\theta))^{\alpha-\frac{1}{2}}$$

$$\times {}_{2}F_{1}\left(\alpha+\beta,\alpha-\beta;\alpha+\frac{1}{2};\frac{\cos\theta-\cos\phi}{2\cos\theta}\right)\mathbf{1}_{]-\theta,\theta[}(\phi). \tag{12}$$

This kernel can also be written in the following forms [8]:

1. If
$$-\frac{1}{2} < \beta < \alpha$$
,

$$K_0^{(\alpha,\beta)}(\theta,\phi) = \frac{2^{\alpha-2\beta+\frac{3}{2}}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha-\beta)\Gamma(\beta+\frac{1}{2})}(\sin\theta)^{-2\alpha}(\cos\theta)^{-2\beta}$$

$$\times \left(\int_{|\phi|}^{\theta}\sin t(\cos(2t)-\cos(2\theta))^{\beta-1/2}(\cos\phi-\cos t)^{\alpha-\beta-1}dt\right)$$

$$\times \mathbf{1}_{]-\theta,\theta[}(\phi). \tag{13}$$

2. If
$$-\frac{1}{2} < \beta = \alpha$$
,

$$K_0^{(\alpha,\beta)}(\theta,\phi) = \frac{2^{\alpha+\frac{3}{2}}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}(\sin(2\theta))^{-2\alpha}(\cos(2\phi)-\cos(2\theta))^{\alpha-1/2}\mathbf{1}_{]-\theta,\theta[}(\phi).$$
(14)

3. If
$$-\frac{1}{2} = \beta < \alpha$$
,

$$K_0^{(\alpha,\beta)}(\theta,\phi) = \frac{2^{\alpha+\frac{1}{2}}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} (\sin\theta)^{-2\alpha} (\cos\phi - \cos\theta)^{\alpha-\frac{1}{2}} \mathbf{1}_{]-\theta,\theta[}(\phi). \quad (15)$$

Remark 3.2. The function $\theta \longmapsto R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}(\cos(2\theta))$ is even on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. The kernel $K_0^{(\alpha,\beta)}(\theta,\phi)$ is even in the variable ϕ but we can also extend it in an even function in the variable θ by defining $K_0^{(\alpha,\beta)}(\theta,\phi):=K_0^{(\alpha,\beta)}(|\theta|,\phi)$ if $\theta \in \left]-\frac{\pi}{2},0\right[$; in fact this is equivalent, in view of (12), to define $(\sin\theta)^{-2\alpha}$ by $(\sin\theta)^{-2\alpha}:=((\sin\theta)^2)^{-\alpha}=(\sin(|\theta|))^{-2\alpha}$ if $\theta \in \left]-\frac{\pi}{2},0\right[$. In the sequel, we always consider that $K_0^{(\alpha,\beta)}(\theta,\phi)$ is so defined for all $\theta \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[\setminus\{0\}$ and $-|\theta|<\phi<|\theta|$ and is even in both variables θ and ϕ . Formulas (12), (15), (14) and (27) are then valid with θ replaced by $|\theta|$ and we can write

$$\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \quad R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}(\cos(2\theta)) = \frac{1}{2} \int_{-|\theta|}^{|\theta|} K_0^{(\alpha,\beta)}(\theta,\phi) e^{i\lambda\phi} d\phi. \tag{16}$$

In his paper [7], p.150, T.H. Koornwinder also gives a Laplace representation formula for the derivative $\frac{d}{d\theta} \left[R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}(\cos(2\theta)) \right]$ but it is not adequate for our purpose. We will derive here a crucial integral formula adapted to our problem.

Theorem 3.3. For all $\lambda \in \mathbb{C}$, $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \ \alpha, \beta \in \mathbb{R}; \ -\frac{1}{2} \leq \beta \leq \alpha \right]$ and $\alpha > -\frac{1}{2}$, we have

$$-\frac{1}{\lambda - \rho} \frac{d}{d\theta} \left[R_{\frac{\lambda - \rho}{2}}^{(\alpha, \beta)}(\cos(2\theta)) \right]$$

$$= \frac{\operatorname{sgn}(\theta)}{2A_{\alpha,\beta}(|\theta|)} \int_{-|\theta|}^{|\theta|} \left(\rho \Psi_{\theta}(|\phi|) + i \operatorname{sgn}(\phi) \frac{\partial \Psi_{\theta}}{\partial v}(|\phi|) \right) e^{i\lambda\phi} d\phi, \tag{17}$$

where

$$\Psi_{\theta}(v) = \int_{v}^{|\theta|} K_0^{(\alpha,\beta)}(t,v) A_{\alpha,\beta}(t) dt, \quad 0 \le v < |\theta|, \tag{18}$$

 $sgn(\theta)$ denotes the sign of θ and

$$\forall t \in \left] 0, \frac{\pi}{2} \right[, \quad A_{\alpha,\beta}(t) = 2^{2(\alpha+\beta+1)} (\sin t)^{2\alpha+1} (\cos t)^{2\beta+1}. \tag{19}$$

Proof. Let $\lambda \in \mathbb{C}$, $\theta \in \left]0, \frac{\pi}{2}\right[, \alpha, \beta \in \mathbb{R}; -\frac{1}{2} \leq \beta \leq \alpha, \alpha > -\frac{1}{2}\right]$ $\varphi(\theta) := R_{\frac{\lambda-\rho}{2}}^{(\alpha,\beta)}(\cos(2\theta))$. Let us consider the Jacobi operator

$$\Delta_{\alpha,\beta} = \frac{1}{A_{\alpha,\beta}(\theta)} \frac{d}{d\theta} \left(A_{\alpha,\beta}(\theta) \frac{d}{d\theta} \right).$$

By (11) and the equality $\Delta_{\alpha,\beta}\varphi(\theta) = -(\lambda^2 - \rho^2)\varphi(\theta)$, we have

$$\begin{split} \varphi'(\theta) &= \frac{1}{A_{\alpha,\beta}(\theta)} \int_0^\theta \Delta_{\alpha,\beta} \varphi(t) A_{\alpha,\beta}(t) \, dt = -\frac{\lambda^2 - \rho^2}{A_{\alpha,\beta}(\theta)} \int_0^\theta \varphi(t) A_{\alpha,\beta}(t) \, dt \\ &= -\frac{\lambda^2 - \rho^2}{A_{\alpha,\beta}(\theta)} \int_0^\theta \left(\int_0^t K_0^{(\alpha,\beta)}(t,\phi) \cos(\lambda\phi) \, d\phi \right) A_{\alpha,\beta}(t) \, dt. \end{split}$$

By Fubini-Tonelli's theorem, we can write

$$\varphi'(\theta) = -\frac{\lambda^2 - \rho^2}{A_{\alpha,\beta}(\theta)} \int_0^\theta \left(\int_\phi^\theta K_0^{(\alpha,\beta)}(t,\phi) A_{\alpha,\beta}(t) dt \right) \cos(\lambda\phi) d\phi.$$

Therefore

$$-\frac{1}{\lambda - \rho} \varphi'(\theta) = \frac{\lambda + \rho}{A_{\alpha,\beta}(\theta)} \int_0^\theta \left(\int_\phi^\theta K_0^{(\alpha,\beta)}(t,\phi) A_{\alpha,\beta}(t) dt \right) \cos(\lambda \phi) d\phi.$$

Integration by parts gives

$$-\frac{1}{\lambda - \rho} \varphi'(\theta) = \frac{\rho}{A_{\alpha,\beta}(\theta)} \int_0^{\theta} \left(\int_{\phi}^{\theta} K_0^{(\alpha,\beta)}(t,\phi) A_{\alpha,\beta}(t) dt \right) \cos(\lambda \phi) d\phi$$
$$-\frac{1}{A_{\alpha,\beta}(\theta)} \int_0^{\theta} \frac{\partial}{\partial \phi} \left(\int_{\phi}^{\theta} K_0^{(\alpha,\beta)}(t,\phi) A_{\alpha,\beta}(t) dt \right) \sin(\lambda \phi) d\phi.$$

Since the fonction φ' is odd on $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, then for all $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\},$

$$\begin{split} -\frac{1}{\lambda - \rho} \varphi'(\theta) &= -\frac{\operatorname{sgn}(\theta)}{\lambda - \rho} \varphi'(|\theta|) \\ &= \frac{\rho \operatorname{sgn}(\theta)}{A_{\alpha,\beta}(|\theta|)} \int_0^{|\theta|} \left(\int_{\phi}^{|\theta|} K_0^{(\alpha,\beta)}(t,\phi) A_{\alpha,\beta}(t) \, dt \right) \cos(\lambda \phi) d\phi \\ &- \frac{\operatorname{sgn}(\theta)}{A_{\alpha,\beta}(|\theta|)} \int_0^{|\theta|} \frac{\partial}{\partial \phi} \left(\int_{\phi}^{|\theta|} K_0^{(\alpha,\beta)}(t,\phi) A_{\alpha,\beta}(t) \, dt \right) \sin(\lambda \phi) \, d\phi. \end{split}$$

Finally, if we denote by Ψ_{θ} the function $v \longmapsto \int_{v}^{|\theta|} K_{0}^{(\alpha,\beta)}(t,v) A_{\alpha,\beta}(t) dt$, $0 \le v < |\theta|$, we verify immediately that $-\frac{1}{\lambda - \rho} \varphi'(\theta)$

$$=\frac{\operatorname{sgn}(\theta)}{2A_{\alpha,\beta}(|\theta|)}\left(\int_{-|\theta|}^{|\theta|}\rho\Psi_{\theta}(|\phi|)\cos(\lambda\phi)\,d\phi-\int_{-|\theta|}^{|\theta|}\operatorname{sgn}(\phi)\frac{\partial\Psi_{\theta}}{\partial v}(|\phi|)\sin(\lambda\phi)\,d\phi\right)$$

and this finishes the proof.

We can now derive a formal expression for the kernel $K^{(k,k')}(\theta,\phi)$ announced in formula (4) in the introduction.

Corollary 3.4. For all $\lambda \in \mathbb{C}$ and $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \text{ we have } \right]$

$$G_{\lambda}^{(k,k')}(\theta) = \int_{-|\theta|}^{|\theta|} K^{(k,k')}(\theta,\phi) e^{i\lambda\phi} d\phi, \qquad (20)$$

where

$$\begin{split} K^{(k,k')}(\theta,\phi) &:= \frac{1}{2} \Bigg[K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}(\theta,\phi) \\ &- \frac{\operatorname{sgn}(\theta) \operatorname{sgn}(\phi)}{A_{k-\frac{1}{2},k'-\frac{1}{2}}(|\theta|)} \frac{\partial}{\partial v} \left(\int_v^{|\theta|} K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}(t,v) A_{k-\frac{1}{2},k'-\frac{1}{2}}(t) \, dt \right) (|\phi|) \\ &+ i \frac{\rho \operatorname{sgn}(\theta)}{A_{k-\frac{1}{2},k'-\frac{1}{2}}(|\theta|)} \int_{|\phi|}^{|\theta|} K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}(t,\phi) A_{k-\frac{1}{2},k'-\frac{1}{2}}(t) \, dt \Bigg] \mathbf{1}_{]-|\theta|,|\theta|[}(\phi), \end{split} \tag{21}$$

 $K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}$ is as in Theorem 3.1 and $A_{k-\frac{1}{2},k'-\frac{1}{2}}$ is given by (19).

Proof. This follows immediately from (6), (16) and Theorem 3.3.

4 Explicit form of Laplace kernel

In this section we give an explicit expression of the function $K^{(k,k')}(\theta,\phi)$ defined by (21) which will be called Laplace kernel.

4.1 The case k' = 0 < k.

Theorem 4.1. For all $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } -|\theta| < \phi < |\theta|, \text{ we have } \right]$

1.
$$K_0^{(k-\frac{1}{2},-\frac{1}{2})}(\theta,\phi) = \frac{2^k \Gamma(k+\frac{1}{2})}{\sqrt{\pi} \Gamma(k)} (\sin(|\theta|))^{-2k+1} (\cos\phi - \cos\theta)^{k-1} > 0.$$

2.

$$K^{(k,0)}(\theta,\phi) = K_0^{(k-\frac{1}{2},-\frac{1}{2})}(\theta,\phi) \frac{\sin\left(\frac{\theta+\phi}{2}\right)}{\sin\theta} e^{i\frac{\theta-\phi}{2}}.$$
 (22)

3.

$$0 < |K^{(k,0)}(\theta,\phi)| = e^{-i\frac{\theta-\phi}{2}}K^{(k,0)}(\theta,\phi) < K_0^{(k-\frac{1}{2},-\frac{1}{2})}(\theta,\phi).$$
 (23)

 $\begin{array}{l} \textit{Proof. Let } \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\smallsetminus \{0\} \text{ and } -|\theta| < \phi < |\theta|. \text{ We denote by } \\ K_0(\theta,\phi) := K_0^{(k-\frac{1}{2},-\frac{1}{2})}(\theta,\phi), \ K(\theta,\phi) := K^{(k,0)}(\theta,\phi) \text{ and } A(t) := A_{k-\frac{1}{2},-\frac{1}{2}}(t), \\ 0 < t < \frac{\pi}{2} \text{ to simplify notations. By (15),} \end{array}$

$$K_0(\theta, \phi) = C_1(\sin(|\theta|))^{-2k+1}(\cos\phi - \cos\theta)^{k-1}, \quad C_1 := \frac{2^k \Gamma(k + \frac{1}{2})}{\sqrt{\pi} \Gamma(k)}.$$

As $\rho = k$ and $A(t) = 2^{2k} (\sin t)^{2k}$, $0 < t < \frac{\pi}{2}$, we have

$$\int_{v}^{|\theta|} K_0(t, v) A(t) dt = C_1 \frac{2^{2k}}{k} (\cos v - \cos \theta)^k$$

and

$$\frac{\partial}{\partial v} \int_{v}^{|\theta|} K_0(t, v) A(t) dt = -C_1 2^{2k} \sin v (\cos v - \cos \theta)^{k-1}, \quad 0 \le v < \frac{\pi}{2}.$$

Then by (21), we get

$$K(\theta,\phi) = \frac{C_1}{2} (\sin(|\theta|))^{-2k+1} (\cos\phi - \cos\theta)^{k-1}$$

$$\times \left[1 + \frac{\operatorname{sgn}(\theta) \operatorname{sgn}(\phi) \sin(|\phi|)}{\sin(|\theta|)} + i \frac{\operatorname{sgn}(\theta) (\cos\phi - \cos\theta)}{\sin(|\theta|)} \right]$$

$$= \frac{C_1}{2} \operatorname{sgn}(\theta) (\sin(|\theta|))^{-2k} (\cos\phi - \cos\theta)^{k-1}$$

$$\times [\sin\theta + \sin\phi + i(\cos\phi - \cos\theta)]$$

$$= i \frac{C_1}{2} \operatorname{sgn}(\theta) (\sin(|\theta|))^{-2k} (\cos\phi - \cos\theta)^{k-1} (e^{-i\phi} - e^{i\theta})$$

$$= K_0(\theta,\phi) \frac{\sin\left(\frac{\theta+\phi}{2}\right)}{\sin\theta} e^{i\frac{\theta-\phi}{2}}.$$

As
$$0 < \frac{\sin\left(\frac{\theta+\phi}{2}\right)}{\sin\theta} < 1$$
 and $K_0(\theta,\phi) > 0$, then
$$0 < |K(\theta,\phi)| = e^{-i\frac{\theta-\phi}{2}}K(\theta,\phi) < K_0(\theta,\phi).$$

4.2 The case 0 < k = k'.

Theorem 4.2. For all $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } -|\theta| < \phi < |\theta|, \text{ we have } \right]$

1.

$$K_0^{(k-\frac{1}{2},k-\frac{1}{2})}(\theta,\phi) = \frac{2^{k+1}\Gamma(k+\frac{1}{2})}{\sqrt{\pi}\Gamma(k)}(\sin(2|\theta|))^{-2k+1}(\cos(2\phi)-\cos(2\theta))^{k-1} > 0.$$

2.

$$K^{(k,k)}(\theta,\phi) = K_0^{(k-\frac{1}{2},k-\frac{1}{2})}(\theta,\phi) \frac{\sin(\theta+\phi)}{\sin(2\theta)} e^{i(\theta-\phi)}.$$
 (24)

3.

$$0 < \left| K^{(k,k)}(\theta,\phi) \right| = e^{-i(\theta-\phi)} K^{(k,k)}(\theta,\phi) < m(\theta) K_0^{(k-\frac{1}{2},k-\frac{1}{2})}(\theta,\phi), \quad (25)$$

where

$$m(\theta) := \begin{cases} 1 & \text{if } 0 < |\theta| \le \frac{\pi}{4}, \\ \frac{1}{\sin(2|\theta|)} & \text{if } \frac{\pi}{4} < |\theta| < \frac{\pi}{2}. \end{cases}$$
 (26)

 $\begin{array}{l} \textit{Proof. } \text{Let } \theta \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\smallsetminus \{0\} \text{ and } -|\theta| < \phi < |\theta|. \text{ We denote by } \\ K_0(\theta, \phi) := K_0^{(k - \frac{1}{2}, k - \frac{1}{2})}(\theta, \phi), \ K(\theta, \phi) := K^{(k, k)}(\theta, \phi) \text{ and } A(t) := A_{k - \frac{1}{2}, k - \frac{1}{2}}(t), \\ 0 < t < \frac{\pi}{2} \text{ to simplify notations. By (14),} \end{array}$

$$K_0(\theta, \phi) = C_2(\sin(2|\theta|))^{-2k+1}(\cos(2\phi) - \cos(2\theta))^{k-1}, \quad C_2 := \frac{2^{k+1}\Gamma(k+\frac{1}{2})}{\sqrt{\pi}\Gamma(k)}.$$

As $\rho = 2k$ and $A(t) = 2^{2k} (\sin(2t))^{2k}$, $0 < t < \frac{\pi}{2}$, we have

$$\int_{0}^{|\theta|} K_0(t, v) A(t) dt = C_2 \frac{2^{2k-1}}{k} (\cos(2v) - \cos(2\theta))^k$$

and

$$\frac{\partial}{\partial v} \int_{v}^{|\theta|} K_0(t, v) A(t) dt = -C_2 2^{2k} \sin(2v) (\cos(2v) - \cos(2\theta))^{k-1}, \quad 0 \le v < \frac{\pi}{2}.$$

Then by (21), we get

$$K(\theta,\phi) = \frac{C_2}{2} (\sin(2|\theta|))^{-2k+1} (\cos(2\phi) - \cos(2\theta))^{k-1}$$

$$\times \left[1 + \frac{\operatorname{sgn}(\theta) \operatorname{sgn}(\phi) \sin(2|\phi|)}{\sin(2|\theta|)} + i \frac{\operatorname{sgn}(\theta) (\cos(2\phi) - \cos(2\theta))}{\sin(2|\theta|)} \right]$$

$$= \frac{C_2}{2} \operatorname{sgn}(\theta) (\sin(2|\theta|))^{-2k} (\cos(2\phi) - \cos(2\theta))^{k-1}$$

$$\times \left[\sin(2\theta) + \sin(2\phi) + i (\cos(2\phi) - \cos(2\theta)) \right]$$

$$= i \frac{C_2}{2} \operatorname{sgn}(\theta) (\sin(2|\theta|))^{-2k} (\cos(2\phi) - \cos(2\theta))^{k-1} (e^{-2i\phi} - e^{2i\theta})$$

$$= K_0(\theta,\phi) \frac{\sin(\theta+\phi)}{\sin(2\theta)} e^{i(\theta-\phi)}.$$

If
$$0 < |\theta| \le \frac{\pi}{4}$$
, then $0 < \frac{\sin(\theta + \phi)}{\sin(2\theta)} < 1$. If $\frac{\pi}{4} < |\theta| < \frac{\pi}{2}$, then $0 < \frac{\sin(\theta + \phi)}{\sin(2\theta)} < \frac{1}{\sin(2|\theta|)}$. As $K_0(\theta, \phi) > 0$, then

$$0 < |K(\theta, \phi)| = e^{-i(\theta - \phi)}K(\theta, \phi) < m(\theta)K_0(\theta, \phi),$$

where $m(\theta)$ is given by (26).

4.3 The case 0 < k' < k.

Theorem 4.3. For all $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } -|\theta| < \phi < |\theta|, \text{ we have } \right]$

1.
$$K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}(\theta,\phi) = \frac{2^k \Gamma(k+\frac{1}{2})}{\sqrt{\pi} \Gamma(k-k')\Gamma(k')} (\sin(|\theta|))^{-2k+1} (\cos\theta)^{-k'}$$

$$\times (\cos\phi - \cos\theta)^{k-1} \int_0^1 s^{k'-1} (1-s)^{k-k'-1} \left(1 + \frac{\cos\phi - \cos\theta}{2\cos\theta} s\right)^{k'-1} ds > 0.$$
(27)

2.
$$K^{(k,k')}(\theta,\phi) = \frac{2^{k-2}\Gamma(k+\frac{1}{2})}{\sqrt{\pi}\Gamma(k-k')\Gamma(k'+1)} \operatorname{sgn}(\theta) (\sin(|\theta|))^{-2k} (\cos\theta)^{-(k'+1)}$$

$$\times (\cos\phi - \cos\theta)^{k-1} \int_0^1 s^{k'-1} (1-s)^{k-k'-1} \left(1 + \frac{\cos\phi - \cos\theta}{2\cos\theta} s\right)^{k'-1}$$

$$\times \left[k'\sin(2\theta) + \sin\phi s[(k+k')(\cos\phi - \cos\theta)s + 2k\cos\theta] + i(k+k')(\cos\phi - \cos\theta)s[(\cos\phi - \cos\theta)s + 2\cos\theta]\right] ds. \tag{28}$$

3.

$$\left| K^{(k,k')}(\theta,\phi) \right| \le \frac{(1+\sqrt{2})(k+k')}{4k'\cos\theta} K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}(\theta,\phi). \tag{29}$$

Proof. Let θ ∈ $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } -|\theta| < \phi < |\theta|.$ We denote by $K_0(\theta, \phi) := K_0^{(k-\frac{1}{2}, k'-\frac{1}{2})}(\theta, \phi), \ K(\theta, \phi) := K^{(k,k')}(\theta, \phi) \text{ and } A(t) := A_{k-\frac{1}{2}, k'-\frac{1}{2}}(t), 0 < t < \frac{\pi}{2} \text{ to simplify notations. By (27),}$

$$K_0(\theta, \phi) = C_3(\sin(|\theta|))^{-2k+1}(\cos\theta)^{-2k'+1}I_{k,k'}(\theta, |\phi|),$$

where $C_3 := \frac{2^{k-2k'+2}\Gamma(k+\frac{1}{2})}{\sqrt{\pi}\,\Gamma(k-k')\Gamma(k')}$ and $\forall v \in [0, |\theta|],$

$$I_{k,k'}(\theta,v) := \int_{v}^{|\theta|} \sin w (\cos(2w) - \cos(2\theta))^{k'-1} (\cos v - \cos w)^{k-k'-1} dw.$$

The equality $\cos(2w) - \cos(2\theta) = 2((\cos w)^2 - (\cos \theta)^2)$ and the change of variables $\cos w = \cos \theta + s(\cos v - \cos \theta)$, 0 < s < 1 give

$$I_{k,k'}(\theta,v) = 2^{2(k'-1)}(\cos\theta)^{k'-1}(\cos v - \cos\theta)^{k-1} \times \int_0^1 s^{k'-1}(1-s)^{k-k'-1}(1+Z_v s)^{k'-1} ds,$$

where

$$0 < Z_v = \frac{\cos v - \cos \theta}{2\cos \theta}, \quad 0 \le v < |\theta|.$$

We now compute, for $v \in [0, |\theta|[$, the integral $\int_{v}^{|\theta|} K_0(t, v) A(t) dt$ which appears in the second and third terms in the right hand side of formula (21). As $\rho = k + k'$, $A(t) = 2^{2(k+k')} (\sin t)^{2k} (\cos t)^{2k'}$, $0 < t < \frac{\pi}{2}$ and by using Fubini's theorem, we have

$$\begin{split} & \int_{v}^{|\theta|} K_{0}(t,v)A(t) \, dt = C_{3}2^{2(k+k')-1} \int_{v}^{|\theta|} \sin(2t) I_{k,k'}(t,v) \, dt \\ & = C_{3}2^{2(k+k')-1} \int_{v}^{|\theta|} \sin(2t) \\ & \times \left(\int_{v}^{t} \sin w (\cos(2w) - \cos(2t))^{k'-1} (\cos v - \cos w)^{k-k'-1} \, dw \right) \, dt \\ & = C_{3}2^{2(k+k')-1} \int_{v}^{|\theta|} \left(\int_{w}^{|\theta|} \sin(2t) (\cos(2w) - \cos(2t))^{k'-1} \, dt \right) \\ & \times (\cos v - \cos w)^{k-k'-1} \sin w \, dw \\ & = C_{3}2^{2(k+k')-1} \int_{v}^{|\theta|} \left[\frac{(\cos(2w) - \cos(2t))^{k'}}{2k'} \right]_{t=w}^{t=|\theta|} \\ & \times (\cos v - \cos w)^{k-k'-1} \sin w \, dw \\ & = \frac{C_{3}2^{2(k+k'-1)}}{k'} \int_{v}^{|\theta|} (\cos(2w) - \cos(2\theta))^{k'} (\cos v - \cos w)^{k-k'-1} \sin w \, dw \\ & = \frac{C_{3}2^{2(k+k'-1)}}{k'} I_{k+1,k'+1}(\theta,v) \end{split}$$

and

$$\frac{\partial}{\partial v} I_{k+1,k'+1}(\theta,v) = -k \sin v (\cos v - \cos \theta)^{-1} I_{k+1,k'+1}(\theta,v) -2^{2k'-1} k' (\cos \theta)^{k'-1} (\cos v - \cos \theta)^{k} \sin v \times \int_{0}^{1} s^{k'+1} (1-s)^{k-k'-1} (1+Z_{v}s)^{k'-1} ds = -2^{2k'} (\cos \theta)^{k'} (\cos v - \cos \theta)^{k-1} \sin v \times \int_{0}^{1} s^{k'} (1-s)^{k-k'-1} (1+Z_{v}s)^{k'-1} [k+(k+k')Z_{v}s] ds.$$

From (21), we get

$$K(\theta,\phi) = C_3 2^{2(k'-1)} (\sin(|\theta|))^{-2k+1} (\cos\theta)^{-k'} (\cos\phi - \cos\theta)^{k-1} \frac{\operatorname{sgn}(\theta)}{2k' \sin(|\theta|)}$$

$$\times \int_0^1 s^{k'-1} (1-s)^{k-k'-1} (1+Zs)^{k'-1}$$

$$\times \left[k' \operatorname{sgn}(\theta) \sin(|\theta|) + \operatorname{sgn}(\phi) \sin(|\phi|) s[k+(k+k')Zs] \right]$$

$$+i(k+k') (\cos\phi - \cos\theta) s(1+Zs) ds,$$

with $Z = \frac{\cos \phi - \cos \theta}{2\cos \theta}$. Hence, we get (28). For all $s \in]0,1[$, we have

$$\begin{vmatrix} k' \operatorname{sgn}(\theta) \sin(2|\theta|) + \operatorname{sgn}(\phi) \sin(|\phi|) s[2k \cos \theta + (k+k')(\cos \phi - \cos \theta)s] \\ + i(k+k')(\cos \phi - \cos \theta) s[2 \cos \theta + (\cos \phi - \cos \theta)s] \end{vmatrix}$$

$$\leq \begin{bmatrix} k' \sin(2|\theta|) + \sin(|\phi|)[2k \cos \theta + (k+k')(\cos \phi - \cos \theta)] \\ + (k+k')(\cos \phi - \cos \theta)[2 \cos \theta + (\cos \phi - \cos \theta)] \end{bmatrix}$$

$$= \sin(|\phi|)[(k+k')(\cos \phi - \sin(|\phi|)) + (k-k')\cos \theta]$$

$$+ \sin(|\theta|)[(k+k')\sin(|\theta|) + 2k'\cos \theta]$$

$$\leq \sin(|\theta|)[(k+k') + (k-k')\cos \theta] + \sin(|\theta|)[(k+k')\sin(|\theta|) + 2k'\cos \theta]$$

$$= (k+k')\sin(|\theta|)(1 + \cos \theta + \sin(|\theta|))$$

$$= (k+k')\sin(|\theta|)(1 + \sqrt{2}\cos(|\theta| - \frac{\pi}{4}))$$

$$\leq (1 + \sqrt{2})(k+k')\sin(|\theta|).$$

Then, we get (29).

5 Estimates for the Jacobi-Cherednik kernel

In this section we give some properties of the Jacobi-Cherednik kernel $G_{\lambda}^{(k,k')}(\theta)$ in the following cases :

5.1 The case k' = 0 < k.

Proposition 5.1.

$$\forall \lambda \in \mathbb{C}, \ \forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \left| G_{\lambda}^{(k,0)}(\theta) \right| \le 2e^{|\Im \lambda||\theta|} R_{-\frac{k}{2}}^{(k-\frac{1}{2}, -\frac{1}{2})}(\cos(2\theta)).$$

Proof. This follows immediately from formulas (4), (23), (16) and the fact that

$$G_{\lambda}^{(k,0)}(0) = 1 = R_{-\frac{k}{2}}^{(k-\frac{1}{2}, -\frac{1}{2})}(1).$$

Lemma 5.2. Let $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } \right]$

$$I_k(\theta) := \int_0^{|\theta|} (\cos \phi - \cos \theta)^{k-1} d\phi. \tag{30}$$

Then we have

1.

$$I_{k}(\theta) = \frac{\sqrt{\pi} \Gamma(k)}{2^{k} \Gamma(k + \frac{1}{2})} (\sin(|\theta|))^{2k-1} {}_{2}F_{1}\left(k, k; k + \frac{1}{2}; \left(\sin\left(\frac{|\theta|}{2}\right)\right)^{2}\right). \tag{31}$$

2.
$$I_k(\theta) = 2^{k-1} (\sin(|\theta|))^{2k-1} \int_0^{+\infty} \frac{t^{k-1}}{(1 + 2t\cos\theta + t^2)^k} dt.$$
 (32)

3.
$$\frac{\sqrt{\pi} \Gamma(k)}{2^k \Gamma(k + \frac{1}{2})} (\sin(|\theta|))^{2k-1} \le I_k(\theta) \le \frac{\sqrt{\pi} \Gamma(\frac{k}{2})}{2\Gamma(\frac{k+1}{2})} (\sin(|\theta|))^{2k-1}. \tag{33}$$

Proof. We get (31) in view of [3], p.383, 999, and [2], p.64, formula (23). We deduce (32) from [3], p.383, 1002 and 938. As

$$B(k,k) = \int_0^{+\infty} \frac{t^{k-1}}{(1+t)^{2k}} dt \le \int_0^{+\infty} \frac{t^{k-1}}{(1+2t\cos\theta+t^2)^k} dt \le \int_0^{+\infty} \frac{t^{k-1}}{(1+t^2)^k} dt = \frac{1}{2} B\left(\frac{k}{2}, \frac{k}{2}\right),$$

(see [3], p.948), $\Gamma(2k) = \frac{2^{2k-1}}{\sqrt{\pi}}\Gamma(k)\Gamma\left(k+\frac{1}{2}\right)$ (see [3], p.938) and by using (32), then we obtain (33).

Theorem 5.3.

$$\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad 1 \le R_{-\frac{k}{2}}^{\left(k - \frac{1}{2}, -\frac{1}{2}\right)} \left(\cos(2\theta)\right) \le \frac{\sqrt{\pi} \Gamma\left(k + \frac{1}{2}\right)}{\left(\Gamma\left(\frac{k+1}{2}\right)\right)^2}.$$

The Jacobi-Cherednik operator on
$$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
 61

Proof. Let $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}$. We have

$$R_{-\frac{k}{2}}^{(k-\frac{1}{2},-\frac{1}{2})}(\cos(2\theta)) = \int_{0}^{|\theta|} K_{0}^{(k-\frac{1}{2},-\frac{1}{2})}(\theta,\phi) d\phi$$
$$= \frac{2^{k} \Gamma\left(k+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma(k)} (\sin(|\theta|))^{-2k+1} I_{k}(\theta), \tag{34}$$

where $I_k(\theta)$ is given by (30). To finish the proof we use (33) and the equality

$$\frac{2^{k-1}\Gamma(k+\frac{1}{2})\Gamma\left(\frac{k}{2}\right)}{\Gamma(k)\Gamma\left(\frac{k+1}{2}\right)} = \frac{\sqrt{\pi}\,\Gamma(k+\frac{1}{2})}{\left(\Gamma\left(\frac{k+1}{2}\right)\right)^2}.$$

Corollary 5.4.

 $\forall \lambda \in \mathbb{C}, \ \forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \left| G_{\lambda}^{(k,0)}(\theta) \right| \leq \frac{2\sqrt{\pi} \Gamma(k + \frac{1}{2})}{\left(\Gamma\left(\frac{k+1}{2}\right)\right)^2} e^{|\Im \lambda| |\theta|}.$

Proof. Proposition 5.1 and Theorem 5.3 give the result.

Remarks 5.5.

1. From (4), (23) and (16) we get

$$\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \quad 0 < e^{-i\frac{\theta}{2}} G_{\frac{1}{2}}^{(k,0)}(\theta) < 2R_{-\frac{k}{2}}^{(k-\frac{1}{2}, -\frac{1}{2})}(\cos(2\theta)).$$

2.
$$\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, R_{-\frac{k}{2}}^{(k-\frac{1}{2},-\frac{1}{2})}(\cos(2\theta)) = {}_{2}F_{1}\left(k,k;k+\frac{1}{2};\left(\sin\left(\frac{|\theta|}{2}\right)\right)^{2}\right).$$

5.2 The case 0 < k = k'.

Proposition 5.6.

$$\forall \lambda \in \mathbb{C}, \ \forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \left| G_{\lambda}^{(k,k)}(\theta) \right| \leq 2m(\theta) e^{|\Im \lambda| |\theta|} R_{-k}^{(k-\frac{1}{2},k-\frac{1}{2})}(\cos(2\theta)),$$

where $m(\theta)$ is given by (26).

Proof. This follows immediately from formulas (4), (25), (16) and the fact that

$$G_{\lambda}^{(k,k)}(0) = 1 = R_{-k}^{(k-\frac{1}{2},k-\frac{1}{2})}(1).$$

Theorem 5.7. For all $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

$$(\cos \theta)^{1-\min(2k,k+1)} \le R_{-k}^{(k-\frac{1}{2},k-\frac{1}{2})}(\cos(2\theta)) \le \frac{\sqrt{\pi} \Gamma(k+\frac{1}{2})}{\left(\Gamma\left(\frac{k+1}{2}\right)\right)^2}(\cos \theta)^{1-\max(2k,k+1)}.$$

Proof. Let $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}$. We have

$$R_{-k}^{(k-\frac{1}{2},k-\frac{1}{2})}(\cos(2\theta)) = \frac{2^k \Gamma(k+\frac{1}{2})}{\sqrt{\pi} \Gamma(k)} (\sin(|\theta|))^{-2k+1} (\cos\theta)^{-2k+1} \times \int_0^{|\theta|} (\cos\phi - \cos\theta)^{k-1} \left(\frac{\cos\phi + \cos\theta}{2}\right)^{k-1} d\phi.$$

By using $(\cos \theta)^{\max(k-1,0)} \le \left(\frac{\cos \phi + \cos \theta}{2}\right)^{k-1} \le (\cos \theta)^{\min(k-1,0)}$ and (34) we get

$$(\cos \theta)^{1-\min(2k,k+1)} R_{-\frac{k}{2}}^{(k-\frac{1}{2},-\frac{1}{2})} (\cos(2\theta)) \leq R_{-k}^{(k-\frac{1}{2},k-\frac{1}{2})} (\cos(2\theta)) \leq (\cos \theta)^{1-\max(2k,k+1)} R_{-\frac{k}{2}}^{(k-\frac{1}{2},-\frac{1}{2})} (\cos(2\theta)).$$

Now Theorem 5.3 gives the result.

Corollary 5.8. For all $\lambda \in \mathbb{C}$ and $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

$$\left| G_{\lambda}^{(k,k)}(\theta) \right| \le \frac{2\sqrt{\pi} \,\Gamma(k+\frac{1}{2})}{(\Gamma(\frac{k+1}{2}))^2} m(\theta) (\cos \theta)^{1-\max(2k,k+1)} \, e^{|\Im \lambda||\theta|},$$

where $m(\theta)$ is given by (26).

Proof. Proposition 5.6 and Theorem 5.7 give the result.

Remark 5.9. From (4), (25) and (16) we get

$$\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \quad 0 < e^{-i\theta} G_1^{(k,k)}(\theta) < 2m(\theta) R_{-k}^{(k-\frac{1}{2},k-\frac{1}{2})}(\cos(2\theta)),$$

where $m(\theta)$ is given by (26).

5.3 The case 0 < k' < k.

Proposition 5.10. For all $\lambda \in \mathbb{C}$ and $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

$$\left| G_{\lambda}^{(k,k')}(\theta) \right| \le \frac{(1+\sqrt{2})(k+k')}{2k'\cos\theta} e^{|\Im\lambda||\theta|} R_{-\frac{k+k'}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)).$$

Proof. This follows immediately from formulas (4), (29), (16) and the fact that

 $G_{\lambda}^{(k,k')}(0) = 1 = R_{-\frac{k+k'}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(1).$

Theorem 5.11. For all $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

 $(\cos \theta)^{1-\min(2k',k'+1)} \le R_{-\frac{k+k'}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)) \le \frac{\sqrt{\pi} \Gamma(k+\frac{1}{2})}{\left(\Gamma\left(\frac{k+1}{2}\right)\right)^2}(\cos \theta)^{1-\max(2k',k'+1)}.$

Proof. Let $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \ \phi \in] - |\theta|, |\theta|[, \ Z = \frac{\cos \phi - \cos \theta}{2\cos \theta} \text{ and } s \in]0,1[.$ We have

$$1 < 1 + Zs < 1 + Z = \frac{\cos\phi + \cos\theta}{2\cos\theta} \le \frac{1 + \cos\theta}{2\cos\theta} < \frac{1}{\cos\theta}.$$

So, $(\cos \theta)^{-\min(k'-1,0)} \le (1+Zs)^{k'-1} \le (\cos \theta)^{-\max(k'-1,0)}$. By using (27), we get

$$(\cos \theta)^{1-\min(2k',k'+1)} R_{-\frac{k}{2}}^{(k-\frac{1}{2},-\frac{1}{2})} (\cos(2\theta))$$

$$\leq R_{-\frac{k+k'}{2}}^{(k-\frac{1}{2},k'-\frac{1}{2})}(\cos(2\theta)) \leq (\cos\theta)^{1-\max(2k',k'+1)} R_{-\frac{k}{2}}^{(k-\frac{1}{2},-\frac{1}{2})}(\cos(2\theta)).$$

Now Theorem 5.3 gives the result.

Corollary 5.12. For all $\lambda \in \mathbb{C}$ and $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, we have

$$\left| G_{\lambda}^{(k,k')}(\theta) \right| \leq \frac{(1+\sqrt{2})\sqrt{\pi}(k+k')\Gamma(k+\frac{1}{2})}{2k'\left(\Gamma\left(\frac{k+1}{2}\right)\right)^2} (\cos\theta)^{-\max(2k',k'+1)} e^{|\Im\lambda||\theta|}.$$

Proof. Proposition 5.10 and Theorem 5.11 give the result.

Remark 5.13. In view of Theorem 5.7, we remark that Theorem 5.11 is also valid for k = k'.

6 The Jacobi-Cherednik intertwining operator

Definition 6.1. For every continuous function $f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{C}$, we define

$$V^{(k,k')}f(\theta) := \begin{cases} \int_{-|\theta|}^{|\theta|} K^{(k,k')}(\theta,\phi)f(\phi) d\phi & \text{if} \quad \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \\ f(0) & \text{if} \quad \theta = 0. \end{cases}$$
(35)

For functions $e_{\lambda}: \theta \longmapsto e^{\lambda \theta}$, $\lambda \in \mathbb{C}$, we have $V^{(k,k')}e_{\lambda} = G^{(k,k')}_{-i\lambda}$ and by (3) we remark that

$$T^{(k,k')}V^{(k,k')}e_{\lambda} = V^{(k,k')}\frac{d}{d\theta}e_{\lambda}.$$
(36)

This is the intertwining relation (5) for functions $f = e_{\lambda}$. The aim of this section is to extend this relation to functions $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and to show that V is an automorphism of $\mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$. The main tool is the general form (21) of the Laplace kernel $K^{(k,k')}(\theta,\phi)$ in terms of the kernel $K_0(\theta,\phi)$ as given by Theorem 3.1. This kernel K_0 is the Laplace kernel associated to the Jacobi functions $R^{(k-\frac{1}{2},k'-\frac{1}{2})}_{\frac{\lambda-\rho}{2}}(\cos(2\theta))$ (see (11)). By a result of K. Trimèche ([12]), we know that the operator \mathcal{K}_0 associated with the kernel K_0 and defined on $\mathcal{E}_e\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ (the space of even functions $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$) by

$$\mathcal{K}_0 f(\theta) := \begin{cases}
\int_0^{|\theta|} K_0(\theta, \phi) f(\phi) d\phi & \text{if } \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \\
f(0) & \text{if } \theta = 0
\end{cases}$$
(37)

is the unique topological automorphism of $\mathcal{E}_e\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ that intertwines the second derivative $\frac{d^2}{d\theta^2}$ and the extended Jacobi operator $\Delta-\rho^2$, where

$$\Delta := \frac{1}{A(|\theta|)} \frac{d}{d\theta} \left(A(|\theta|) \frac{d}{d\theta} \right), \quad \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \tag{38}$$

and $A(|\theta|) := A_{k-1/2,k'-1/2}(|\theta|)$. In other words, for all $f \in \mathcal{E}_e\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$, we have

$$\begin{cases}
\Delta \mathcal{K}_0 f = \mathcal{K}_0 \left(\frac{d^2}{d\theta^2} + \rho^2 \right) f, \\
\mathcal{K}_0 f(0) = f(0).
\end{cases}$$
(39)

In order to simplify notations, we will simply write $K(\theta,\phi) := K^{(k,k')}(\theta,\phi)$, $V := V^{(k,k')}$ and $T := T^{(k,k')}$. We also use the notations introduced in the above sections. In addition we will consider the space $\mathcal{E}_o\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ of odd C^{∞} complex valued functions on $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ and we suppose that the spaces $\mathcal{E}_e\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right]$ and $\mathcal{E}_o\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right]$ carry the induced topology of $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right]$. For every function $f \in \mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right]$ we will denote by f_e and f_o respectively, its even and odd parts, that is

$$\forall \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad f_e(\theta) := \frac{1}{2} (f(\theta) + f(-\theta)), \quad f_o(\theta) := \frac{1}{2} (f(\theta) - f(-\theta)).$$

The Jacobi-Cherednik operator on $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ 65

Theorem 6.2. For all $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, we have

$$Vf = \mathcal{K}_0 f_e + \frac{d}{d\theta} \mathcal{K}_0 \tilde{I} \left(i\rho I f_e + f_o \right), \tag{40}$$

where I is the primitive operator, which vanishes at 0, defined by

$$If(\phi) := \int_0^{\phi} f(t) \, dt$$

and \tilde{I} is the operator given by

$$\tilde{I}f(\theta) := \int_0^{\theta} f(\phi) \cos(\rho(\theta - \phi)) d\phi.$$

Proof. i) Let $f \in \mathcal{E}_e\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $\theta \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\setminus \{0\}$. By (21), we get

$$Vf(\theta) = \int_0^{|\theta|} \left(K(\theta, \phi) + K(\theta, -\phi) \right) f(\phi) d\phi$$

$$= \int_0^{|\theta|} K_0(\theta, \phi) f(\phi) d\phi + i\rho \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_0^{|\theta|} \int_{\phi}^{|\theta|} K_0(t, \phi) A(t) dt f(\phi) d\phi,$$
(41)

and applying Fubini's theorem to the second integral of (41), we see that

$$Vf(\theta) = \mathcal{K}_{0}f(\theta) + i\rho \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_{0}^{|\theta|} \left(\int_{0}^{t} K_{0}(t,\phi)f(\phi) \, d\phi A(t) \, dt \right)$$

$$= \mathcal{K}_{0}f(\theta) + i\rho \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_{0}^{|\theta|} \mathcal{K}_{0}f(t)A(t) \, dt$$

$$= \mathcal{K}_{0}f(\theta) + i\rho \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_{0}^{|\theta|} \mathcal{K}_{0}\left(\frac{d^{2}}{d\theta^{2}} + \rho^{2}\right) \tilde{I}(If)(t)A(t) \, dt$$

$$= \mathcal{K}_{0}f(\theta) + i\rho \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_{0}^{|\theta|} \Delta \mathcal{K}_{0}\tilde{I}(If)(t)A(t) \, dt, \tag{42}$$

where we have used that the unique solution of $\left(\frac{d^2}{d\theta^2} + \rho^2\right)u = f$, u(0) = 0, u'(0) = 0 is $u = \tilde{I}(If)$ and the intertwining relation (39) to deduce (42). But for $g \in \mathcal{E}_e\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, it is easy to see that for all $\theta \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$,

$$\frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_0^{|\theta|} \Delta g(t) A(t) dt = \frac{d}{d\theta} g(\theta). \tag{43}$$

By applying this formula to the function $g = \mathcal{K}_0 \tilde{I}(If)$, the result of the theorem follows from (42).

ii) Let $f \in \mathcal{E}_o\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $\theta \in \left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\setminus \{0\}$. We have

$$Vf(\theta) = \int_{0}^{|\theta|} (K(\theta, \phi) - K(\theta, -\phi)) f(\phi) d\phi$$

$$= -\frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_{0}^{|\theta|} \frac{\partial}{\partial v} \left(\int_{v}^{|\theta|} K_{0}(t, v) A(t) dt \right) (\phi) f(\phi) d\phi$$

$$= \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_{0}^{|\theta|} \left(\int_{\phi}^{|\theta|} K_{0}(t, \phi) A(t) dt \right) f'(\phi) d\phi, \tag{44}$$

by a trivial integration by parts. But if we interchange integrations in (44) we obtain

$$Vf(\theta) = \frac{\operatorname{sgn}(\theta)}{A(|\theta|)} \int_0^{|\theta|} (\mathcal{K}_0 f')(t) A(t) dt.$$
 (45)

But if in (45) we note that $f' = \left(\frac{d^2}{d\theta^2} + \rho^2\right) \tilde{I} f$, we replace $\mathcal{K}_0 \left(\frac{d^2}{d\theta^2} + \rho^2\right) \tilde{I} f$

by $\Delta \mathcal{K}_0 \tilde{I} f$ and we apply once again the formula (43) to the function $g = \mathcal{K}_0 \tilde{I} f$, the announced result follows immediately from (45).

Now consider the application $\Psi_{\rho}: \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right) \to \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ defined for $f = f_e + f_o$ by

$$\Psi_{\rho}f = f_e + i\rho I f_e + f_o. \tag{46}$$

We clearly have $(\Psi_{\rho}f)_e = f_e$, $(\Psi_{\rho}f)_o = i\rho I f_e + f_o$ and (40) can then be written

$$Vf = \mathcal{K}_0((\Psi_\rho f)_e) + \frac{d}{d\theta} \mathcal{K}_0 \tilde{I}((\Psi_\rho f)_o) = \Phi(\Psi_\rho f) = \Phi \circ \Psi_\rho f, \tag{47}$$

where $\Phi: \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right) \to \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ is the operator defined for all $f = f_e + f_o \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ by

$$\Phi(f) = \mathcal{K}_0(f_e) + \frac{d}{d\theta} \mathcal{K}_0 \tilde{I}(f_o). \tag{48}$$

We precise the structure of V in the following lemma:

Lemma 6.3. The operators Ψ_{ρ} and Φ defined by formulas (46) et (48) are automorphisms of $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ and their inverses are given by $\Psi_{\rho}^{-1} = \Psi_{-\rho}$ and

$$\Phi^{-1}(f) = \mathcal{K}_0^{-1}(f_e) + \tilde{I}^{-1}\mathcal{K}_0^{-1}I(f_o), \quad f = f_e + f_o \in \mathcal{E}\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right), \tag{49}$$

where \tilde{I}^{-1} is the inverse operator of \tilde{I} given by

$$\tilde{I}^{-1}(g) = I \circ \left(\frac{d^2}{d\theta^2} + \rho^2\right)(g).$$

Proof. For $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, we immediately see that $\Psi_{-\rho}(\Psi_{\rho}f) = f$, so Ψ_{ρ} is a bijection and $\Psi_{\rho}^{-1} = \Psi_{-\rho}$. The continuity of Ψ_{ρ} follows from the continuity on $\mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ of the applications $f \longmapsto f_e$, $f \longmapsto f_o$ and $f \longmapsto If_e$. The assertion concerning Φ follows from the fact that $f_e \longmapsto \mathcal{K}_0(f_e)$ is an automorphism of $\mathcal{E}_e\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $f_o \longmapsto \frac{d}{d\theta}\mathcal{K}_0\tilde{I}(f_o)$ is an automorphism of $\mathcal{E}_o\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$, the formula giving Φ^{-1} is clear.

We can now summarize the above discussion in the form of the following theorem :

Theorem 6.4. The intertwining operator V is a topological automorphism of the space $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ and the inverse operator V^{-1} is given by

$$V^{-1}f = \mathcal{K}_0^{-1}f_e - i\rho I \mathcal{K}_0^{-1}f_e + \tilde{I}^{-1}\mathcal{K}_0^{-1}If_o, \quad f \in \mathcal{E}\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right). \tag{50}$$

Proof. By Lemma 6.3 and formula (47), V is an automorphism. The form of $V^{-1} = \Psi^{-1} \circ \Phi^{-1}$ follows also from Lemma 6.3 and (46).

As a consequence of the isomorphism Theorem 6.4, we can now prove the intertwining property announced in (5) and in the beginning of this section.

Theorem 6.5. The operator V is the unique continuous operator on $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ satisfying

$$\forall f \in \mathcal{E}\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right), \quad TVf = V\frac{d}{d\theta}f \quad \text{and} \quad Vf(0) = f(0).$$
 (51)

Proof. Let us denote by \mathcal{P} the linear subspace of $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ generated by the functions $e_{\lambda}:\theta\longmapsto e^{\lambda\theta}$ when $\lambda\in\mathbb{C}$. By (36) and the linearity of V and T, for every $p\in\mathcal{P}$, we have

$$TVp = V\frac{d}{d\theta}p. (52)$$

But \mathcal{P} is dense² in $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$. So if $(p_n)_n$ is a sequence in \mathcal{P} converging to $f \in \mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$, we have $V\frac{d}{d\theta}p_n \to V\frac{d}{d\theta}f$ and $Vp_n \to Vf$ $(n \to +\infty)$ in $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ as V is continuous. By Lemma 6.6 below, we deduce that $TVp_n \to TVf$ uniformly on compact sets. From (52) with $p=p_n$ and passing to the limit as $n \to +\infty$, we then obtain (51). Now if W is another continuous operator on $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right]$ satisfying (51), for all $\lambda \in \mathbb{C}$, by unicity in the eigenfunction equation (3), we must have $W(e_{\lambda}) = G_{-i\lambda} = V(e_{\lambda})$, so W(p) = V(p) for all $p \in \mathcal{P}$ and V = W as \mathcal{P} is dense in $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right]$. The only thing that remains to be proved is the following lemma:

Lemma 6.6. If $(f_n)_n$ is a sequence of functions of $C^1\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ and $f \in C^1\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ are such that $f_n \to f$ and $f'_n \to f'$ uniformly on compact sets, then $Tf_n \to Tf$ uniformly on compact sets.

Proof. Fix $A \in \left]0, \frac{\pi}{2}\right[$ and for g a continuous function on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, write $||g||_A = \sup_{|\theta| \leq A} |g(\theta)|$. If $f \in C^1\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ by a Taylor-Lagrange expansion of order 1 at point 0, we clearly see

$$\sup_{|\theta| \le A} \left| \frac{f(\theta) - f(-\theta)}{\theta} \right| \le 2||f'||_A. \tag{53}$$

If we write

$$Tf(\theta) = f'(\theta) + 2i\left(k\frac{\theta}{1 - e^{-2i\theta}} + k'\frac{\theta}{1 + e^{-2i\theta}}\right)\frac{f(\theta) - f(-\theta)}{\theta} - i(k + k')f(\theta)$$

and let

$$\sup_{|\theta| \le A} \left| 2i \left(k \frac{\theta}{1 - e^{-2i\theta}} + k' \frac{\theta}{1 + e^{-2i\theta}} \right) \right| = M < +\infty,$$

This known result is an easy consequence of the Hahn-Banach theorem using the fact that the dual $\mathcal{E}'\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ of $\mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ is the space of the distributions on $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ with compact support.

we immediately see that

$$||Tf_n - Tf||_A \le ||f'_n - f'||_A + 2M||f'_n - f'||_A + (k+k')||f_n - f||_A$$
 and the result follows clearly. \Box

7 The dual of the Jacobi-Cherednik intertwining operator

We denote by $\mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ (resp. $\mathcal{D}_e(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$) and $\mathcal{D}_o\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$) the space of complex valued $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right]$ with compact support (resp. the subspaces $\mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right) \cap \mathcal{E}_e\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $\mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right) \cap \mathcal{E}_o\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$).

Definition 7.1. For all continuous function $g: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{C}$ with compact support we define the dual tV of the operator V by

$$\forall \phi \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad {}^{t}Vg(\phi) := \int_{|\theta| > |\phi|} K(\theta, \phi)g(\theta) A(|\theta|) d\theta. \tag{54}$$

Proposition 7.2. The operator tV is the unique operator satisfying $\forall f \in \mathcal{E}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right), \ \forall g \in \mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right),$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f(\theta) g(\theta) A(|\theta|) d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi)^t V g(\phi) d\phi.$$
 (55)

Proof. The relation (55) follows immediately from Fubini's theorem by interchanging integrations in the right hand side of (55) and the unicity of the function tVg satisfying (55) for all $f \in \mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$, is clear.

Theorem 7.3. For all $g \in \mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, we have

$${}^{t}Vg = {}^{t}\mathcal{K}_{0}(g_{e} - i\rho J(g_{o})) + \frac{d}{d\theta} {}^{t}\mathcal{K}_{0}(J(g_{o})), \tag{56}$$

where ${}^{t}\mathcal{K}_{0}$ is the dual of the operator \mathcal{K}_{0} considered in (37) and J is the primitive operator which vanishes at $-\frac{\pi}{2}$ i.e. $Jg_{o}(\theta) := \int_{-\pi}^{\theta} g_{o}(t)dt$.

Proof. i) Suppose $g = g_e \in \mathcal{D}_e\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$. For $f = f_e \in \mathcal{E}_e\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, we

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f_e(\theta) g_e(\theta) A(|\theta|) d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathcal{K}_0(f_e)(\theta) g_e(\theta) A(|\theta|) d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \mathcal{K}_0(f_e)(\theta) g_e(\theta) A(|\theta|) d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} f_e(\phi) {}^t \mathcal{K}_0 g_e(\phi) d\phi$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_e(\phi) {}^t \mathcal{K}_0 g_e(\phi) d\phi.$$

If $f \in \mathcal{E}_o\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$, we have $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}Vf(\theta)g(\theta)A(|\theta|)d\theta=0$ as the function under the integral sign is odd. ii) Suppose $g = g_o \in \mathcal{D}_o\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$. For $f = f_e \in \mathcal{E}_e\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$, by (43), we

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f_e(\theta) g_o(\theta) A(|\theta|) d\theta = i\rho \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d}{d\theta} \mathcal{K}_0 \tilde{I}(If_e)(\theta) g_o(\theta) A(|\theta|) d\theta$$

$$= i\rho \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{sgn}(\theta) \left(\int_0^{|\theta|} \Delta \mathcal{K}_0 \tilde{I}(If_e)(t) A(t) dt \right) g_o(\theta) d\theta$$

$$= 2i\rho \int_0^{\frac{\pi}{2}} \left(\int_0^{\theta} \Delta \mathcal{K}_0 \tilde{I}(If_e)(t) A(t) dt \right) g_o(\theta) d\theta.$$

By integrating by parts and using the fact that $\Delta \mathcal{K}_0 = \mathcal{K}_0 \left(\frac{d^2}{dt^2} + \rho^2 \right)$ (see (39)) and $\left(\frac{d^2}{dt^2} + \rho^2\right) \tilde{I}(If_e) = f_e$, we get

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f_e(\theta) g_o(\theta) A(|\theta|) d\theta = -2i\rho \int_0^{\frac{\pi}{2}} \mathcal{K}_0 f_e(t) J g_o(t) A(t) dt$$

$$= -2i\rho \int_0^{\frac{\pi}{2}} f_e(\phi) {}^t \mathcal{K}_0(J g_o)(\phi) d\phi$$

$$= -i\rho \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_e(\phi) {}^t \mathcal{K}_0(J g_o)(\phi) d\phi.$$

For
$$f = f_o \in \mathcal{E}_e \left(\left] - \frac{\pi}{2}, \frac{\pi}{2} \right] \right)$$
 by (43), we have

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f_o(\theta) g_o(\theta) A(|\theta|) d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d}{d\theta} \mathcal{K}_0 \tilde{I}(f_o)(\theta) g_o(\theta) A(|\theta|) d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \frac{d}{d\theta} \mathcal{K}_0 \tilde{I}(f_o)(\theta) g_o(\theta) A(|\theta|) d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \left(\int_0^{\theta} \Delta \mathcal{K}_0 \tilde{I}(f_o)(t) A(t) dt \right) g_o(\theta) d\theta.$$

By integrating by parts and using the fact that $\Delta \mathcal{K}_0 = \mathcal{K}_0 \left(\frac{d^2}{dt^2} + \rho^2 \right)$

(see (39)) and
$$\left(\frac{d^2}{dt^2} + \rho^2\right) \tilde{I} f_o = f'_o$$
, we get

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f_o(\theta) g_o(\theta) A(|\theta|) d\theta = -2 \int_0^{\frac{\pi}{2}} \mathcal{K}_0(f_o')(t) J g_o(t) A(t) dt$$

$$= -2 \int_0^{\frac{\pi}{2}} f_o'(\phi) {}^t \mathcal{K}_0(J g_o)(\phi) d\phi$$

$$= 2 \int_0^{\frac{\pi}{2}} f_o(\phi) \frac{d}{d\theta} ({}^t \mathcal{K}_0 J g_o)(\phi) d\phi$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_o(\phi) \frac{d}{d\theta} ({}^t \mathcal{K}_0 J g_o)(\phi) d\phi.$$

iii) Finally for $f = f_e + f_o \in \mathcal{E}\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $g = g_e + g_o \in \mathcal{D}\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, using i) and ii) and the fact that

$$Vf(\theta)g(\theta) = Vf_e(\theta)g_e(\theta) + Vf_o(\theta)g_e(\theta) + Vf_e(\theta)g_o(\theta) + Vf_o(\theta)g_o(\theta),$$

we get
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f(\theta) g(\theta) A(|\theta|) d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi) \left({}^{t}\mathcal{K}_{0}g_{e}(\phi) - i\rho^{t}\mathcal{K}_{0}Jg_{o}(\phi) + \frac{d}{d\theta} ({}^{t}\mathcal{K}_{0}Jg_{o})(\phi) \right)$$
$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi)^{t}Vg(\phi) d\phi.$$

This relation being true for all $f \in \mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, the result of the theorem follows.

Remark 7.4. By [12], we know that the operator ${}^{t}\mathcal{K}_{0}$ is an automorphism of the space $\mathcal{D}_{e}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$. As a consequence of the preceding theorem we deduce that ${}^{t}V$ is a linear and continuous operator of $\mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ into itself. We will see in the next result that it is indeed an automorphism of $\mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$.

Theorem 7.5. The operator tV is an automorphism of $\mathcal{D}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$. The inverse operator is given by

$$\forall g \in \mathcal{D}\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right]\right), \quad {}^{t}V^{-1}g = {}^{t}\mathcal{K}_{0}^{-1}(g_{e} - i\rho Jg_{o}) + \frac{d}{d\theta} {}^{t}\mathcal{K}_{0}^{-1}(Jg_{o}). \tag{57}$$

Proof. The result follows from the easily verified relation

$$\forall f \in \mathcal{D}\left(\left] - \frac{\pi}{2}, \frac{\pi}{2}\right]\right), \quad {}^{t}V^{-1} \circ {}^{t}Vf = {}^{t}V \circ {}^{t}V^{-1}f \tag{58}$$

and from the fact that ${}^{t}\mathcal{K}_{0}$ is an automorphism of $\mathcal{D}_{e}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$.

Theorem 7.6. For all $g \in \mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, we have

$${}^{t}V(T+2i\rho S)g = \frac{d}{d\theta} {}^{t}Vg, \tag{59}$$

where S is the operator defined by $Sg(\theta) := g(-\theta)$.

For the proof we need the following lemma:

Lemma 7.7. For all $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $g \in \mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, we have

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Tf(\theta)g(\theta)A(|\theta|)d\theta = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta)Tg(\theta)A(|\theta|)d\theta
- 2i\rho \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta)g(-\theta)A(|\theta|)d\theta.$$
(60)

Proof. It follows from (1) that we have

$$Tf(\theta) = \frac{d}{d\theta}f(\theta) + \frac{1}{2}\operatorname{sgn}(\theta)\frac{A'(|\theta|)}{A(|\theta|)}\left(f(\theta) - f(-\theta)\right) - i\rho f(-\theta), \quad \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[.$$
(61)

Then we get

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Tf(\theta)g(\theta)A(|\theta|) d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f'(\theta)g(\theta)A(|\theta|) d\theta
+ \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{sgn}(\theta)A'(|\theta|)(f(\theta) - f(-\theta))g(\theta) d\theta
- i\rho \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-\theta)g(\theta)A(|\theta|) d\theta.$$
(62)

Integrating by parts on $\left]-\frac{\pi}{2},0\right[$ and $\left]0,\frac{\pi}{2}\right[$ the first integral in the right hand side above, we obtain

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f'(\theta)g(\theta)A(|\theta|) d\theta = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \left(\frac{dg}{d\theta}(\theta) + \operatorname{sgn}(\theta) \frac{A'(|\theta|)}{A(|\theta|)} g(\theta) \right) A(|\theta|) d\theta.$$
(63)

By changing variable θ into $-\theta$ in the integrals $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{sgn}(\theta) A'(|\theta|) (f(-\theta)) g(\theta) d\theta$

and $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-\theta)g(\theta)A(|\theta|) d\theta$ the result of the lemma follows easily from (62).

Proof of the Theorem 7.6. Let $f \in \mathcal{E}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$ and $g \in \mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$. Repeated integration by parts, the definition of tV , the intertwining relation and Lemma 7.7 give

$$\begin{split} &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi) \frac{d}{d\theta} \,^t V g(\phi) \, d\phi = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d}{d\theta} f(\phi)^t V g(\phi) \, d\phi \\ &= -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V \frac{d}{d\theta} f(\theta) g(\theta) A(|\theta|) \, d\theta = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} T V f(\theta) g(\theta) A(|\theta|) \, d\theta \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f(\theta) T g(\theta) A(|\theta|) \, d\theta + 2i\rho \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V f(\theta) g(-\theta) A(|\theta|) \, d\theta \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi)^t V (T g(\phi) + 2i\rho g(-\phi)) \, d\phi. \end{split}$$

This relation being true for all $f \in \mathcal{D}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right)$, the result of the theorem follows.

8 Open problems

8.1 Problem 1

Find a positive constant C, which does not depend on θ and ϕ , such that

$$|K^{(k,k')}(\theta,\phi)| \le CK_0^{(k-\frac{1}{2},k'-\frac{1}{2})}(\theta,\phi),$$

where $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \text{ and } -|\theta| < \phi < |\theta|.$

8.2 Problem 2

Write a relationship between $K^{(k,k')}$ and $K_0^{(k-\frac{1}{2},k'-\frac{1}{2})}$, like (22) and (24), in the case 0 < k' < k.

References

- [1] I. Cherednik. A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras. Invent. Math. **106** (1991), 411-432.
- [2] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi. *Higher Transcendental Functions*. Vol. I, II, McGraw-Hill Book Company, 1953.
- [3] I.S. Gradshteyn, I.M. Ryzhik. *Table of Integrals, Series, and Products*. Academic Press, New York 1980.
- [4] L. Gallardo, K. Trimèche. Positivity of the Jacobi-Cherednik interwining operator and its dual. Adv. Pure Appl. Math. 1 (2010), 163-194.
- [5] G.J. Heckmann, E.M. Opdam. Root systems and hypergeometric functions I. Compositio Math. **64** (1987), 329-352.
- [6] G.J. Heckmann, H. Schlichtkrull. *Harmonic analysis and special functions on symmetric spaces*. Academic Press. 1994.
- [7] T.H. Koornwinder. A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Math. 13 (1975), 145-159.
- [8] T.H. Koornwinder. Jacobi functions and analysis on noncompact semisimple Lie Groups. Special Functions: Group Theoretical Aspects and Applications. (R. Askey, T.H. Koornwinder and W. Schempp, eds.) Dordrecht, 1984.

- [9] E. Opdam. Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175 (1995), 75-121.
- [10] E. Opdam. Dunkl operators for real and complex reflection groups. MJS Memoirs, Vol.8, Math. Soc. Japan, 2000.
- [11] B. Schapira. Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel. Geom. Funct. Anal. 18(1) (2008), 222-250.
- [12] K. Trimèche. Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0, \infty)$. J. Math. Pures Appl. **60** (1981), 51-98.
- [13] K. Trimèche. The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam theory. Adv. Pure Appl. Math. 1 (2010), 293-323.