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Abstract

Using the harmonic analysis assoicated with the Bessel operator
L, on Q, = (0,+00)". We establish real Paley- Wiener theorems
and we give a necessary and sufficient condition on a function f
in order to have a multivariable Bessel transform wvanishing on
neigberhood of the origin, on symmetric body and a on polynomzial
domain.
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1 Introduction

The classical Paley-Wiener Theorem characterizes the images D(R) (the space
of C*°-functions on R with compact support) under the classical Fourier trans-
form as rapidly decreasing functions having an holomorphic extension to C
of exponential type. H.H.Bang [2] characterizes the function f € C*(R)
whose Fourier transform has compact support by a LP grouwth condition
for 1 < p < 4o00. More precisely, he proves that for 1 < p < 400 and
f € C=(R) such that its derivative f(™ of order n, belongs to the Lebesgue
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space LP(R), for all n € N, the limit d;y = lim, ;|| f(")||1L/p’ZR) always exists
and d; = sup{|A\|A € supp F(f)}.

This result, called real Paley-Wiener theorem, has been establish for many
other integral transforms, see [3, 7, 8.

In this paper we consider the Bessel operator ¢,,,7 = 1,...,n, on {; =
(0, +00)
g . d2 20(2' + ]_ d
Y da? v, dx;’

where o; € (—3, +00).
We denote by L,,a = (041,042,...,04”) € (—1/2,400)", the operators

Lo="L0o, @Llo,... 0Ly, and Ay ZE%

We studied a Multivariable Bessel transform Fp on €, defined for a regular
function f by

YAeR" Fef(A /f oA ) dpia ()

where A, (), z) represents the Bessel kernel on C* x R™ and dy, the measure

given by
n | 7 | 20;+1

dia(z) = [T sl g,
fa(2) gzair(aiﬂ) v

The object of this paper is to prove real Paley-Wiener theorem on the
Schwartz space S.(R™) (the space of C* function on R™ even with respect
to each variable) and on L?((,). Next we consider the Paley-Wiener spaces
PW?2(R") associated with the Bessel operators L, satisfying

FEEM™): VneN, A'f e I2(,)

and
Rpe = lim_ |A2 f|3" < oo}

PW,(R") = {f € E.R") :¥n,m €N, (1+]||z|)"A"f € L2(%,) and R?”‘ < 400}

where &,(R") is the space of C™-function on R™, even with respect to each
variable, and ||.||o.2 the norm of the space L2((2,). We establish that Fp is a
bijection from PWZ(R™) onto L? .(€,) (the space of functions in L2 (,) with
compact support), and from PW,(R") into D, (R™) (the space of C* functions
on R”, with compact support even with respect to each variable).

Next, we characterize the space L2(K) where K is respectively a symmet-
ric body (a polynomial domain) by their Multivariable Bessel transform with
support in R™. These results are the real Paley-Wiener theorem for square



92 C. Chettaoui and Y. Othmani

integrable functions with respect to the measure dy,(x). We shall prove that
these real Paley-Wiener theorem can also be stated as follows :
- Fp(f) of f € S.(R") vanish outside a polynomial domain
Ip={r€R":|P(z} 23, ..,22)] < 1}.

“ey n

with P a non constant polynomial, if and only if

. n(__ 1/n <
RETOOSUP [P (=La)flleay <1

with ||.|[a, is the norm of the space LE(S,) of p'* integrable functions on €,
with respect to the measure dy, ().

- A function f in &,(R™) is the Multivariable Bessel transform of a square
integrable function vanishing outside a symmetric body if and only if £°f
belongs to L2(1,) for all multi-indice 8 = (84, ..., 8,) and

sup H(aQ*Ca)kaa,? <M,
acK*
where M is positive constant independent of k and £F = (% @ .. @5 ke N.

- For all function f in &,(R™) such that for all & € N, £* f belongs to L2(,)

then
Jim (|LEfI" = o
where o = sup{|A1...\u], A € supp Fg(f)}.

This paper is arranged as follows

- In the first, second, third and fourth section we recall the main result on
the harmonic analysis associated with the Multivariable Bessel transform Fp.

- In the fifth section we give for Fp the analogue of the classical Paley-
Wiener theorem using complex method and next we present the Paley-Wiener
real theorems.

- In the sixth section we give a Multivariable Bessel transform of functions
vanishing on a disc.

- The seventh section is devoted to study the function such that the support
of their Multivariable Bessel transform are compact and to establish the real
Paley-Wiener theorem for F5 on the Schawrtz space S.(R").

In the last section we study the functions such that their Multivariable
Bessel transform satisfies the symmetric body property, and we give a real
Paley-Wiener type theorems which characterize these functions.

2 The operator L,

We consider the operator £, on €2, = (0, 4+00)" defined by :

Lo="lo ®...0 L.
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Where a = (ay,...,a,) € (—1/2,400)" and {,, it the Bessel operator on
Qy = (0,400) given by

d2 20&,4—1 d

2 )
dx; r; dx;

lo, =

1=1,...,n.

For B = (i, ..., ,) € N, we denote by L£Z the operator £? = Ef}l ®..® Efg’;.
Let j,, be the normalized Bessel function defined for \; € C and z; € R by

+oo
. (=1)" (i)™
Joi (Aiwi) = (e +1) 2% 22T (n + oy + 1)

The Bessel kernel A, (A, ) defined by

Aa(X 1) = [ ] Jau (Nizs)-
=1

Where A = (A1,...,\,) € C", x = (21, ..., ) € Qy, is a solution of the equation

{ LOu(z) = (—1)PINPy(z)

u(0) =1, a%iu(x) =0, i=1,..,n.

From the properties of the function j, (see [6]), we deduce that the function
A, satisfies the following properties

i) For all A € C", the function (x1,...,x,) — Ay(A, (21, ...,2,)) is of class
C* on R™ and even with respect to each variable.

ii) For all z € R™, the function (A1, ..., A,) —= Ay ((A1, ..., An), @) is entire on
C™ and even with respect to each variable.

iii) For all A\ € C™ and x € R", the function A, admits the following integral
representation

OZZ+1)

Aa()\,:c):g \/;ggaiﬂ 5 /O (1= 2512 cos( At dt

iv) For all A € C",z € R™ we have
IAa(N, 2)] < elfmllizll (2.1)
In particular for all A € R™ we have [A,(\, z)| < 1.
v) For all v € N*, x € R", A € C" we have

IDYA(w, A)| < Jla|" exp([l]]| Re Al (2.2)
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3 Notations

We denote by

- C.(R™) (resp C..(R™)) the space of continuous functions on R" (resp with
compact support), even with respect to each variable.

- £.(R™) the space of C*-functions on R", even with respect to each vari-
able.

- S.(R™) the space of C*-functions on R", rapidly decreasing together with
their derivatives which are even with respect to each variable.

- D,(R™) the space of C*°-functions on R", with compact support and even
with respect to each variable.

- H.(C™) the space of functions on C™ even with respect to each variable,
entire, slowly increasing, and of exponential type.

We consider also the following spaces.

- EL(R™) the space of distributions on R™ with compact support. It is the
topological dual of &,(R™).

- SL(R™) the space of tempered distributions on R™. It is the topological
dual of S,(R™).

4 Multivariable Bessel transform on (),

In this section we define the Multivariable Bessel transform on €2,, and we
recall some basic results of this transform.
Notations We denote by

- C(,) (resp C.(£2,)) the space of continuous functions on §2,, (resp with
compact support).

- Jto the measure defined on €2,, by

n x2a1+1

djio(z) = day...dz,.
Ho HQazFaﬁ—l TG

- L7 (2,),1 <r < 400, the space of measurable functions f on 2, such
that

1/r
1 llar = ( /Q !f(w)!’"dua(ar)) < ioo <1< oo,

| flla,oo = €ss sup | f(x)] < 400, 7= +00.
$EQn
Definition 4.1. The Multivariable Bessel transform Fp is defined on L (2,,)
by
VAERY, Fa(HN) = [ @A o) (4.1)

Qn
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Proposition 4.1. i) For all f in L. (Q,), the function F(f) is continuous on
R", goes to zero at infinity and we have

15 llaco < [1Flla (1.2)

i) For all f in D,(R"), we have
VAER", Fp(Lif)(@) = (1IN Fp(H)(N) (4.3)
VAER", LIFa(f)N) = (—1)F Faa® )N, (1.4)

Proposition 4.2. Let f be in D,(R"), then we have the inversion formula

Vo e, f(@)= | Fa(HNA 2)dua(). (4.5)

Qn

Proposition 4.3. The Multivariable Bessel transform Fp is a topological

isomorphism from S, (R") onto itself.
Theorem 4.1. 1) (Plancherel formula). For all f, g in S,(R™). We have

/f @) dpia( / Fo( )N Fa(g) Vidpa(N) (4.6)

/ @)l / Fo(FON) Pdua() (4.7)

2) The transform Fp can be extended to an isometric isomorphism of
L2(9,) onto itself.
Definition 4.2. i) The Multivariable Bessel transform of a distribution 7 in
S.(R™) is defined by

(Fp(1),0) = (1, Fp(9)), ¢ € S.(R").

ii) The Multivariable Bessel transform of a distribution 7 in £,(R") is the
function given by

VyeR", Fp(r)(y) = (1, Aaly; )

Theorem 4.2. The Multivariable Bessel transform Fp is a topological iso-
morphism

i) From S.(R™) onto itself

ii) From &/ (R™) onto H.(C™).
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Remark. For all 7 in S,(R") we have
‘FB(KOCZ'T> = —A?./—'.B(T) (48)

Fu(Au1) = —|IAIPFp(7). (4.9)
For all f in L2(,), we define the distribution T} in S, (R™) by

(Ty, ) = i f(@)e(@)dpa(r), ¢ € S (R"). (4.10)
In the following T’ will be denoted by f.

Proposition 4.4. Let f be in L2(,). Then we have
Fp(Aaf) = —IINPF5(f). (4.11)

Proof. Let f be in L2(Q,), for all ¢ € S,(R") we have

(Fo(Daf). ) =:u/ Fo(Baf)N)e(Ndjia(N)
- /fBZM N)djia()

_ /&hf(MM)

=—Z/A%wwmmmm
= [ —IEZRD M)A

Qn

= —~(l=lPFs(f), ¢)
Fe(Baf) = —IAIPFs(f).

Notations 4.1. We denote by

- L7, (9,) the space of functions in LZ(€,) with compact support.

- Hy2 (C") the space of entire functions on C" of exponential type, and such
that f/€, belongs to L2(£,).
Theorem 4.3. The Multivariable Bessel transform Fp is bijective from
L2 () onto Hyz2 (C).
Proof. i) We consider the function f on C" given by

VzeC", f(z) = / g(x)Ao(z, 2)dpe (). (4.12)

n



Real Paley-Wiener theorems for the multivariable Bessel transform 97

with g € L2 ().

By derivation under the integral sign and by using the inequality (2.2) we
deduce that the function f is entire on C" and of exponential type. On the
other hand the relation (4.12) can also be written in the form

VyeR",  fly)=Fp(g)y).
Then from Theorem 3.1 the function f|Q, belongs to L?(€,), thus f belongs
to HL% (Cn)
ii) Reciprocally let ¢ be in H2 (C").
From Theorem 4.2 ii) there exists S € £,(R™) with support in the Ball B(0, a)
of center 0 and radius a, such that

Vy eR", ¢(y) = (Se, Aoz, 9))- (4.13)

On the other hand as ¢, belongs to LZ(€2,) then from Theorem 4.1 there
exists h € L2(£2,,) such that

Vo, = Fp(h). (4.14)

From (4.13), for all ¢ € D,(R™) we have

/ V(y)Fe(p)(y)dpa(y) = (Sa, / Az, y) Feo(y)dua(y)).
Qn Q

n

Thus using (4.5) we deduce that

/Q B0 Foo ) dptaly) = (Sor o). (4.15)

On the other hand (4.14) implies

/ () Fop(y)dpialy) = / Fih(y) Fop(y)dpia(y).
Qn Qn
But from Theorem 4.1 we deduce that
/Q HFB(h)(y)stO(y)dua(y) = /Q nh(y)sf)(y)dua(y) (4.16)
= (Th, )

Thus the relations (4.15), (4.16) imply the distribution S is given by the func-
tion h.
This relation shows that the support of & is compact, then h € L2, ().
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5 Generalized convolution product associated
with the Bessel operator on (),

Definition 5.1. The generalized translation operators T, x € R™, associated
with the Bessel operator on R™, are defined for f in C,(R™) by

T.f(y) = ca/ f(\/x% +y? — 221y cos by, ..., \/x% +y2 — 2x,y, cosb,)

[0,m]™

x (sin 0;)**1...(sin 6,,)**df),....d#,,. (5.1)

I'(a; + 1)
H TV (e +1/2)
Definition 5.2. The generalized convolution product associated with the
Bessel operator in ©,, of f and g in C, .(R"™) is defined by

Where x = (z1,...,2,), ¥y = (Y1, -, Yn) and ¢, =

Ve eR", f wpgla) = / To f (9)9(y)dpa(y). (5.2)

n

Proposition 5.1. i) Let f be in L (£2,). Then for all z € Q,,, we have
VAER", Fp(TLf)(N) = Aa(A 2) F(f)(A) (5.3)

ii) Let f € LL(9,) and g € L2(,) then f *p g is defined almost every
where, belongs to L2(,,) and we have

Fo(f *89) = Fo(f)Fn(9). (5.4)
Proposition 5.2. i) Let f be in L.(Q,) and g in L°(Q,). Then we have
I #8 gllase < [ fllatllgllaco (5.5)
ii) Let g be in L!(€,) and f in L2(92,)1 < p < +oo, then
1 5 gllap < [[fllapllglla (5.6)

iii) Let p,q,r € [1,+00] such that %+% =1+ If fisin LE(Q,), g in
L4(Q,). Then f %5 g € L. (£2,) and we have

1 5 gllra < 1 llapllgllaq- (5.7)
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6 Paley-Wiener theorems for the Multivari-
able Bessel transform F3 on (),

6.1 Paley-Wiener theorems for Fp using complex method

Notation. We denote by H,(C™) the space of functions on C" which are even
with respect to each variable, entire, rapidly decreasing and of exponential
type.

Theorem 6.1. The Multivariable Bessel transform Fp is a topological iso-
morphism from D,(R™) onto H,(C")

6.2 Real Paley-Wiener theorem for Multivariable Bessel
transform Fp

To prove the main of this subsection result we need the following lemma.
Lemma 6.1. Let a probability measure m on a subsect E of R™, and ¢ a
measurable function on E, such that f belongs to the Lebesgue space L (FE, m)
for some py < 400. Then

pli)gloo HQOHLP(E,m) = ||<P||L°°(E,m)'

Let f = (k,....,k) € N™.
In the particular case will be denoted by £F inside of £Z.

Theorem 6.1. Let f be in &,(R™) such that for all £ € N, L f belongs to
L2(,). Then

. k p(1/2 _
i[53 = o (6.1)
where
o =sup{|Ai..\,| : A € supp Fp(f)}. (6.2)

If the spectrum of f is bounded then o; < oo, otherwise, oy = +o00.
Proof of Theorem 6.1. We can assume that || f||,2 > 0, otherwise oy = 0
and then

1; ki l/2k -0,
k_1>I_'I_100 ||‘CafHa,2 0

Since LFf € L2(Q,) for any k € N, then their Multivariable Bessel transform
exists and form (4.3) we have

Fe(LEf)(N) = (=)™ NERRTFL(F)(N)
= (=D"™(\1, .., M)EF(H(N).



100 C. Chettaoui and Y. Othmani

Using theorem 4.1 we have

I£aflls = /QIM---M!‘““\?B(J“)(A)IQdMa(A)

_ / At Al F ()N dpta (V).
supp Fs(f)

Consequently

dpa(N) "
IF (2

we now apply lemma 6.1 for £ = supp Fu(f) ¢(A) = |A1...\,| and
dm(\) = || Fp()IILE1FB ()N Pdua(N).

k
[r¥ o ol e [/ e Al I F (N NP = m e
SUPDFs (/)

Then we obtain
lim [|CEfI5 = sup ] = oy
koo AESUPDPF5(f)
7 The Multivariable Bessel transform of func-
tions vanishing on a disc

We consider the Gauss kernel associated with the Bessel operator £, defined
by

(7.1)

The following proposition gives the radius of the maximum disc on which
the Multivariable Bessel transform of function vanishes almost everywhere.
Theorem 7.1. Let f be in L2(,,) and we consider the sequence

gr(x) = f *p hg(z), ke N* (7.2)
Then
) 1
Jm \/—EL09(| 2) = 0. (7.3)
Where

dp =1inf{|\1.. M : A€ supp Fu(f)} (7.4)
Proof. First remark that from (5.7), the function g; is well defined. We can
assume that || f]|a.2 > 0, otherwise the relation (7.3) is clear.
To prove (7.3) it is sufficient to prove the equivalent identity
—05 (7.5)

i lgellals = e
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Since f € L2(Q,) and hy € LL(€,) we have from 4.4

Fr(gr)(x) = Fp(f)(x)Fp(hi) ().

We have also from Proposition 5.2 and (5.6) that g, € L2(£2,).
Then by applying the Parseval equality, we deduce that

2

1gklla.2 = [IFB(g8) lae = (/Suppf " !fs(f)(w)IQ\fB(hk)(x)|2dua(w)>

n

From the fact that Fp(hg)(x) = /{:”/2(4/’{:)“‘(1_[ (s + 1))e 71 and Lemma
i=1
6.1 applied for the set E given by
E = supp Fp(f), dm(A) = [|F5(F)lo21F(f) (V) Pdua(N)

and the function ¢(\) = e M we obtain
. k llzli2
lim [lgsll's = sup{e ™" 2 € supp Fi(£)}.
k——+o0

A function f € L2(Q,) is the Multivariable Bessel transform of a function
vanishing in a neighborhood of the origin if and only if d; > 0, or equivalently
if the limit (7.5) is loss then 1 hence it, holds the theorem.
Corollary 7.1. A necessary and sufficient condition for a function f in L2(,)
to have its Multivariable Bessel transform vanishing in a neighborhood of the
origin is

lim [lgella/s < 1. (7.6)

k—+o00 ’

Remark 1. Since 6y < oy it is clear that the following inequality is always
true

. 1
ILEf Ny > = lim o Logllgila.z (7.7)

Remark 2. From Proposition 6.1 and Theorem 7.1, it follows that the support
of Multivariable Bessel transform of a function in L2(2,) is in the tore §; <
I\ < oy if and only if

lim
k——+o0

T k—+oo

. 1 : k £k
dp < lim \/—ELogHnga,Q < kggloo ”AafH;kz < oy

8 Characterization of functions with compact
spectrum

Definition 8.1. i) We define the support of f € L2(€,) and we denote
it by suppf, the smallest closed set, outside the function f vanishes almost
everywhere
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ii) We denote by Ry =  sup ||A|| the radius of the support of f.
Ae SUpp f
Remark It is clear that Ry is finite if and only if f has a compact support.

Proposition 8.1. Let f € L2(9,) such that for all k¥ € N the function
IAI% f(A\) belongs to L2(€,). Then

ry= i ([ R ) 1)

Proof. We suppose that ||f|lo2 # 0 otherwise Ry = 0 and formula (8.1) is
trivial. Assume now that f has compact support with R; > 0.
Then

L
ik

Ry.

L
1k

[, et ] [ IR

Thus we deduce that )

im s [0 ()]

< tim s [ [ 1P ()] Ry = By
heo INI<Ry P
On the other hand, for any positive € we have

/ PO Pdpa(N) > 0.
Ry—e<||N|I<Ry

-

Jim ot { [ IO ()}

1
> lim inf / MY Pdpa (M) 8
Jim_inf { e ecpgn, IO o)
Z Rf—&T.

Thus

Ry = i | [ IR 0Rdn )]

We prove now the assertion in the case where f has unbounded support. Indeed
for any positive N, we have

/” g ) > 0
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Thus .
1k
lim mf{ / ||A||4k|f(A)|2dua(A)}

1

> lim inf{ /M||A||4’“||f<x>|2dua<x>}“ SN

k——+o0

Thus implies that

im_int { I ol )b = e

Notations We denote by
- L2 p() = {f € L2 (Q) : Ry = R}, for R > 0.
- DR(R”) ={feD, (R”) Ry = R}, for R > 0.
Definition 8.2. We define the Paley-Wiener spaces PIW2(R") and PW? (R")

as follows
i) PW2(R") = {f € ELR™) : A™f € L2(Q,) for allm € N and hm ||Amf\|§"§ =
R?O‘ < +oo}.

ii) PWZ2,(R") ={f € PWZ(R"): R}* = R}.

We formulate now the real L2-Paley-Wiener Theorem for the Multivariable
Bessel transform .
Theorem 8.1. The Multivariable Bessel transform Fp is a bijection

i) From PW2 ,(R") onto L2 z(,).
ii) From PWZ(R™) onto L2 ,(€2,).

Proof. i) Let f € PWZ2,(R"). Then from Proposition 4.3, the function
Fe(AEAYN) = (=D)*||MI**Fa(f)(\) belongs to L2(€,) for all £k € N. On the
other hand from Theorem 4.1. we deduce that

lim { / n \|Ar|4k|f3<f><x>r2dua<x>}4’“ = lim_ { / 1a: f(x)\Qdua(x)}4k _ R

Thus using Proposition 8.1 we conclude that Fz(f) has compact support with
Rry(p) = It

Conversely let g be in L 5(€,) . Then |[X||*g € L\ (Q,) for any k € N and
F5'(g) € £.(R™). On the other hand from Theorem 3.1 we have

L

| [ nAg|;;<g><x>|2dua<x>]“l’“:khm [ P )] = R

k—+oc0 — 400
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Thus
F5'(9) € PWg p(R").

ii) We deduce ii) from i).
Corollary 8.1. The Multivariable Bessel transform Fp is a bijection from
PWZ(R™) onto Hyz (C™).
Proof. We deduce the result from Theorem 8.1. ii) and Theorem 4.4 ii) and
Theorem 4.3.
Definition 8.4 i) The Paley-Wiener space PW,(R") is the space of function
f € E(R") satistying,.

a) (1+|z|)™Akf e L2(,) for all k,m € N.

1
b) Ry = 1AL fI12% < oo

i,
ii) Let R > 0. We define the space PW, r(R™) by
PWor(R") = {f € PWo(R") : R}* = R} .
Theorem 8.2. The Multivariable Bessel transform Fp is a bijection
i) from PW, r(R"™) onto Dg(R").
ii) from PW,(R") onto D,(R™).

Proof. i) Let g € PW,r(R") C PWZ z(R"). Then Fz(g) € &.(R™) since g
has polynomial decay and by Theorem 8.1, then function Fg(g) has compact
support with Rr, ) = R.

Conversely let f be in Dg(R™), then F5'(f) € S.(R"), and F5'(f) € PW?2 z(R™)
by Theorem 8.1. So it only remain to show that F5'(f) satisfy, the polyno-
mial decay condition for any f € Dg(R"™). We have from (4.11) and binomial
formula

L+ =) F (F)() =/ (I = Aa)" FINAN, 2)dpa(X).

Qn

Thus we obtain the result.
ii) We deduce the result from i).

9 Characterization of functions with symmet-
ric body spectrum

According to [1], a convex compact and symmetric set on R” with non empty
interior is called a symmetric body (symmetric means —x € K if x € K). Let
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K be a symmetric body in R". The set K* = {y € R" : |z.y| < 1 for all
x € K} is called the polar set of K. Then K* is also a symmetric body and
(K*)" = K.

We state in the following a new real Paley-Wiener type theorem for functions
with symmetric body-spectrum.

Theorem 9.1. A function f in &,(R™) is the Multivariable Bessel transform
of a square integrable function vanishing outside a symmetric body K if and
only if, £ f belongs to L2((2,) for all multi-indices 8 = (k, ..., k) and

sup [[(a®La)* fllap < Mik=1,2, .. (9.1)
acK*
M is a positive constant independent of k, and £¥ = E’gn ®R..Q Kgn_

Proof. Let the Multivariable Bessel transform of f € L2(,) vanish outside

the symmetric body K. Then L8 f exists for all 3 € N and LZf € L2(Q,).
We can assume that f # 0 otherwise it is trivial. From the relation (3.3) and
the Parseval equality we obtain

1(@®La)* fllaz = la®* X Fo(f)(Nllaz , (9.2)
2k 2k

where a?* = a?*...a?F and \?** = M. A%k, Since K is a symmetric body

la.A| <1, forall A€ K, andae€ K"

Hence
1(@®X)F Fa(f) N2 2 / [(@®X)*PIF(f)(N)Pdpa(X)
1@ (1)) P (3 03
< /K Fo(HPdia()) = [ Fs(HOIE,
= Hf”i?
That means
sup 1(@*La)* fllaz < [[fllaz2 = M. (9.4)

Conversely suppose now that the inequality (9.1) is valid for all k& € N.
Since L2 f € L2(Q,) for all multi-indices 3 its Multivariable Bessel transform
exists and we have from the relation (4.3)

VAER", Fp((a®La)" f)(A) = (—1)" a®* N*Fp(f)(N).
Then from Parseval equality and inequality (9.1)
sup [|(a*X*)* F(f)llaz = sup [[(a*La)" fllap < M. (9.5)

acK* aceK*
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Let Ao ¢ K, then \g ¢ (K*)*, which means that there exist ap € K* such that
|Cl0>\0‘ > 1.

Then there is a neighborhood U,, of Ay with the property |Aag| > M > 1
for all A € Uy, we have

M? > sup |[(a®X) " Fg(f)(N)]|2

> @ oD > [ @ PP o0
> 1+|>\0(10| ’

> () [ 1Ea(O) P ()

0

2k

1
+ |)\_0a0|) — +00 , the relation (9.6) holds only if

Since (
2 as k—+oo

/U Fa( O Pdpa(A) = 0.

0

That means \¢ does not belongs to the support of Fg(f).
Hence suppFg(f) € K and Theorem 9.1 is proved.

10 Multivariable Bessel transform of function
with polynomial domain support

Let P(x) be a non constant polynomial and
[p={r€R":|P(z}, 23, ..22)] < 1}.

The set I'p is called polynomial domain in R".

- A disc is a polynomial domain.

- A polynomial domain (for example U = {z : |z?...22| < 1} may be
unbounded and non convex).

Theorem 9.1. The Multivariable Bessel transform Fp(f) of f € S.(R")
vanishes outside a polynomial domain I'p, if and only if

- 1
lim ||P*(—Lo)f(@)|lbp <1, 1<p<+o0 (10.1)

k—+o00

Proof. The theorem has to be proved only for f # 0. Let ¢ be the conjugate
exponent of p.
We see that

Fp(P(=La)f(2)) = PO, Ay, A) F(f)(N).
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Indeed, let P(x) = Z\BlsN CazP, BEN", B =(B1,.... Bn).
We note by —L, = (—lo,) @ ... ® (—La,,)

P(=La)f(x) = Y Cs(—La)’f(x)

|BI<N

Fo(P(=L)/)N) = Y CaFp((—L) (N

IBISN

= > C\PFR(H)(N)

IBI<N

= PO ) Fs(F)N).

Then
F(PH(=La) [)X) = PEAT.., ) F(f)(N). (10.2)

i) Let 1 <p<2.
Suppose that (10.1) is valid.
Applying the Hausdorff-Young inequality

1FaPH(—La)f Mlag < CIPH(=La)f(Nllag-

Then
IPPOT, - A FB ()M lag < ClIPH(—La) M) ap

T [[PEO2, o A Fa(f) W)l < 1. (10.3)

k—+o0
Let Ao ¢ I'p, that means |P(\j;, ..., Aj,,)| > 1 then there exists a neigh-
L+ [P 15 A5

borhood Uy, of A with the property |P(A?, ..., A\2)| > 5

for \ € U)\O.

a) Suppose p > 1, then we have

1 > Tim [[PYO, . XD Fa(F)(V) |4
k—+o0 1

> T ([ 1PHOR e A FS ) ()

T k=400

J 1+ [(P(Ng 15 A2,0)] m% |fB<f)(A>|Qdua<A))"lk.

- 2 k—+o0
(10.4)
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14+ [P(A2,, ... N2
Because of |2 0.1 O’R)’

be either 1 or 0 then

lim ( /
k—+o00 Uy

that means / Fu( )N dpa(N) = 0.

Ux
Consequently )\00 ¢ supp Fp(f) and, hence, supp Fp(f) C I'p.

> 1 and the last limit in (10.4) can

L

IfB(f)(A)PdMa(A)) "o

0

b) Assume now that p = 1, then

- 1
1 > Tim [[PPO, A0 Fa(F)(N) e
k——+o0
> lim supess|P(\,..., \2||F, NE
> i supess| PO, .. X1 ) 05)

L+ pA8 s A2 —— :
Ip(A5,1 o) lim supess|Fg(f)(A\)|*
5 k—-+00 Acl,

therefore supess/\eUAO|]-"B(f)(/\)| = 0.

that means \g ¢ supp Fp(f) and hence suppFp(f) CTp .
Conversely, suppose that now suppFg(f) C I'p we have

I, = /(1+I1‘!2)m”(1+Ix!2)mp|f(x)lpdua(x)

n

< @+ 2P @l L+ )7 2

< Ol A+ =)™ fIE

where the Holder inequality is been applied then using the Parseval equality

we have

Iflep, < clFa(+ 12N

ClIFs (Y Clal? f@)) 5.0
j=0

IN

= OIS L Fallel f @),

J=0

= C||Fs(f(2) + Z CoL (=) LLFf ()54

= Cl(I+ (=1)"L)"Fof (@)}
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Consequently

1P (—La) fllap < O+ (1) "La)" Fp(P*(—La) f)lla
Co[[(1 4 (= 1)"La)™ PH (N2, o, )V FB(F) (V)|

IA

its clear that there exists positives integers N(m) and N’(m) such that
(I (=1)"La) " (PEAL o NDFB(F)A) = N PYII AL o A)6r(N).

with supp ¢r Csupp Fu(f), ||¢klla2 < Ci1, where C} independent of £,
hence 1
1PH(—La) fllap < CrCLEN

Thus the inequality (10.1) follows.

ii) Let now 2 < p < oo.
Suppose that suppFg(f) C I'p . Then |P(A%,...,A2)| < 1 on the support of
Fi(f), and therefore, by the Hausdorff-Young inequality we have

IPE(=Lafllap < CoPHAT, . M) F(f)(Nllag

< CollFs() i (106)

where () is independent from k.
Then

Q?r\h-

im [[PH(—La) fllds

k—+o00

conversely, suppose now that (10.6) hold . Since f € S,(R™) the function f
and its derivatives vanish at infinity, therefore, integration by parts gives

/Pk(—m%m—c) ) dpiala /f TP (— L) f(2)dpal).
Qp

(10.7)
Then by Holder inequality
IPE(=La) f(@)I72 < 1 fllagll P**(=La) (@) llap- (10.8)
Then
im [|PH(—La) f(2 )Ilaz <1 (10.9)

k—+o00

Applying now i) with p = 2 we conclude that suppFp(f) C I'p.
iii) Let p = 0.
The same proof as ii).
Remark. Theorem 6.1 has been obtained for p = 2 by V.K.Tuan in [5].
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11 Open Problem

In [4] Roe proved that if a doubly-infinite sequence (f;);ez of functions on R
satisfies

% = fiy1 and |f;(z)] < M for all j = 0,£1,£2,... and = € R, then
fo(z) = asin(x +b) where a and b are real constants. This result was extended
to RY by Strichartz [5] where % is substituted by the Laplacian on R? as follow.
Theorem. (Strichartz). Let (f;);ez be a doubly infinite sequence of mea-
surable functions on R such that for all j € Z, (i) ||f;||z®e < C for some
constant C' > 0 and (ii) for some a > 0, Af; = af;+1. Then Afy = —afo.

The purpose of the future work is to generalize this theorem. In place of
Laplace operator A of R?, we shall extended this to multivariable Laplace-
Bessel operator [,.
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