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Abstract

Using the harmonic analysis assoicated with the Bessel operator
Lα on Ωn = (0,+∞)n. We establish real Paley-Wiener theorems
and we give a necessary and sufficient condition on a function f
in order to have a multivariable Bessel transform vanishing on
neigberhood of the origin, on symmetric body and a on polynomial
domain.
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1 Introduction

The classical Paley-Wiener Theorem characterizes the images D(R) (the space
of C∞-functions on R with compact support) under the classical Fourier trans-
form as rapidly decreasing functions having an holomorphic extension to C
of exponential type. H.H.Bang [2] characterizes the function f ∈ C∞(R)
whose Fourier transform has compact support by a Lp grouwth condition
for 1 ≤ p ≤ +∞. More precisely, he proves that for 1 ≤ p ≤ +∞ and
f ∈ C∞(R) such that its derivative f (n) of order n, belongs to the Lebesgue
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space Lp(R), for all n ∈ N, the limit df = limn→+∞ ‖f (n)‖1/p
Lp(R) always exists

and df = sup{|λ|λ ∈ supp F(f)}.
This result, called real Paley-Wiener theorem, has been establish for many

other integral transforms, see [3, 7, 8].
In this paper we consider the Bessel operator `αi , i = 1, ..., n, on Ω1 =

(0,+∞)

`αi =
d2

dx2
i

+
2αi + 1

xi

d

dxi
,

where αi ∈ (−1
2
,+∞).

We denote by Lα, α = (α1, α2, ..., αn) ∈ (−1/2,+∞)n, the operators

Lα = `α1 ⊗ `α2 ...⊗ `αn and ∆α =
n∑
i=1

`αi .

We studied a Multivariable Bessel transform FB on Ωn defined for a regular
function f by

∀ λ ∈ Rn ,FBf(λ) =

∫
Ωn

f(x)Λα(λ, x)dµα(x)

where Λα(λ, x) represents the Bessel kernel on Cn × Rn and dµα the measure
given by

dµα(x) =
n∏
i=1

|xi|2αi+1

2αiΓ(αi + 1)
dxi.

The object of this paper is to prove real Paley-Wiener theorem on the
Schwartz space S∗(Rn) (the space of C∞ function on Rn even with respect
to each variable) and on L2

α(Ωn). Next we consider the Paley-Wiener spaces
PW 2

α(Rn) associated with the Bessel operators Lα satisfying

f ∈ E∗(Rn) : ∀ n ∈ N, ∆n
αf ∈ L2

α(Ωn)

and
R∆α
f = lim

n→+∞
‖∆n

αf‖
1/2n
α,2 < +∞}

PWα(Rn) = {f ∈ E∗(Rn) : ∀ n,m ∈ N, (1+‖x‖)m∆n
αf ∈ L2

α(Ωn) and R∆α
f < +∞}

where E∗(Rn) is the space of C∞-function on Rn, even with respect to each
variable, and ‖.‖α,2 the norm of the space L2

α(Ωn). We establish that FB is a
bijection from PW 2

α(Rn) onto L2
α,c(Ωn) (the space of functions in L2

α(Ωn) with
compact support), and from PWα(Rn) into D∗(Rn) (the space of C∞ functions
on Rn, with compact support even with respect to each variable).

Next, we characterize the space L2
α(K) where K is respectively a symmet-

ric body (a polynomial domain) by their Multivariable Bessel transform with
support in Rn. These results are the real Paley-Wiener theorem for square
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integrable functions with respect to the measure dµα(x). We shall prove that
these real Paley-Wiener theorem can also be stated as follows :

- FB(f) of f ∈ S∗(Rn) vanish outside a polynomial domain

ΓP = {x ∈ Rn : |P (x2
1, x

2
2, ..., x

2
n)| ≤ 1}.

with P a non constant polynomial, if and only if

lim
n→+∞

sup ‖P n(−Lα)f‖1/n
α,p ≤ 1

with ‖.‖α,p is the norm of the space Lpα(Ωn) of pth integrable functions on Ωn

with respect to the measure dµα(x).
- A function f in E∗(Rn) is the Multivariable Bessel transform of a square

integrable function vanishing outside a symmetric body if and only if Lβαf
belongs to L2

α(Ωn) for all multi-indice β = (β1, ..., βn) and

sup
a∈K∗

‖(a2Lα)kf‖α,2 ≤M ,

where M is positive constant independent of k and Lkα = `kα1
⊗ ...⊗ `kαn , k ∈ N.

- For all function f in E∗(Rn) such that for all k ∈ N,Lkαf belongs to L2
α(Ωn)

then
lim

k→+∞
‖Lkαf‖

1/2k
α,2 = σf ,

where σf = sup{|λ1...λn|, λ ∈ supp FB(f)}.
This paper is arranged as follows
- In the first, second, third and fourth section we recall the main result on

the harmonic analysis associated with the Multivariable Bessel transform FB.
- In the fifth section we give for FB the analogue of the classical Paley-

Wiener theorem using complex method and next we present the Paley-Wiener
real theorems.

- In the sixth section we give a Multivariable Bessel transform of functions
vanishing on a disc.

- The seventh section is devoted to study the function such that the support
of their Multivariable Bessel transform are compact and to establish the real
Paley-Wiener theorem for FB on the Schawrtz space S∗(Rn).

In the last section we study the functions such that their Multivariable
Bessel transform satisfies the symmetric body property, and we give a real
Paley-Wiener type theorems which characterize these functions.

2 The operator Lα
We consider the operator Lα on Ωn = (0,+∞)n defined by :

Lα = `α1 ⊗ ...⊗ `αn .
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Where α = (α1, ..., αn) ∈ (−1/2,+∞)n and `αi it the Bessel operator on
Ω1 = (0,+∞) given by

`αi =
d2

dx2
i

+
2αi + 1

xi

d

dxi
, i = 1, ..., n.

For β = (β1, ..., βn) ∈ Nn, we denote by Lβα the operator Lβα = `β1α1
⊗ ... ⊗ `βnαn .

Let jαi be the normalized Bessel function defined for λi ∈ C and xi ∈ R by

jαi(λixi) = Γ(αi + 1)
+∞∑
n=0

(−1)n(λixi)
2n

22nn!Γ(n+ αi + 1)
.

The Bessel kernel Λα(λ, x) defined by

Λα(λ, x) =
n∏
i=1

jαi(λixi).

Where λ = (λ1, ..., λn) ∈ Cn, x = (x1, ..., xn) ∈ Ωn, is a solution of the equation{
Lβαu(x) = (−1)|β|λ2βu(x)
u(0) = 1, ∂

∂xi
u(x) = 0, i = 1, ..., n.

From the properties of the function jα (see [6]), we deduce that the function
Λα satisfies the following properties

i) For all λ ∈ Cn, the function (x1, ..., xn) 7→ Λα(λ, (x1, ..., xn)) is of class
C∞ on Rn and even with respect to each variable.

ii) For all x ∈ Rn, the function (λ1, ..., λn) 7→ Λα((λ1, ..., λn), x) is entire on
Cn and even with respect to each variable.

iii) For all λ ∈ Cn and x ∈ Rn, the function Λα admits the following integral
representation

Λα(λ, x) =
n∏
i=1

2Γ(αi + 1)√
πΓ(αi + 1/2)

∫ 1

0

(1− t2)αi−1/2 cos(λixit)dt

iv) For all λ ∈ Cn, x ∈ Rn we have

|Λα(λ, x)| ≤ e‖Im(λ)‖‖x‖. (2.1)

In particular for all λ ∈ Rn we have |Λα(λ, x)| ≤ 1.

v) For all ν ∈ Nn, x ∈ Rn, λ ∈ Cn we have

|Dν
λΛ(x, λ)| ≤ ‖x‖|ν| exp(‖x‖‖Reλ‖) (2.2)
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3 Notations

We denote by
- C∗(Rn) (resp C∗,c(Rn)) the space of continuous functions on Rn (resp with

compact support), even with respect to each variable.
- E∗(Rn) the space of C∞-functions on Rn, even with respect to each vari-

able.
- S∗(Rn) the space of C∞-functions on Rn, rapidly decreasing together with

their derivatives which are even with respect to each variable.
- D∗(Rn) the space of C∞-functions on Rn, with compact support and even

with respect to each variable.
- H∗(Cn) the space of functions on Cn even with respect to each variable,

entire, slowly increasing, and of exponential type.
We consider also the following spaces.
- E ′∗(Rn) the space of distributions on Rn with compact support. It is the

topological dual of E∗(Rn).
- S ′∗(Rn) the space of tempered distributions on Rn. It is the topological

dual of S∗(Rn).

4 Multivariable Bessel transform on Ωn

.
In this section we define the Multivariable Bessel transform on Ωn and we

recall some basic results of this transform.
Notations We denote by

- C(Ωn) (resp Cc(Ωn)) the space of continuous functions on Ωn (resp with
compact support).

- µα the measure defined on Ωn by

dµα(x) =
n∏
i=1

x2αi+1
i

2αiΓ(αi + 1)
dx1....dxn.

- Lrα(Ωn), 1 ≤ r ≤ +∞, the space of measurable functions f on Ωn, such
that

‖f‖α,r =

(∫
Ωn

|f(x)|rdµα(x)

)1/r

< +∞, 1 ≤ r < +∞.

‖f‖α,∞ = ess sup
x∈Ωn

|f(x)| < +∞, r = +∞.

Definition 4.1. The Multivariable Bessel transform FB is defined on L1
α(Ωn)

by

∀ λ ∈ Rn, FB(f)(λ) =

∫
Ωn

f(x)Λα(λ, x)dµα(x). (4.1)
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Proposition 4.1. i) For all f in L1
α(Ωn), the function FB(f) is continuous on

Rn, goes to zero at infinity and we have

‖FB(f)‖α,∞ ≤ ‖f‖α,1 (4.2)

ii) For all f in D∗(Rn), we have

∀ λ ∈ Rn, FB(Lβαf)(x) = (−1)|β|λ2βFB(f)(λ) (4.3)

∀ λ ∈ Rn, Lβα(FB(f))(λ) = (−1)|β|FB(x2βf)(λ). (4.4)

Proposition 4.2. Let f be in D∗(Rn), then we have the inversion formula

∀ x ∈ Ωn, f(x) =

∫
Ωn

FB(f)(λ)Λα(λ, x)dµα(λ). (4.5)

Proposition 4.3. The Multivariable Bessel transform FB is a topological
isomorphism from S∗(Rn) onto itself.
Theorem 4.1. 1) (Plancherel formula). For all f, g in S∗(Rn). We have

i)

∫
Ωn

f(x)g(x)dµα(x) =

∫
Ωn

FB(f)(λ)FB(g)(λ)dµα(λ) (4.6)

ii)

∫
Ωn

|f(x)|2dµα(x) =

∫
Ωn

|FB(f)(λ)|2dµα(λ) (4.7)

2) The transform FB can be extended to an isometric isomorphism of
L2
α(Ωn) onto itself.

Definition 4.2. i) The Multivariable Bessel transform of a distribution τ in
S ′∗(Rn) is defined by

〈FB(τ), φ〉 = 〈τ,FB(φ)〉, φ ∈ S∗(Rn).

ii) The Multivariable Bessel transform of a distribution τ in E ′∗(Rn) is the
function given by

∀ y ∈ Rn, FB(τ)(y) = 〈τ,Λα(y, .)〉

Theorem 4.2. The Multivariable Bessel transform FB is a topological iso-
morphism

i) From S ′∗(Rn) onto itself

ii) From E ′∗(Rn) onto H∗(Cn).
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Remark. For all τ in S∗(Rn) we have

FB(`αiτ) = −λ2
iFB(τ) (4.8)

FB(∆ατ) = −‖λ‖2FB(τ). (4.9)

For all f in L2
α(Ωn), we define the distribution Tf in S ′∗(Rn) by

〈Tf , ϕ〉 =

∫
Ωn

f(x)ϕ(x)dµα(x), ϕ ∈ S∗(Rn). (4.10)

In the following Tf will be denoted by f .

Proposition 4.4. Let f be in L2
α(Ωn). Then we have

FB(∆αf) = −‖λ‖2FB(f). (4.11)

Proof. Let f be in L2
α(Ωn), for all ϕ ∈ S∗(Rn) we have

〈FB(∆αf), ϕ〉 =

∫
Ωn

FB(∆αf)(λ)ϕ(λ)dµα(λ)

=

∫
Ωn

FB(
n∑
i=1

`αif)(λ)ϕ(λ)dµα(λ)

=
n∑
i=1

∫
Ωn

FB(`αif)(λ)ϕ(λ)dµα(λ)

= −
n∑
i=1

∫
Ωn

λ2
iFB(f)(λ)ϕ(λ)dµα(λ)

=

∫
Ωn

−‖λ‖2FB(f)(λ)ϕ(λ)dµα(λ)

= −〈‖x‖2FB(f), ϕ〉
FB(∆αf) = −‖λ‖2FB(f).

Notations 4.1. We denote by
- L2

α,c(Ωn) the space of functions in L2
α(Ωn) with compact support.

- HL2
α
(Cn) the space of entire functions on Cn of exponential type, and such

that f/Ωn belongs to L2
α(Ωn).

Theorem 4.3. The Multivariable Bessel transform FB is bijective from
L2
α,c(Ωn) onto HL2

α
(Cn).

Proof. i) We consider the function f on Cn given by

∀ z ∈ Cn , f(z) =

∫
Ωn

g(x)Λα(x, z)dµα(x). (4.12)
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with g ∈ L2
α,c(Ωn).

By derivation under the integral sign and by using the inequality (2.2) we
deduce that the function f is entire on Cn and of exponential type. On the
other hand the relation (4.12) can also be written in the form

∀ y ∈ Rn, f(y) = FB(g)(y).

Then from Theorem 3.1 the function f |Ωn belongs to L2
α(Ωn), thus f belongs

to HL2
α
(Cn).

ii) Reciprocally let ψ be in HL2
α
(Cn).

From Theorem 4.2 ii) there exists S ∈ E ′∗(Rn) with support in the Ball B(0, a)
of center 0 and radius a, such that

∀ y ∈ Rn, ψ(y) = 〈Sx,Λα(x, y)〉. (4.13)

On the other hand as ψ/Ωn belongs to L2
α(Ωn) then from Theorem 4.1 there

exists h ∈ L2
α(Ωn) such that

ψ/Ωn = FB(h). (4.14)

From (4.13), for all ϕ ∈ D∗(Rn) we have∫
Ωn

ψ(y)FB(ϕ)(y)dµα(y) = 〈Sx,
∫

Ωn

Λ(x, y)FBϕ(y)dµα(y)〉.

Thus using (4.5) we deduce that∫
Ωn

ψ(y)FBϕ(y)dµα(y) = 〈Sx, ϕ〉. (4.15)

On the other hand (4.14) implies∫
Ωn

ψ(y)FBϕ(y)dµα(y) =

∫
Ωn

FBh(y)FBϕ(y)dµα(y).

But from Theorem 4.1 we deduce that∫
Ωn

FB(h)(y)FBϕ(y)dµα(y) =

∫
Ωn

h(y)ϕ(y)dµα(y)

= 〈Th, ϕ〉
(4.16)

Thus the relations (4.15), (4.16) imply the distribution S is given by the func-
tion h.
This relation shows that the support of h is compact, then h ∈ L2

α,c(Ωn).
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5 Generalized convolution product associated

with the Bessel operator on Ωn

.
Definition 5.1. The generalized translation operators Tx, x ∈ Rn, associated
with the Bessel operator on Rn, are defined for f in C∗(Rn) by

Txf(y) = cα

∫
[0,π]n

f(
√
x2

1 + y2
1 − 2x1y1 cos θ1, ...,

√
x2
n + y2

n − 2xnyn cos θn)

×(sin θ1)2α1 ...(sin θn)2αndθ1...dθn. (5.1)

Where x = (x1, ..., xn), y = (y1, ..., yn) and cα =
n∏
i=1

Γ(αi + 1)√
π Γ(αi + 1/2)

.

Definition 5.2. The generalized convolution product associated with the
Bessel operator in Ωn of f and g in C∗,c(Rn) is defined by

∀ x ∈ Rn, f ∗B g(x) =

∫
Ωn

Txf(y)g(y)dµα(y). (5.2)

Proposition 5.1. i) Let f be in L1
α(Ωn). Then for all x ∈ Ωn, we have

∀ λ ∈ Rn, FB(Txf)(λ) = Λα(λ, x)FB(f)(λ) (5.3)

ii) Let f ∈ L1
α(Ωn) and g ∈ L2

α(Ωn) then f ∗B g is defined almost every
where, belongs to L2

α(Ωn) and we have

FB(f ∗B g) = FB(f)FB(g). (5.4)

Proposition 5.2. i) Let f be in L1
α(Ωn) and g in L∞α (Ωn). Then we have

‖f ∗B g‖α,∞ ≤ ‖f‖α,1‖g‖α,∞ (5.5)

ii) Let g be in L1
α(Ωn) and f in Lpα(Ωn)1 ≤ p ≤ +∞, then

‖f ∗B g‖α,p ≤ ‖f‖α,p‖g‖α,1 (5.6)

iii) Let p, q, r ∈ [1,+∞] such that 1
p

+ 1
q

= 1 + 1
r
. If f is in Lpα(Ωn), g in

Lqα(Ωn). Then f ∗B g ∈ Lrα(Ωn) and we have

‖f ∗B g‖r,α ≤ ‖f‖α,p‖g‖α,q. (5.7)
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6 Paley-Wiener theorems for the Multivari-

able Bessel transform FB on Ωn

6.1 Paley-Wiener theorems for FB using complex method

Notation. We denote by H∗(Cn) the space of functions on Cn which are even
with respect to each variable, entire, rapidly decreasing and of exponential
type.
Theorem 6.1. The Multivariable Bessel transform FB is a topological iso-
morphism from D∗(Rn) onto H∗(Cn)

6.2 Real Paley-Wiener theorem for Multivariable Bessel
transform FB

To prove the main of this subsection result we need the following lemma.
Lemma 6.1. Let a probability measure m on a subsect E of Rn, and ϕ a
measurable function on E, such that f belongs to the Lebesgue space Lp0(E,m)
for some p0 < +∞. Then

lim
p→+∞

‖ϕ‖Lp(E,m) = ‖ϕ‖L∞(E,m).

Let β = (k, ..., k) ∈ Nn.

In the particular case will be denoted by Lkα inside of Lβα.
Theorem 6.1. Let f be in E∗(Rn) such that for all k ∈ N,Lkαf belongs to
L2
α(Ωn). Then

lim
k→+∞

‖Lkαf‖
1/2k
α,2 = σf (6.1)

where

σf = sup{|λ1...λn| : λ ∈ supp FB(f)}. (6.2)

If the spectrum of f is bounded then σf <∞, otherwise, σf = +∞.
Proof of Theorem 6.1. We can assume that ‖f‖α,2 > 0, otherwise σf = 0
and then

lim
k→+∞

‖Lkαf‖
1/2k
α,2 = 0.

Since Lkαf ∈ L2
α(Ωn) for any k ∈ N, then their Multivariable Bessel transform

exists and form (4.3) we have

FB(Lβαf)(λ) = (−1)nkλ2(k,k,...k)FB(f)(λ)

= (−1)nk(λ1, ..., λn)2kFB(f)(λ).
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Using theorem 4.1 we have

‖Lkαf‖2
α,2 =

∫
Ωn

|λ1...λn|4k|FB(f)(λ)|2dµα(λ)

=

∫
supp FB(f)

|λ1...λn|4k|FB(f)(λ)|2dµα(λ).

Consequently

∥∥Lkαf∥∥1/2k

α,2
= ‖F(f)‖1/2k

α,2

[∫
suppFB(f)

|λ1...λn|4k|FB(f)(λ)|2 dµα(λ)

‖F(f)‖2
α,2

] 1
4k

we now apply lemma 6.1 for E = supp FB(f) ϕ(λ) = |λ1...λn| and

dm(λ) = ‖FB(f)‖−2
α,2|FB(f)(λ)|2dµα(λ).

Then we obtain

lim
k→+∞

‖Lkαf‖
1/2k
α,2 = sup

λ∈suppFB(f)

|λ1...λn| = σf .

7 The Multivariable Bessel transform of func-

tions vanishing on a disc

We consider the Gauss kernel associated with the Bessel operator Lk defined
by

hk(x) = e−
‖x‖2
4k (7.1)

The following proposition gives the radius of the maximum disc on which
the Multivariable Bessel transform of function vanishes almost everywhere.
Theorem 7.1. Let f be in L2

α(Ωn) and we consider the sequence

gk(x) = f ∗B hk(x), k ∈ N∗ (7.2)

Then

lim
k→+∞

√
−1

k
Log(‖gk‖α,2) = δf . (7.3)

Where
δf = inf{|λ1...λn| : λ ∈ supp FB(f)}. (7.4)

Proof. First remark that from (5.7), the function gk is well defined. We can
assume that ‖f‖α,2 > 0, otherwise the relation (7.3) is clear.
To prove (7.3) it is sufficient to prove the equivalent identity

lim
k→+∞

‖gk‖1/k
α,2 = e−δ

2
f . (7.5)
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Since f ∈ L2
α(Ωn) and hk ∈ L1

α(Ωn) we have from 4.4

FB(gk)(x) = FB(f)(x)FB(hk)(x).

We have also from Proposition 5.2 and (5.6) that gk ∈ L2
α(Ωn).

Then by applying the Parseval equality, we deduce that

‖gk‖α,2 = ‖FB(gk)‖α,2 =

(∫
suppFB(f)

|FB(f)(x)|2|FB(hk)(x)|2dµα(x)

) 1
2

.

From the fact that FB(hk)(x) = kn/2(4k)α(
n∏
i=1

Γ(αi + 1))e−k‖x‖
2

and Lemma

6.1 applied for the set E given by

E = supp FB(f), dm(λ) = ‖FB(f)‖−2
α,2|FB(f)(λ)|2dµα(λ)

and the function ϕ(λ) = e−‖λ‖
2
, we obtain

lim
k→+∞

‖gk‖1/k
α,2 = sup{e−‖x‖2 : x ∈ supp FB(f)}.

A function f ∈ L2
α(Ωn) is the Multivariable Bessel transform of a function

vanishing in a neighborhood of the origin if and only if δf > 0, or equivalently
if the limit (7.5) is loss then 1 hence it, holds the theorem.
Corollary 7.1. A necessary and sufficient condition for a function f in L2

α(Ωn)
to have its Multivariable Bessel transform vanishing in a neighborhood of the
origin is

lim
k→+∞

‖gk‖1/k
α,2 < 1. (7.6)

Remark 1. Since δf ≤ σf it is clear that the following inequality is always
true

lim
k→+∞

‖Lkαf‖
1/k
α,2 ≥ − lim

k→+∞

1

k
Log‖gk‖α,2. (7.7)

Remark 2. From Proposition 6.1 and Theorem 7.1, it follows that the support
of Multivariable Bessel transform of a function in L2

α(Ωn) is in the tore δf ≤
‖λ‖ ≤ σf if and only if

δf ≤ lim
k→+∞

√
−1

k
Log‖gk‖α,2 ≤ lim

k→+∞
‖∆k

αf‖
1
2k
α,2 ≤ σf .

8 Characterization of functions with compact

spectrum

Definition 8.1. i) We define the support of f ∈ L2
α(Ωn) and we denote

it by suppf , the smallest closed set, outside the function f vanishes almost
everywhere
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ii) We denote by Rf = sup
λ∈ supp f

‖λ‖ the radius of the support of f .

Remark It is clear that Rf is finite if and only if f has a compact support.
Proposition 8.1. Let f ∈ L2

α(Ωn) such that for all k ∈ N the function
‖λ‖2kf(λ) belongs to L2

α(Ωn). Then

Rf = lim
k→+∞

(∫
Ωn

‖λ‖4k|f(λ)|2dµα(λ)

) 1
4k

. (8.1)

Proof. We suppose that ‖f‖α,2 6= 0 otherwise Rf = 0 and formula (8.1) is
trivial. Assume now that f has compact support with Rf > 0.
Then [∫

Ωn

‖λ‖4k|f(λ)|2dµα(λ)

] 1
4k

≤

[∫
‖λ‖≤Rf

|f(λ)|2dµα(λ)

] 1
4k

Rf .

Thus we deduce that

lim
k→+∞

sup
[ ∫

Ωn

‖λ‖4k|f(λ)|2dµα(λ)
] 1

4k

≤ lim
k→+∞

sup
[ ∫
‖λ‖≤Rf

|f(λ)|2dµα(λ)
] 1

4k
Rf = Rf .

On the other hand, for any positive ε we have∫
Rf−ε≤‖λ‖≤Rf

|f(λ)|2dµα(λ) > 0.

lim
k→+∞

inf

{∫
Ωn

‖λ‖4k|f(λ)|2dµα(λ)

} 1
4k

≥ lim
k→+∞

inf
{∫

Rf−ε≤‖λ‖≤Rf
‖λ‖4k|f(λ)|2dµα(λ)

} 1
4k

≥ Rf − ε.

Thus

Rf = lim
k→+∞

[∫
Ωn

‖λ‖4k|f(λ)|2dµα(λ)

] 1
4k

.

We prove now the assertion in the case where f has unbounded support. Indeed
for any positive N , we have∫

‖λ‖≥N
|f(λ)|2dµα(λ) > 0.
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Thus

lim
k→+∞

inf

{∫
Ωn

‖λ‖4k|f(λ)|2dµα(λ)

} 1
4k

≥ lim
k→+∞

inf

{∫
‖λ‖≥N

‖λ‖4k‖f(λ)|2dµα(λ)

} 1
4k

≥ N.

Thus implies that

lim
k→+∞

inf

{∫
Ωn

‖λ‖4k|f(λ)|2dµα(λ)

} 1
4k

= +∞.

Notations We denote by
- L2

α,R(Ωn) =
{
f ∈ L2

α,c(Ωn) : Rf = R
}

, for R ≥ 0.
- DR(Rn) = {f ∈ D∗(Rn) : Rf = R}, for R ≥ 0.

Definition 8.2. We define the Paley-Wiener spaces PW 2
α(Rn) and PW 2

α,R(Rn)
as follows

i) PW 2
α(Rn) = {f ∈ E∗(Rn) : ∆m

α f ∈ L2
α(Ωn) for allm ∈ N and lim

m→+∞
‖∆m

α f‖
1

2m
α,2 =

R∆α
f < +∞}.

ii) PW 2
α,R(Rn) = {f ∈ PW 2

α(Rn) : R∆α
f = R}.

We formulate now the real L2-Paley-Wiener Theorem for the Multivariable
Bessel transform .
Theorem 8.1. The Multivariable Bessel transform FB is a bijection

i) From PW 2
α,R(Rn) onto L2

α,R(Ωn).

ii) From PW 2
α(Rn) onto L2

α,c(Ωn).

Proof. i) Let f ∈ PW 2
α,R(Rn). Then from Proposition 4.3, the function

FB(∆k
αf)(λ) = (−1)k‖λ‖2kFB(f)(λ) belongs to L2

α(Ωn) for all k ∈ N. On the
other hand from Theorem 4.1. we deduce that

lim
k→+∞

{∫
Ωn

‖λ‖4k|FB(f)(λ)|2dµα(λ)

} 1
4k

= lim
k→+∞

{∫
Ωn

|∆k
αf(x)|2dµα(x)

} 1
4k

= R.

Thus using Proposition 8.1 we conclude that FB(f) has compact support with
RFB(f) = R.
Conversely let g be in L2

α,R(Ωn) . Then ‖λ‖kg ∈ L1
α(Ωn) for any k ∈ N and

F−1
B (g) ∈ E∗(Rn). On the other hand from Theorem 3.1 we have

lim
k→+∞

[∫
Ωn

∆k
α|F−1

B (g)(x)|2dµα(x)

] 1
4k

= lim
k→+∞

[∫
Ωn

‖λ‖4k|g(λ)|2dµα(λ)

] 1
4k

= R.
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Thus
F−1
B (g) ∈ PW 2

α,R(Rn).

ii) We deduce ii) from i).
Corollary 8.1. The Multivariable Bessel transform FB is a bijection from
PW 2

α(Rn) onto HL2
α
(Cn).

Proof. We deduce the result from Theorem 8.1. ii) and Theorem 4.4 ii) and
Theorem 4.3.
Definition 8.4 i) The Paley-Wiener space PWα(Rn) is the space of function
f ∈ E∗(Rn) satisfying.

a) (1 + ‖x‖)m∆k
αf ∈ L2

α(Ωn) for all k,m ∈ N.

b) R∆α
f = lim

k→+∞
‖∆k

αf‖
1
2k
α,2 <∞.

ii) Let R ≥ 0. We define the space PWα,R(Rn) by

PWα,R(Rn) =
{
f ∈ PWα(Rn) : R∆α

f = R
}
.

Theorem 8.2. The Multivariable Bessel transform FB is a bijection

i) from PWα,R(Rn) onto DR(Rn).

ii) from PWα(Rn) onto D∗(Rn).

Proof. i) Let g ∈ PWα,R(Rn) ⊂ PW 2
α,R(Rn). Then FB(g) ∈ E∗(Rn) since g

has polynomial decay and by Theorem 8.1, then function FB(g) has compact
support with RFB(g) = R.
Conversely let f be inDR(Rn), then F−1

B (f) ∈ S∗(Rn), and F−1
B (f) ∈ PW 2

α,R(Rn)

by Theorem 8.1. So it only remain to show that F−1
B (f) satisfy, the polyno-

mial decay condition for any f ∈ DR(Rn). We have from (4.11) and binomial
formula

(1 + ‖x‖2)nF−1
B (f)(x) =

∫
Ωn

(I −∆α)nf(λ)Λ(λ, x)dµα(λ).

Thus we obtain the result.
ii) We deduce the result from i).

9 Characterization of functions with symmet-

ric body spectrum

According to [1], a convex compact and symmetric set on Rn with non empty
interior is called a symmetric body (symmetric means −x ∈ K if x ∈ K). Let
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K be a symmetric body in Rn. The set K∗ = {y ∈ Rn : |x.y| ≤ 1 for all
x ∈ K} is called the polar set of K. Then K∗ is also a symmetric body and
(K∗)∗ = K.
We state in the following a new real Paley-Wiener type theorem for functions
with symmetric body-spectrum.

Theorem 9.1. A function f in E∗(Rn) is the Multivariable Bessel transform
of a square integrable function vanishing outside a symmetric body K if and
only if, Lβαf belongs to L2

α(Ωn) for all multi-indices β = (k, ..., k) and

sup
a∈K∗

‖(a2Lα)kf‖α,2 ≤M ; k = 1, 2, ... (9.1)

M is a positive constant independent of k, and Lkα = `kαn ⊗ ...⊗ `
k
αn .

Proof. Let the Multivariable Bessel transform of f ∈ L2
α(Ωn) vanish outside

the symmetric body K. Then Lβαf exists for all β ∈ Nn and Lβαf ∈ L2
α(Ωn).

We can assume that f 6= 0 otherwise it is trivial. From the relation (3.3) and
the Parseval equality we obtain

‖(a2Lα)kf‖α,2 = ‖a2kλ2kFB(f)(λ)‖α,2 , (9.2)

where a2k = a2k
1 ...a

2k
n and λ2k = λ2k

1 ...λ
2k
n . Since K is a symmetric body

|a.λ| ≤ 1, for all λ ∈ K, and a ∈ K∗.

Hence

‖(a2λ2)kFB(f)(λ)‖2
α,2 =

∫
Ωn

|(a2λ2)k|2|FB(f)(λ)|2dµα(λ)

=

∫
K

|(a2λ2)kFB(f)(λ)|2dµα(λ)

≤
∫
K

|FB(f)(λ)|2dµα(λ) = ‖FB(f)(λ)‖2
α,2

= ‖f‖2
α,2.

(9.3)

That means
sup
a∈K∗

‖(a2Lα)kf‖α,2 ≤ ‖f‖α,2 = M. (9.4)

Conversely suppose now that the inequality (9.1) is valid for all k ∈ N.
Since Lβαf ∈ L2

α(Ωn) for all multi-indices β its Multivariable Bessel transform
exists and we have from the relation (4.3)

∀ λ ∈ Rn ,FB((a2Lα)kf)(λ) = (−1)nka2kλ2kFB(f)(λ).

Then from Parseval equality and inequality (9.1)

sup
a∈K∗

‖(a2λ2)kFB(f)‖α,2 = sup
α∈K∗

‖(a2Lα)kf‖α,2 ≤M. (9.5)
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Let λ0 /∈ K, then λ0 /∈ (K∗)∗, which means that there exist a0 ∈ K∗ such that
|a0λ0| > 1.

Then there is a neighborhood Uλ0 of λ0 with the property |λa0| > 1+|λ0a0|
2

> 1
for all λ ∈ Uλ0 we have

M2 ≥ sup
a∈K∗
‖(a2λ2)kFB(f)(λ)‖2

α,2

≥ ‖(a2
0λ

2)kFB(f)(λ)‖2
α,2 ≥

∫
Uλ0

|(a2
0λ

2)kFB(f)(λ)|2dµα(λ)

≥ (
1 + |λ0a0|

2
)
2k∫

Uλ0

|FB(f)(λ)|2dµα(λ))

(9.6)

Since (
1 + |λ0a0|

2
)
2k

−→ +∞
as k→+∞

, the relation (9.6) holds only if∫
Uλ0

|FB(f)(λ)|2dµα(λ) = 0.

That means λ0 does not belongs to the support of FB(f).
Hence suppFB(f) ⊆ K and Theorem 9.1 is proved.

10 Multivariable Bessel transform of function

with polynomial domain support

Let P (x) be a non constant polynomial and

ΓP = {x ∈ Rn : |P (x2
1, x

2
2, ...x

2
n)| ≤ 1}.

The set ΓP is called polynomial domain in Rn.
- A disc is a polynomial domain.
- A polynomial domain (for example U = {x : |x2

1....x
2
n| ≤ 1} may be

unbounded and non convex).

Theorem 9.1. The Multivariable Bessel transform FB(f) of f ∈ S∗(Rn)
vanishes outside a polynomial domain ΓP , if and only if

lim
k→+∞

‖P k(−Lα)f(x)‖
1
k
α,p ≤ 1, 1 ≤ p ≤ +∞ (10.1)

Proof. The theorem has to be proved only for f 6= 0. Let q be the conjugate
exponent of p.
We see that

FB(P (−Lα)f(x)) = P (λ2
1, λ

2
2..., λ

2
n)FB(f)(λ).
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Indeed, let P (x) =
∑
|β|≤N Cβx

β, β ∈ Nn, β = (β1, ..., βn).

We note by −Lα = (−`α1)⊗ ....⊗ (−`αn)

P (−Lα)f(x) =
∑
|β|≤N

Cβ(−Lα)βf(x)

FB(P (−Lα)f)(λ) =
∑
|β|≤N

CβFB((−Lα)βf)(λ)

=
∑
|β|≤N

Cβλ
2βFB(f)(λ)

= P (λ2
1, ..., λ

2
n)FB(f)(λ).

Then

FB(P k(−Lα)f)(λ) = P k(λ2
1..., λ

2
n)FB(f)(λ). (10.2)

i) Let 1 ≤ p ≤ 2.

Suppose that (10.1) is valid.

Applying the Hausdorff-Young inequality

‖FBP k(−Lα)f(λ)‖α,q ≤ C‖P k(−Lα)f(λ)‖α,p.

Then

‖P k(λ2
1, ..., λ

2
n)FB(f)(λ)‖α,q ≤ C‖P k(−Lα)f(λ)‖α,p

lim
k→+∞

‖P k(λ2
1, ..., λ

2
n)FB(f)(λ)‖

1
k
α,q ≤ 1. (10.3)

Let λ0 /∈ ΓP , that means |P (λ2
0,1, ..., λ

2
0,n)| > 1 then there exists a neigh-

borhood Uλ0 of λ0 with the property |P (λ2
1, ..., λ

2
n)| >

1 + |P (λ2
0,1, ..., λ

2
0,n)|

2
for λ ∈ Uλ0 .

a) Suppose p > 1, then we have

1 ≥ lim
k→+∞

‖P k(λ2
1, ..., λ

2
n)FB(f)(λ)‖

1
k
α,q

≥ lim
k→+∞

(∫
Uλ0

|P k(λ2
1, ..., λ

2
n)FB(f)(λ)|qdµα(λ)

) 1
qk

≥
1 + |(P (λ2

0,1, ..., λ
2
0,n)|

2
lim

k→+∞

(∫
Uλ0

|FB(f)(λ)|qdµα(λ)
) 1
qk
.

(10.4)
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Because of
1 + |P (λ2

0,1, ..., λ
2
0,n)|

2
> 1 and the last limit in (10.4) can

be either 1 or 0 then

lim
k→+∞

(∫
Uλ0

|FB(f)(λ)|qdµα(λ)

) 1
qk

= 0.

that means

∫
Uλ0

|FB(f)(λ)|qdµα(λ) = 0.

Consequently λ0 /∈ supp FB(f) and, hence, supp FB(f) ⊆ ΓP .

b) Assume now that p = 1, then

1 ≥ lim
k→+∞

‖P k(λ2
1, ..., λ

2
n)FB(f)(λ)‖

1
k
α,∞

≥ lim
k→+∞

sup
λ∈Uλ0

ess|P (λ2
1, ..., λ

2
n||FB(f)(λ)|

1
k

≥
1 + |p(λ2

0,1, ..., λ
2
0,n)|

2
lim

k→+∞
sup
λ∈Uλ0

ess|FB(f)(λ)|
1
k

(9.5)

therefore supessλ∈Uλ0
|FB(f)(λ)| = 0.

that means λ0 /∈ supp FB(f) and hence suppFB(f) ⊆ ΓP .
Conversely, suppose that now suppFB(f) ⊆ ΓP we have

‖f‖pα,p =

∫
Ωn

(1 + |x|2)−mp(1 + |x|2)mp|f(x)|pdµα(x)

≤ ‖(1 + |x|2)mf(x)‖p2,α‖(1 + |x|2)−mp‖ 2
2−p ,α

≤ C‖(1 + |x|2)mf‖pα,2

where the Hölder inequality is been applied then using the Parseval equality
we have

‖f‖pα,p ≤ c‖FB((1 + |x|2)mf)‖pα,2

≤ C‖FB
( m∑
j=0

Cj
m|x|2jf(x))

)
‖p2,α

= C‖
m∑
j=0

Cj
mFB(|x|2jf(x))‖p2,α

= C‖FB(f(x)) +
m∑
j=1

Cj
m(−1)njLjαFBf(x)‖p2,α

= C‖(I + (−1)nLα)mFBf(x)‖p2,α.
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Consequently

‖P k(−Lα)f‖α,p ≤ C
1
p‖I + (−1)nLα)mFB(P k(−Lα)f)‖α,2

≤ C
1
p‖(I + (−1)nLα)mP k(λ2

1, ..., λ
2
n)FB(f)(λ)‖α,2

its clear that there exists positives integers N(m) and N ′(m) such that

(I + (−1)nLα)m(P k(λ2
1, ..., λ

2
n)FB(f)(λ)) = kN(m)PN ′(m)(λ2

1, ..., λ
2
n)φk(λ).

with supp φk ⊂supp FB(f), ‖φk‖α,2 ≤ C1, where C1 independent of k,
hence

‖P k(−Lα)f‖α,p ≤ C
1
pC1k

N(m).

Thus the inequality (10.1) follows.
ii) Let now 2 < p <∞.

Suppose that suppFB(f) ⊂ ΓP . Then |P (λ2
1, ..., λ

2
n)| ≤ 1 on the support of

FB(f), and therefore, by the Hausdorff-Young inequality we have

‖P k(−Lαf)‖α,p ≤ C2‖P k(λ2
1, ..., λ

2
n)FB(f)(λ)‖α,q

≤ C2‖FB(f)‖α,q; ,
(10.6)

where C2 is independent from k.
Then

lim
k→+∞

‖P k(−Lα)f‖
1
k
α,p ≤ 1

conversely, suppose now that (10.6) hold . Since f ∈ S∗(Rn) the function f
and its derivatives vanish at infinity, therefore, integration by parts gives∫

Ωn

P k(−Lα)f(x)P k(−Lα)f(x)dµα(x) =

∫
Ωn

f(x)P 2k(−Lα)f(x)dµα(x).

(10.7)
Then by Hölder inequality

‖P k(−Lα)f(x)‖2
α,2 ≤ ‖f‖α,q‖P 2k(−Lα)f(x)‖α,p. (10.8)

Then

lim
k→+∞

‖P k(−Lα)f(x)‖
1
k
α,2 ≤ 1. (10.9)

Applying now i) with p = 2 we conclude that suppFB(f) ⊆ ΓP .
iii) Let p =∞.

The same proof as ii).
Remark. Theorem 6.1 has been obtained for p = 2 by V.K.Tuan in [5].
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11 Open Problem

In [4] Roe proved that if a doubly-infinite sequence (fj)j∈Z of functions on R
satisfies

dfj
dx

= fj+1 and |fj(x)| ≤ M for all j = 0,±1,±2, ... and x ∈ R, then
f0(x) = a sin(x+b) where a and b are real constants. This result was extended
to Rd by Strichartz [5] where d

dx
is substituted by the Laplacian on Rd as follow.

Theorem. (Strichartz). Let (fj)j∈Z be a doubly infinite sequence of mea-
surable functions on Rd such that for all j ∈ Z, (i) ||fj||L∞(Rd) ≤ C for some
constant C > 0 and (ii) for some a > 0,4fj = afj+1. Then 4f0 = −af0.

The purpose of the future work is to generalize this theorem. In place of
Laplace operator 4 of Rd, we shall extended this to multivariable Laplace-
Bessel operator lα.
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