Int. J. Open Problems Complex Analysis, Vol. 6, No. 1, March 2014 ISSN 2074-2827; Copyright ©ICSRS Publication, 2014 www.i-csrs.org

Real Paley-Wiener theorems for the multivariable Bessel transform

Chérine Chettaoui and Youssef Othmani

Faculty of Sciences of Tunis, Department of Mathematics CAMPUS, 1060 Tunis Tunisia str. Universitatii nr. 1, 410087 Oradea, Romania e-mail: Chirine.Chettatoui@insat.rnu.tn e-mail: youssef.Othmani@ipeit.rnu.tn

Abstract

Using the harmonic analysis associated with the Bessel operator \mathcal{L}_{α} on $\Omega_n = (0, +\infty)^n$. We establish real Paley-Wiener theorems and we give a necessary and sufficient condition on a function f in order to have a multivariable Bessel transform vanishing on neighberhood of the origin, on symmetric body and a on polynomial domain.

Keywords: Bessel operator on $(0, +\infty)^n$, multivariable Bessel transform Real Paley-Wiener theorems.

2000 Mathematical Subject Classification: 42B10.

1 Introduction

The classical Paley-Wiener Theorem characterizes the images $D(\mathbb{R})$ (the space of C^{∞} -functions on \mathbb{R} with compact support) under the classical Fourier transform as rapidly decreasing functions having an holomorphic extension to \mathbb{C} of exponential type. H.H.Bang [2] characterizes the function $f \in C^{\infty}(\mathbb{R})$ whose Fourier transform has compact support by a L^p grouwth condition for $1 \leq p \leq +\infty$. More precisely, he proves that for $1 \leq p \leq +\infty$ and $f \in C^{\infty}(\mathbb{R})$ such that its derivative $f^{(n)}$ of order n, belongs to the Lebesgue space $L^p(\mathbb{R})$, for all $n \in \mathbb{N}$, the limit $d_f = \lim_{n \to +\infty} \|f^{(n)}\|_{L^p(\mathbb{R})}^{1/p}$ always exists and $d_f = \sup\{|\lambda|\lambda \in \operatorname{supp} \mathcal{F}(f)\}.$

This result, called real Paley-Wiener theorem, has been establish for many other integral transforms, see [3, 7, 8].

In this paper we consider the Bessel operator ℓ_{α_i} , i = 1, ..., n, on $\Omega_1 =$ $(0, +\infty)$

$$\ell_{\alpha_i} = \frac{d^2}{dx_i^2} + \frac{2\alpha_i + 1}{x_i} \frac{d}{dx_i} + \frac{d^2}{dx_i} \frac{d^2}{dx_i} + \frac{d^2}{dx_i}$$

where $\alpha_i \in (-\frac{1}{2}, +\infty)$. We denote by $\mathcal{L}_{\alpha}, \alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in (-1/2, +\infty)^n$, the operators $\mathcal{L}_{\alpha} = \ell_{\alpha_1} \otimes \ell_{\alpha_2} \dots \otimes \ell_{\alpha_n} \text{ and } \Delta_{\alpha} = \sum_{i=1}^{n} \ell_{\alpha_i}.$

We studied a Multivariable Bessel transform \mathcal{F}_B on Ω_n defined for a regular function f by

$$\forall \lambda \in \mathbb{R}^n, \mathcal{F}_B f(\lambda) = \int_{\Omega_n} f(x) \Lambda_\alpha(\lambda, x) d\mu_\alpha(x)$$

where $\Lambda_{\alpha}(\lambda, x)$ represents the Bessel kernel on $\mathbb{C}^n \times \mathbb{R}^n$ and $d\mu_{\alpha}$ the measure given by

$$d\mu_{\alpha}(x) = \prod_{i=1}^{n} \frac{|x_i|^{2\alpha_i+1}}{2^{\alpha_i} \Gamma(\alpha_i+1)} dx_i.$$

The object of this paper is to prove real Paley-Wiener theorem on the Schwartz space $S_*(\mathbb{R}^n)$ (the space of C^{∞} function on \mathbb{R}^n even with respect to each variable) and on $L^2_{\alpha}(\Omega_n)$. Next we consider the Paley-Wiener spaces $PW^2_{\alpha}(\mathbb{R}^n)$ associated with the Bessel operators \mathcal{L}_{α} satisfying

$$f \in \mathcal{E}_*(\mathbb{R}^n) : \forall n \in \mathbb{N}, \ \Delta^n_\alpha f \in L^2_\alpha(\Omega_n)$$

and

$$R_f^{\Delta_\alpha} = \lim_{n \to +\infty} \|\Delta_\alpha^n f\|_{\alpha,2}^{1/2n} < +\infty\}$$

$$PW_{\alpha}(\mathbb{R}^n) = \{ f \in \mathcal{E}_*(\mathbb{R}^n) : \forall n, m \in \mathbb{N}, (1+\|x\|)^m \Delta^n_{\alpha} f \in L^2_{\alpha}(\Omega_n) \text{ and } R^{\Delta_{\alpha}}_f < +\infty \}$$

where $\mathcal{E}_*(\mathbb{R}^n)$ is the space of C^{∞} -function on \mathbb{R}^n , even with respect to each variable, and $\|.\|_{\alpha,2}$ the norm of the space $L^2_{\alpha}(\Omega_n)$. We establish that \mathcal{F}_B is a bijection from $PW^2_{\alpha}(\mathbb{R}^n)$ onto $L^2_{\alpha,c}(\Omega_n)$ (the space of functions in $L^2_{\alpha}(\Omega_n)$ with compact support), and from $PW_{\alpha}(\mathbb{R}^n)$ into $D_*(\mathbb{R}^n)$ (the space of C^{∞} functions on \mathbb{R}^n , with compact support even with respect to each variable).

Next, we characterize the space $L^2_{\alpha}(K)$ where K is respectively a symmetric body (a polynomial domain) by their Multivariable Bessel transform with support in \mathbb{R}^n . These results are the real Paley-Wiener theorem for square integrable functions with respect to the measure $d\mu_{\alpha}(x)$. We shall prove that these real Paley-Wiener theorem can also be stated as follows :

- $\mathcal{F}_B(f)$ of $f \in S_*(\mathbb{R}^n)$ vanish outside a polynomial domain

$$\Gamma_P = \{ x \in \mathbb{R}^n : |P(x_1^2, x_2^2, ..., x_n^2)| \le 1 \}.$$

with P a non constant polynomial, if and only if

$$\lim_{n \to +\infty} \sup \|P^n(-\mathcal{L}_\alpha)f\|_{\alpha,p}^{1/n} \le 1$$

with $\|.\|_{\alpha,p}$ is the norm of the space $L^p_{\alpha}(\Omega_n)$ of p^{th} integrable functions on Ω_n with respect to the measure $d\mu_{\alpha}(x)$.

- A function f in $\mathcal{E}_*(\mathbb{R}^n)$ is the Multivariable Bessel transform of a square integrable function vanishing outside a symmetric body if and only if $\mathcal{L}^{\beta}_{\alpha}f$ belongs to $L^2_{\alpha}(\Omega_n)$ for all multi-indice $\beta = (\beta_1, ..., \beta_n)$ and

$$\sup_{a \in K^*} \| (a^2 \mathcal{L}_{\alpha})^k f \|_{\alpha, 2} \le M ,$$

where M is positive constant independent of k and $\mathcal{L}^k_{\alpha} = \ell^k_{\alpha_1} \otimes \ldots \otimes \ell^k_{\alpha_n}, k \in \mathbb{N}$. - For all function f in $\mathcal{E}_*(\mathbb{R}^n)$ such that for all $k \in \mathbb{N}, \mathcal{L}^k_{\alpha} f$ belongs to $L^2_{\alpha}(\Omega_n)$ then

$$\lim_{k \to +\infty} \|\mathcal{L}_{\alpha}^{k} f\|_{\alpha,2}^{1/2k} = \sigma_{f} ,$$

where $\sigma_f = \sup\{|\lambda_1...\lambda_n|, \lambda \in \text{supp } \mathcal{F}_B(f)\}.$

This paper is arranged as follows

- In the first, second, third and fourth section we recall the main result on the harmonic analysis associated with the Multivariable Bessel transform \mathcal{F}_B .

- In the fifth section we give for \mathcal{F}_B the analogue of the classical Paley-Wiener theorem using complex method and next we present the Paley-Wiener real theorems.

- In the sixth section we give a Multivariable Bessel transform of functions vanishing on a disc.

- The seventh section is devoted to study the function such that the support of their Multivariable Bessel transform are compact and to establish the real Paley-Wiener theorem for \mathcal{F}_B on the Schawrtz space $S_*(\mathbb{R}^n)$.

In the last section we study the functions such that their Multivariable Bessel transform satisfies the symmetric body property, and we give a real Paley-Wiener type theorems which characterize these functions.

2 The operator \mathcal{L}_{α}

We consider the operator \mathcal{L}_{α} on $\Omega_n = (0, +\infty)^n$ defined by :

$$\mathcal{L}_{\alpha} = \ell_{\alpha_1} \otimes \ldots \otimes \ell_{\alpha_n}.$$

Where $\alpha = (\alpha_1, ..., \alpha_n) \in (-1/2, +\infty)^n$ and ℓ_{α_i} it the Bessel operator on $\Omega_1 = (0, +\infty)$ given by

$$\ell_{\alpha_i} = \frac{d^2}{dx_i^2} + \frac{2\alpha_i + 1}{x_i} \frac{d}{dx_i}, \quad i = 1, ..., n.$$

For $\beta = (\beta_1, ..., \beta_n) \in \mathbb{N}^n$, we denote by $\mathcal{L}^{\beta}_{\alpha}$ the operator $\mathcal{L}^{\beta}_{\alpha} = \ell^{\beta_1}_{\alpha_1} \otimes ... \otimes \ell^{\beta_n}_{\alpha_n}$. Let j_{α_i} be the normalized Bessel function defined for $\lambda_i \in \mathbb{C}$ and $x_i \in \mathbb{R}$ by

$$j_{\alpha_i}(\lambda_i x_i) = \Gamma(\alpha_i + 1) \sum_{n=0}^{+\infty} \frac{(-1)^n (\lambda_i x_i)^{2n}}{2^{2n} n! \Gamma(n + \alpha_i + 1)}.$$

The Bessel kernel $\Lambda_{\alpha}(\lambda, x)$ defined by

$$\Lambda_{\alpha}(\lambda, x) = \prod_{i=1}^{n} j_{\alpha_i}(\lambda_i x_i).$$

Where $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{C}^n$, $x = (x_1, ..., x_n) \in \Omega_n$, is a solution of the equation

$$\begin{cases} \mathcal{L}_{\alpha}^{\beta}u(x) = (-1)^{|\beta|}\lambda^{2\beta}u(x)\\ u(0) = 1, \ \frac{\partial}{\partial x_i}u(x) = 0, \ i = 1, ..., n. \end{cases}$$

From the properties of the function j_{α} (see [6]), we deduce that the function Λ_{α} satisfies the following properties

- i) For all $\lambda \in \mathbb{C}^n$, the function $(x_1, ..., x_n) \mapsto \Lambda_{\alpha}(\lambda, (x_1, ..., x_n))$ is of class \mathcal{C}^{∞} on \mathbb{R}^n and even with respect to each variable.
- ii) For all $x \in \mathbb{R}^n$, the function $(\lambda_1, ..., \lambda_n) \mapsto \Lambda_{\alpha}((\lambda_1, ..., \lambda_n), x)$ is entire on \mathbb{C}^n and even with respect to each variable.
- iii) For all $\lambda \in \mathbb{C}^n$ and $x \in \mathbb{R}^n$, the function Λ_{α} admits the following integral representation

$$\Lambda_{\alpha}(\lambda, x) = \prod_{i=1}^{n} \frac{2\Gamma(\alpha_i + 1)}{\sqrt{\pi}\Gamma(\alpha_i + 1/2)} \int_0^1 (1 - t^2)^{\alpha_i - 1/2} \cos(\lambda_i x_i t) dt$$

iv) For all $\lambda \in \mathbb{C}^n, x \in \mathbb{R}^n$ we have

$$|\Lambda_{\alpha}(\lambda, x)| \le e^{\|Im(\lambda)\| \|x\|}.$$
(2.1)

In particular for all $\lambda \in \mathbb{R}^n$ we have $|\Lambda_{\alpha}(\lambda, x)| \leq 1$.

v) For all $\nu \in \mathbb{N}^n$, $x \in \mathbb{R}^n$, $\lambda \in \mathbb{C}^n$ we have

$$|D_{\lambda}^{\nu}\Lambda(x,\lambda)| \le ||x||^{|\nu|} \exp(||x|| ||Re\,\lambda||) \tag{2.2}$$

3 Notations

We denote by

- $\mathcal{C}_*(\mathbb{R}^n)$ (resp $\mathcal{C}_{*,c}(\mathbb{R}^n)$) the space of continuous functions on \mathbb{R}^n (resp with compact support), even with respect to each variable.

- $\mathcal{E}_*(\mathbb{R}^n)$ the space of \mathcal{C}^{∞} -functions on \mathbb{R}^n , even with respect to each variable.

- $S_*(\mathbb{R}^n)$ the space of \mathcal{C}^{∞} -functions on \mathbb{R}^n , rapidly decreasing together with their derivatives which are even with respect to each variable.

- $D_*(\mathbb{R}^n)$ the space of \mathcal{C}^{∞} -functions on \mathbb{R}^n , with compact support and even with respect to each variable.

- $\mathcal{H}_*(\mathbb{C}^n)$ the space of functions on \mathbb{C}^n even with respect to each variable, entire, slowly increasing, and of exponential type.

We consider also the following spaces.

- $\mathcal{E}'_*(\mathbb{R}^n)$ the space of distributions on \mathbb{R}^n with compact support. It is the topological dual of $\mathcal{E}_*(\mathbb{R}^n)$.

- $S'_*(\mathbb{R}^n)$ the space of tempered distributions on \mathbb{R}^n . It is the topological dual of $S_*(\mathbb{R}^n)$.

4 Multivariable Bessel transform on Ω_n

In this section we define the Multivariable Bessel transform on Ω_n and we recall some basic results of this transform.

Notations We denote by

- $\mathcal{C}(\Omega_n)$ (resp $\mathcal{C}_c(\Omega_n)$) the space of continuous functions on Ω_n (resp with compact support).

- μ_{α} the measure defined on Ω_n by

$$d\mu_{\alpha}(x) = \prod_{i=1}^{n} \frac{x_i^{2\alpha_i+1}}{2^{\alpha_i}\Gamma(\alpha_i+1)} \quad dx_1....dx_n.$$

- $L^r_{\alpha}(\Omega_n), 1 \leq r \leq +\infty$, the space of measurable functions f on Ω_n , such that

$$||f||_{\alpha,r} = \left(\int_{\Omega_n} |f(x)|^r d\mu_\alpha(x)\right)^{1/r} < +\infty, \quad 1 \le r < +\infty.$$
$$||f||_{\alpha,\infty} = ess \sup_{x \in \Omega_n} |f(x)| < +\infty, \quad r = +\infty.$$

Definition 4.1. The Multivariable Bessel transform \mathcal{F}_B is defined on $L^1_{\alpha}(\Omega_n)$ by

$$\forall \lambda \in \mathbb{R}^n, \ \mathcal{F}_B(f)(\lambda) = \int_{\Omega_n} f(x) \Lambda_\alpha(\lambda, x) d\mu_\alpha(x).$$
(4.1)

Proposition 4.1. i) For all f in $L^1_{\alpha}(\Omega_n)$, the function $\mathcal{F}_B(f)$ is continuous on \mathbb{R}^n , goes to zero at infinity and we have

$$\|\mathcal{F}_B(f)\|_{\alpha,\infty} \le \|f\|_{\alpha,1} \tag{4.2}$$

ii) For all f in $D_*(\mathbb{R}^n)$, we have

$$\forall \lambda \in \mathbb{R}^n, \ \mathcal{F}_B(\mathcal{L}^\beta_\alpha f)(x) = (-1)^{|\beta|} \lambda^{2\beta} \mathcal{F}_B(f)(\lambda)$$
(4.3)

$$\forall \lambda \in \mathbb{R}^n, \ \mathcal{L}^{\beta}_{\alpha}(\mathcal{F}_B(f))(\lambda) = (-1)^{|\beta|} \mathcal{F}_B(x^{2\beta}f)(\lambda).$$
(4.4)

Proposition 4.2. Let f be in $D_*(\mathbb{R}^n)$, then we have the inversion formula

$$\forall x \in \Omega_n, \ f(x) = \int_{\Omega_n} \mathcal{F}_B(f)(\lambda) \Lambda_\alpha(\lambda, x) d\mu_\alpha(\lambda).$$
(4.5)

Proposition 4.3. The Multivariable Bessel transform \mathcal{F}_B is a topological isomorphism from $S_*(\mathbb{R}^n)$ onto itself.

Theorem 4.1. 1) (Plancherel formula). For all f, g in $S_*(\mathbb{R}^n)$. We have

i)
$$\int_{\Omega_n} f(x)\overline{g(x)}d\mu_{\alpha}(x) = \int_{\Omega_n} \mathcal{F}_B(f)(\lambda)\overline{\mathcal{F}_B(g)(\lambda)}d\mu_{\alpha}(\lambda)$$
(4.6)

ii)
$$\int_{\Omega_n} |f(x)|^2 d\mu_\alpha(x) = \int_{\Omega_n} |\mathcal{F}_B(f)(\lambda)|^2 d\mu_\alpha(\lambda)$$
(4.7)

2) The transform \mathcal{F}_B can be extended to an isometric isomorphism of $L^2_{\alpha}(\Omega_n)$ onto itself.

Definition 4.2. i) The Multivariable Bessel transform of a distribution τ in $S'_*(\mathbb{R}^n)$ is defined by

$$\langle \mathcal{F}_B(\tau), \phi \rangle = \langle \tau, \mathcal{F}_B(\phi) \rangle, \phi \in S_*(\mathbb{R}^n).$$

ii) The Multivariable Bessel transform of a distribution τ in $\mathcal{E}'_*(\mathbb{R}^n)$ is the function given by

$$\forall y \in \mathbb{R}^n, \ \mathcal{F}_B(\tau)(y) = \langle \tau, \Lambda_\alpha(y, .) \rangle$$

Theorem 4.2. The Multivariable Bessel transform \mathcal{F}_B is a topological isomorphism

- i) From $S'_*(\mathbb{R}^n)$ onto itself
- ii) From $\mathcal{E}'_*(\mathbb{R}^n)$ onto $\mathcal{H}_*(\mathbb{C}^n)$.

C. Chettaoui and Y. Othmani

Remark. For all τ in $S_*(\mathbb{R}^n)$ we have

$$\mathcal{F}_B(\ell_{\alpha_i}\tau) = -\lambda_i^2 \mathcal{F}_B(\tau) \tag{4.8}$$

$$\mathcal{F}_B(\Delta_\alpha \tau) = -\|\lambda\|^2 \mathcal{F}_B(\tau). \tag{4.9}$$

For all f in $L^2_{\alpha}(\Omega_n)$, we define the distribution T_f in $S'_*(\mathbb{R}^n)$ by

$$\langle T_f, \varphi \rangle = \int_{\Omega_n} f(x)\varphi(x)d\mu_\alpha(x), \quad \varphi \in S_*(\mathbb{R}^n).$$
 (4.10)

In the following T_f will be denoted by f.

Proposition 4.4. Let f be in $L^2_{\alpha}(\Omega_n)$. Then we have

$$\mathcal{F}_B(\Delta_{\alpha} f) = -\|\lambda\|^2 \mathcal{F}_B(f).$$
(4.11)

Proof. Let f be in $L^2_{\alpha}(\Omega_n)$, for all $\varphi \in S_*(\mathbb{R}^n)$ we have

$$\begin{aligned} \langle \mathcal{F}_B(\Delta_{\alpha} f), \varphi \rangle &= \int_{\Omega_n} \mathcal{F}_B(\Delta_{\alpha} f)(\lambda) \varphi(\lambda) d\mu_{\alpha}(\lambda) \\ &= \int_{\Omega_n} \mathcal{F}_B(\sum_{i=1}^n \ell_{\alpha_i} f)(\lambda) \varphi(\lambda) d\mu_{\alpha}(\lambda) \\ &= \sum_{i=1}^n \int_{\Omega_n} \mathcal{F}_B(\ell_{\alpha_i} f)(\lambda) \varphi(\lambda) d\mu_{\alpha}(\lambda) \\ &= -\sum_{i=1}^n \int_{\Omega_n} \lambda_i^2 \mathcal{F}_B(f)(\lambda) \varphi(\lambda) d\mu_{\alpha}(\lambda) \\ &= \int_{\Omega_n} -\|\lambda\|^2 \mathcal{F}_B(f)(\lambda) \varphi(\lambda) d\mu_{\alpha}(\lambda) \\ &= -\langle \|x\|^2 \mathcal{F}_B(f), \varphi \rangle \\ \mathcal{F}_B(\Delta_{\alpha} f) &= -\|\lambda\|^2 \mathcal{F}_B(f). \end{aligned}$$

Notations 4.1. We denote by

- $L^2_{\alpha,c}(\Omega_n)$ the space of functions in $L^2_{\alpha}(\Omega_n)$ with compact support.

- $\mathbb{H}_{L^{2}_{\alpha}}(\mathbb{C}^{n})$ the space of entire functions on \mathbb{C}^{n} of exponential type, and such that f/Ω_{n} belongs to $L^{2}_{\alpha}(\Omega_{n})$.

Theorem 4.3. The Multivariable Bessel transform \mathcal{F}_B is bijective from $L^2_{\alpha,c}(\Omega_n)$ onto $\mathbb{H}_{L^2_{\alpha}}(\mathbb{C}^n)$.

Proof. i) We consider the function f on \mathbb{C}^n given by

$$\forall z \in \mathbb{C}^n, f(z) = \int_{\Omega_n} g(x) \Lambda_\alpha(x, z) d\mu_\alpha(x).$$
(4.12)

with $g \in L^2_{\alpha,c}(\Omega_n)$.

By derivation under the integral sign and by using the inequality (2.2) we deduce that the function f is entire on \mathbb{C}^n and of exponential type. On the other hand the relation (4.12) can also be written in the form

$$\forall y \in \mathbb{R}^n, \quad f(y) = \mathcal{F}_B(g)(y).$$

Then from Theorem 3.1 the function $f|\Omega_n$ belongs to $L^2_{\alpha}(\Omega_n)$, thus f belongs to $\mathbb{H}_{L^2_{\alpha}}(\mathbb{C}^n)$.

ii) Reciprocally let ψ be in $\mathbb{H}_{L^2_{\alpha}}(\mathbb{C}^n)$. From Theorem 4.2 ii) there exists $S \in \mathcal{E}'_*(\mathbb{R}^n)$ with support in the Ball B(0, a) of center 0 and radius a, such that

$$\forall y \in \mathbb{R}^n, \ \psi(y) = \langle S_x, \Lambda_\alpha(x, y) \rangle.$$
(4.13)

On the other hand as ψ_{Ω_n} belongs to $L^2_{\alpha}(\Omega_n)$ then from Theorem 4.1 there exists $h \in L^2_{\alpha}(\Omega_n)$ such that

$$\psi_{\Omega_n} = \mathcal{F}_B(h). \tag{4.14}$$

From (4.13), for all $\varphi \in D_*(\mathbb{R}^n)$ we have

$$\int_{\Omega_n} \psi(y) \mathcal{F}_B(\varphi)(y) d\mu_\alpha(y) = \langle S_x, \int_{\Omega_n} \Lambda(x, y) \mathcal{F}_B \varphi(y) d\mu_\alpha(y) \rangle.$$

Thus using (4.5) we deduce that

$$\int_{\Omega_n} \psi(y) \mathcal{F}_B \varphi(y) d\mu_\alpha(y) = \langle S_x, \varphi \rangle.$$
(4.15)

On the other hand (4.14) implies

$$\int_{\Omega_n} \psi(y) \mathcal{F}_B \varphi(y) d\mu_\alpha(y) = \int_{\Omega_n} \mathcal{F}_B h(y) \mathcal{F}_B \varphi(y) d\mu_\alpha(y).$$

But from Theorem 4.1 we deduce that

$$\int_{\Omega_n} \mathcal{F}_B(h)(y) \mathcal{F}_B \varphi(y) d\mu_\alpha(y) = \int_{\Omega_n} h(y) \varphi(y) d\mu_\alpha(y)$$

= $\langle T_h, \varphi \rangle$ (4.16)

Thus the relations (4.15), (4.16) imply the distribution S is given by the function h.

This relation shows that the support of h is compact, then $h \in L^2_{\alpha,c}(\Omega_n)$.

5 Generalized convolution product associated with the Bessel operator on Ω_n

Definition 5.1. The generalized translation operators $T_x, x \in \mathbb{R}^n$, associated with the Bessel operator on \mathbb{R}^n , are defined for f in $\mathcal{C}_*(\mathbb{R}^n)$ by

$$T_{x}f(y) = c_{\alpha} \int_{[0,\pi]^{n}} f(\sqrt{x_{1}^{2} + y_{1}^{2} - 2x_{1}y_{1}\cos\theta_{1}}, ..., \sqrt{x_{n}^{2} + y_{n}^{2} - 2x_{n}y_{n}\cos\theta_{n}})$$
$$\times (\sin\theta_{1})^{2\alpha_{1}}...(\sin\theta_{n})^{2\alpha_{n}}d\theta_{1}...d\theta_{n}.$$
(5.1)

Where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ and $c_{\alpha} = \prod_{i=1}^n \frac{\Gamma(\alpha_i + 1)}{\sqrt{\pi} \Gamma(\alpha_i + 1/2)}$.

Definition 5.2. The generalized convolution product associated with the Bessel operator in Ω_n of f and g in $\mathcal{C}_{*,c}(\mathbb{R}^n)$ is defined by

$$\forall x \in \mathbb{R}^n, \ f \ *_B g(x) = \int_{\Omega_n} T_x f(y) g(y) d\mu_\alpha(y).$$
 (5.2)

Proposition 5.1. i) Let f be in $L^1_{\alpha}(\Omega_n)$. Then for all $x \in \Omega_n$, we have

$$\forall \lambda \in \mathbb{R}^n, \ \mathcal{F}_B(T_x f)(\lambda) = \Lambda_\alpha(\lambda, x) \mathcal{F}_B(f)(\lambda)$$
(5.3)

ii) Let $f \in L^1_{\alpha}(\Omega_n)$ and $g \in L^2_{\alpha}(\Omega_n)$ then $f *_B g$ is defined almost every where, belongs to $L^2_{\alpha}(\Omega_n)$ and we have

$$\mathcal{F}_B(f *_B g) = \mathcal{F}_B(f) \mathcal{F}_B(g). \tag{5.4}$$

Proposition 5.2. i) Let f be in $L^1_{\alpha}(\Omega_n)$ and g in $L^{\infty}_{\alpha}(\Omega_n)$. Then we have

$$\|f *_{B} g\|_{\alpha,\infty} \le \|f\|_{\alpha,1} \|g\|_{\alpha,\infty}$$
(5.5)

ii) Let g be in $L^1_{\alpha}(\Omega_n)$ and f in $L^p_{\alpha}(\Omega_n) 1 \leq p \leq +\infty$, then

$$||f *_B g||_{\alpha,p} \le ||f||_{\alpha,p} ||g||_{\alpha,1}$$
(5.6)

iii) Let $p, q, r \in [1, +\infty]$ such that $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. If f is in $L^p_{\alpha}(\Omega_n)$, g in $L^q_{\alpha}(\Omega_n)$. Then $f *_B g \in L^r_{\alpha}(\Omega_n)$ and we have

$$||f *_B g||_{r,\alpha} \le ||f||_{\alpha,p} ||g||_{\alpha,q}.$$
(5.7)

6 Paley-Wiener theorems for the Multivariable Bessel transform \mathcal{F}_B on Ω_n

6.1 Paley-Wiener theorems for \mathcal{F}_B using complex method

Notation. We denote by $\mathbb{H}_*(\mathbb{C}^n)$ the space of functions on \mathbb{C}^n which are even with respect to each variable, entire, rapidly decreasing and of exponential type.

Theorem 6.1. The Multivariable Bessel transform \mathcal{F}_B is a topological isomorphism from $D_*(\mathbb{R}^n)$ onto $\mathbb{H}_*(\mathbb{C}^n)$

6.2 Real Paley-Wiener theorem for Multivariable Bessel transform \mathcal{F}_B

To prove the main of this subsection result we need the following lemma. **Lemma 6.1.** Let a probability measure m on a subsect E of \mathbb{R}^n , and φ a measurable function on E, such that f belongs to the Lebesgue space $L^{p_0}(E, m)$ for some $p_0 < +\infty$. Then

$$\lim_{p \to +\infty} \|\varphi\|_{L^p(E,m)} = \|\varphi\|_{L^\infty(E,m)}$$

Let $\beta = (k, ..., k) \in \mathbb{N}^n$.

In the particular case will be denoted by \mathcal{L}^k_{α} inside of $\mathcal{L}^{\beta}_{\alpha}$. **Theorem 6.1.** Let f be in $\mathcal{E}_*(\mathbb{R}^n)$ such that for all $k \in \mathbb{N}, \mathcal{L}^k_{\alpha} f$ belongs to $L^2_{\alpha}(\Omega_n)$. Then

$$\lim_{k \to +\infty} \|\mathcal{L}^k_{\alpha} f\|_{\alpha,2}^{1/2k} = \sigma_f \tag{6.1}$$

where

$$\sigma_f = \sup\{|\lambda_1 \dots \lambda_n| : \lambda \in \text{ supp } \mathcal{F}_B(f)\}.$$
(6.2)

If the spectrum of f is bounded then $\sigma_f < \infty$, otherwise, $\sigma_f = +\infty$. **Proof of Theorem 6.1.** We can assume that $||f||_{\alpha,2} > 0$, otherwise $\sigma_f = 0$ and then

$$\lim_{k \to +\infty} \|\mathcal{L}^k_{\alpha}f\|^{1/2k}_{\alpha,2} = 0.$$

Since $\mathcal{L}^k_{\alpha} f \in L^2_{\alpha}(\Omega_n)$ for any $k \in \mathbb{N}$, then their Multivariable Bessel transform exists and form (4.3) we have

$$\mathcal{F}_B(\mathcal{L}_{\alpha}^{\beta}f)(\lambda) = (-1)^{nk} \lambda^{2(k,k,\dots,k)} \mathcal{F}_B(f)(\lambda)$$

= $(-1)^{nk} (\lambda_1,\dots,\lambda_n)^{2k} \mathcal{F}_B(f)(\lambda).$

Using theorem 4.1 we have

$$\begin{aligned} \|\mathcal{L}_{\alpha}^{k}f\|_{\alpha,2}^{2} &= \int_{\Omega_{n}} |\lambda_{1}...\lambda_{n}|^{4k} |\mathcal{F}_{B}(f)(\lambda)|^{2} d\mu_{\alpha}(\lambda) \\ &= \int_{\text{supp } \mathcal{F}_{B}(f)} |\lambda_{1}...\lambda_{n}|^{4k} |\mathcal{F}_{B}(f)(\lambda)|^{2} d\mu_{\alpha}(\lambda). \end{aligned}$$

Consequently

$$\left\|\mathcal{L}_{\alpha}^{k}f\right\|_{\alpha,2}^{1/2k} = \left\|\mathcal{F}(f)\right\|_{\alpha,2}^{1/2k} \left[\int_{\mathrm{supp}\mathcal{F}_{B}(f)} |\lambda_{1}...\lambda_{n}|^{4k} |\mathcal{F}_{B}(f)(\lambda)|^{2} \frac{d\mu_{\alpha}(\lambda)}{\|\mathcal{F}(f)\|_{\alpha,2}^{2}}\right]^{\frac{1}{4k}}$$

we now apply lemma 6.1 for $E = \text{supp } \mathcal{F}_B(f) \varphi(\lambda) = |\lambda_1 ... \lambda_n|$ and

$$dm(\lambda) = \|\mathcal{F}_B(f)\|_{\alpha,2}^{-2} |\mathcal{F}_B(f)(\lambda)|^2 d\mu_\alpha(\lambda).$$

Then we obtain

$$\lim_{k \to +\infty} \left\| \mathcal{L}_{\alpha}^{k} f \right\|_{\alpha,2}^{1/2k} = \sup_{\lambda \in \operatorname{supp} \mathcal{F}_{B}(f)} \left| \lambda_{1} \dots \lambda_{n} \right| = \sigma_{f}.$$

7 The Multivariable Bessel transform of functions vanishing on a disc

We consider the Gauss kernel associated with the Bessel operator \mathcal{L}_k defined by

$$h_k(x) = e^{-\frac{\|x\|^2}{4k}} \tag{7.1}$$

The following proposition gives the radius of the maximum disc on which the Multivariable Bessel transform of function vanishes almost everywhere. **Theorem 7.1.** Let f be in $L^2_{\alpha}(\Omega_n)$ and we consider the sequence

$$g_k(x) = f *_B h_k(x), \quad k \in \mathbb{N}^*$$
(7.2)

Then

$$\lim_{k \to +\infty} \sqrt{-\frac{1}{k} Log(\|g_k\|_{\alpha,2})} = \delta_f.$$
(7.3)

Where

$$\delta_f = \inf\{|\lambda_1...\lambda_n| : \lambda \in \text{ supp } \mathcal{F}_B(f)\}.$$
(7.4)

Proof. First remark that from (5.7), the function g_k is well defined. We can assume that $||f||_{\alpha,2} > 0$, otherwise the relation (7.3) is clear. To prove (7.3) it is sufficient to prove the equivalent identity

$$\lim_{k \to +\infty} \|g_k\|_{\alpha,2}^{1/k} = e^{-\delta_f^2}.$$
(7.5)

Since $f \in L^2_{\alpha}(\Omega_n)$ and $h_k \in L^1_{\alpha}(\Omega_n)$ we have from 4.4

$$\mathcal{F}_B(g_k)(x) = \mathcal{F}_B(f)(x)\mathcal{F}_B(h_k)(x)$$

We have also from Proposition 5.2 and (5.6) that $g_k \in L^2_{\alpha}(\Omega_n)$. Then by applying the Parseval equality, we deduce that

$$||g_k||_{\alpha,2} = ||\mathcal{F}_B(g_k)||_{\alpha,2} = \left(\int_{\text{supp}\mathcal{F}_B(f)} |\mathcal{F}_B(f)(x)|^2 |\mathcal{F}_B(h_k)(x)|^2 d\mu_\alpha(x)\right)^{\frac{1}{2}}.$$

From the fact that $\mathcal{F}_B(h_k)(x) = k^{n/2} (4k)^{\alpha} (\prod_{i=1}^n \Gamma(\alpha_i + 1)) e^{-k||x||^2}$ and Lemma 6.1 applied for the set E given by

$$E = \text{supp } \mathcal{F}_B(f), dm(\lambda) = \|\mathcal{F}_B(f)\|_{\alpha,2}^{-2} |\mathcal{F}_B(f)(\lambda)|^2 d\mu_\alpha(\lambda)$$

and the function $\varphi(\lambda) = e^{-\|\lambda\|^2}$, we obtain

$$\lim_{k \to +\infty} \|g_k\|_{\alpha,2}^{1/k} = \sup\{e^{-\|x\|^2} : x \in \text{ supp } \mathcal{F}_B(f)\}.$$

A function $f \in L^2_{\alpha}(\Omega_n)$ is the Multivariable Bessel transform of a function vanishing in a neighborhood of the origin if and only if $\delta_f > 0$, or equivalently if the limit (7.5) is loss then 1 hence it, holds the theorem.

Corollary 7.1. A necessary and sufficient condition for a function f in $L^2_{\alpha}(\Omega_n)$ to have its Multivariable Bessel transform vanishing in a neighborhood of the origin is

$$\lim_{k \to +\infty} \|g_k\|_{\alpha,2}^{1/k} < 1.$$
(7.6)

Remark 1. Since $\delta_f \leq \sigma_f$ it is clear that the following inequality is always true

$$\lim_{k \to +\infty} \|\mathcal{L}^k_{\alpha} f\|^{1/k}_{\alpha,2} \ge -\lim_{k \to +\infty} \frac{1}{k} Log \|g_k\|_{\alpha,2}.$$
(7.7)

Remark 2. From Proposition 6.1 and Theorem 7.1, it follows that the support of Multivariable Bessel transform of a function in $L^2_{\alpha}(\Omega_n)$ is in the tore $\delta_f \leq$ $\|\lambda\| \leq \sigma_f$ if and only if

$$\delta_f \le \lim_{k \to +\infty} \sqrt{-\frac{1}{k} Log \|g_k\|_{\alpha,2}} \le \lim_{k \to +\infty} \|\Delta_{\alpha}^k f\|_{\alpha,2}^{\frac{1}{2k}} \le \sigma_f.$$

Characterization of functions with compact 8 spectrum

Definition 8.1. i) We define the support of $f \in L^2_{\alpha}(\Omega_n)$ and we denote it by $\operatorname{supp} f$, the smallest closed set, outside the function f vanishes almost everywhere

ii) We denote by $R_f = \sup_{\lambda \in \text{ supp } f} ||\lambda||$ the radius of the support of f.

Remark It is clear that R_f is finite if and only if f has a compact support. **Proposition 8.1.** Let $f \in L^2_{\alpha}(\Omega_n)$ such that for all $k \in \mathbb{N}$ the function $\|\lambda\|^{2k} f(\lambda)$ belongs to $L^2_{\alpha}(\Omega_n)$. Then

$$R_f = \lim_{k \to +\infty} \left(\int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_\alpha(\lambda) \right)^{\frac{1}{4k}}.$$
(8.1)

Proof. We suppose that $||f||_{\alpha,2} \neq 0$ otherwise $R_f = 0$ and formula (8.1) is trivial. Assume now that f has compact support with $R_f > 0$. Then

$$\left[\int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_\alpha(\lambda)\right]^{\frac{1}{4k}} \le \left[\int_{\|\lambda\| \le R_f} |f(\lambda)|^2 d\mu_\alpha(\lambda)\right]^{\frac{1}{4k}} R_f$$

Thus we deduce that $\lim_{k \to +\infty} \sup \left[\int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_{\alpha}(\lambda) \right]^{\frac{1}{4k}}$

$$\leq \lim_{k \to +\infty} \sup \left[\int_{\|\lambda\| \leq R_f} |f(\lambda)|^2 d\mu_\alpha(\lambda) \right]^{\frac{1}{4k}} R_f = R_f.$$

On the other hand, for any positive ε we have

$$\int_{R_f - \varepsilon \le \|\lambda\| \le R_f} |f(\lambda)|^2 d\mu_{\alpha}(\lambda) > 0.$$

$$\lim_{k \to +\infty} \inf \left\{ \int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_{\alpha}(\lambda) \right\}^{\frac{1}{4k}}$$

$$\ge \lim_{k \to +\infty} \inf \left\{ \int_{R_f - \varepsilon \le \|\lambda\| \le R_f} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_{\alpha}(\lambda) \right\}^{\frac{1}{4k}}$$

$$\ge R_f - \varepsilon.$$

Thus

$$R_f = \lim_{k \to +\infty} \left[\int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_\alpha(\lambda) \right]^{\frac{1}{4k}}.$$

We prove now the assertion in the case where f has unbounded support. Indeed for any positive N, we have

$$\int_{\|\lambda\| \ge N} |f(\lambda)|^2 d\mu_{\alpha}(\lambda) > 0.$$

$$\lim_{k \to +\infty} \inf \left\{ \int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_\alpha(\lambda) \right\}^{\frac{1}{4k}}$$
$$\geq \lim_{k \to +\infty} \inf \left\{ \int_{\|\lambda\| \ge N} \|\lambda\|^{4k} \|f(\lambda)|^2 d\mu_\alpha(\lambda) \right\}^{\frac{1}{4k}} \ge N.$$

Thus implies that

$$\lim_{k \to +\infty} \inf \left\{ \int_{\Omega_n} \|\lambda\|^{4k} |f(\lambda)|^2 d\mu_\alpha(\lambda) \right\}^{\frac{1}{4k}} = +\infty.$$

Notations We denote by

$$- L^{2}_{\alpha,R}(\Omega_{n}) = \{ f \in L^{2}_{\alpha,c}(\Omega_{n}) : R_{f} = R \}, \text{ for } R \ge 0. \\ - D_{R}(\mathbb{R}^{n}) = \{ f \in D_{*}(\mathbb{R}^{n}) : R_{f} = R \}, \text{ for } R \ge 0.$$

Definition 8.2. We define the Paley-Wiener spaces $PW^2_{\alpha}(\mathbb{R}^n)$ and $PW^2_{\alpha,R}(\mathbb{R}^n)$ as follows

i) $PW^2_{\alpha}(\mathbb{R}^n) = \{ f \in \mathcal{E}_*(\mathbb{R}^n) : \Delta^m_{\alpha} f \in L^2_{\alpha}(\Omega_n) \text{ for all } m \in \mathbb{N} \text{ and } \lim_{m \to +\infty} \|\Delta^m_{\alpha} f\|^{\frac{1}{2m}}_{\alpha,2} = R^{\Delta_{\alpha}}_f < +\infty \}.$

ii)
$$PW^2_{\alpha,R}(\mathbb{R}^n) = \{ f \in PW^2_{\alpha}(\mathbb{R}^n) : R^{\Delta_{\alpha}}_f = R \}.$$

We formulate now the real L^2 -Paley-Wiener Theorem for the Multivariable Bessel transform .

Theorem 8.1. The Multivariable Bessel transform \mathcal{F}_B is a bijection

- i) From $PW^2_{\alpha,R}(\mathbb{R}^n)$ onto $L^2_{\alpha,R}(\Omega_n)$.
- ii) From $PW^2_{\alpha}(\mathbb{R}^n)$ onto $L^2_{\alpha,c}(\Omega_n)$.

Proof. i) Let $f \in PW^2_{\alpha,R}(\mathbb{R}^n)$. Then from Proposition 4.3, the function $\mathcal{F}_B(\Delta^k_{\alpha}f)(\lambda) = (-1)^k \|\lambda\|^{2k} \mathcal{F}_B(f)(\lambda)$ belongs to $L^2_{\alpha}(\Omega_n)$ for all $k \in \mathbb{N}$. On the other hand from Theorem 4.1. we deduce that

$$\lim_{k \to +\infty} \left\{ \int_{\Omega_n} \|\lambda\|^{4k} |\mathcal{F}_B(f)(\lambda)|^2 d\mu_\alpha(\lambda) \right\}^{\frac{1}{4k}} = \lim_{k \to +\infty} \left\{ \int_{\Omega_n} |\Delta_\alpha^k f(x)|^2 d\mu_\alpha(x) \right\}^{\frac{1}{4k}} = R.$$

Thus using Proposition 8.1 we conclude that $\mathcal{F}_B(f)$ has compact support with $R_{\mathcal{F}_B(f)} = R$.

Conversely let g be in $L^2_{\alpha,R}(\Omega_n)$. Then $\|\lambda\|^k g \in L^1_\alpha(\Omega_n)$ for any $k \in \mathbb{N}$ and $\mathcal{F}_B^{-1}(g) \in \mathcal{E}_*(\mathbb{R}^n)$. On the other hand from Theorem 3.1 we have

$$\lim_{k \to +\infty} \left[\int_{\Omega_n} \Delta_\alpha^k |\mathcal{F}_B^{-1}(g)(x)|^2 d\mu_\alpha(x) \right]^{\frac{1}{4k}} = \lim_{k \to +\infty} \left[\int_{\Omega_n} \|\lambda\|^{4k} |g(\lambda)|^2 d\mu_\alpha(\lambda) \right]^{\frac{1}{4k}} = R.$$

103

Thus

$$\mathcal{F}_B^{-1}(g) \in PW^2_{\alpha,R}(\mathbb{R}^n).$$

ii) We deduce ii) from i).

Corollary 8.1. The Multivariable Bessel transform \mathcal{F}_B is a bijection from $PW^2_{\alpha}(\mathbb{R}^n)$ onto $\mathbb{H}_{L^2_{\alpha}}(\mathbb{C}^n)$.

Proof. We deduce the result from Theorem 8.1. ii) and Theorem 4.4 ii) and Theorem 4.3.

Definition 8.4 i) The Paley-Wiener space $PW_{\alpha}(\mathbb{R}^n)$ is the space of function $f \in \mathcal{E}_*(\mathbb{R}^n)$ satisfying.

a) $(1 + ||x||)^m \Delta_{\alpha}^k f \in L^2_{\alpha}(\Omega_n)$ for all $k, m \in \mathbb{N}$.

b)
$$R_f^{\Delta_{\alpha}} = \lim_{k \to +\infty} \|\Delta_{\alpha}^k f\|_{\alpha,2}^{\frac{1}{2k}} < \infty$$

ii) Let $R \geq 0$. We define the space $PW_{\alpha,R}(\mathbb{R}^n)$ by

$$PW_{\alpha,R}(\mathbb{R}^n) = \left\{ f \in PW_{\alpha}(\mathbb{R}^n) : R_f^{\Delta_{\alpha}} = R \right\}.$$

Theorem 8.2. The Multivariable Bessel transform \mathcal{F}_B is a bijection

- i) from $PW_{\alpha,R}(\mathbb{R}^n)$ onto $D_R(\mathbb{R}^n)$.
- ii) from $PW_{\alpha}(\mathbb{R}^n)$ onto $D_*(\mathbb{R}^n)$.

Proof. i) Let $g \in PW_{\alpha,R}(\mathbb{R}^n) \subset PW^2_{\alpha,R}(\mathbb{R}^n)$. Then $\mathcal{F}_B(g) \in \mathcal{E}_*(\mathbb{R}^n)$ since g has polynomial decay and by Theorem 8.1, then function $\mathcal{F}_B(g)$ has compact support with $R_{\mathcal{F}_B(g)} = R$.

Conversely let f be in $D_R(\mathbb{R}^n)$, then $\mathcal{F}_B^{-1}(f) \in S_*(\mathbb{R}^n)$, and $\mathcal{F}_B^{-1}(f) \in PW^2_{\alpha,R}(\mathbb{R}^n)$ by Theorem 8.1. So it only remain to show that $\mathcal{F}_B^{-1}(f)$ satisfy, the polynomial decay condition for any $f \in D_R(\mathbb{R}^n)$. We have from (4.11) and binomial formula

$$(1+\|x\|^2)^n \mathcal{F}_B^{-1}(f)(x) = \int_{\Omega_n} (I-\Delta_\alpha)^n f(\lambda) \Lambda(\lambda, x) d\mu_\alpha(\lambda).$$

Thus we obtain the result.

ii) We deduce the result from i).

9 Characterization of functions with symmetric body spectrum

According to [1], a convex compact and symmetric set on \mathbb{R}^n with non empty interior is called a symmetric body (symmetric means $-x \in K$ if $x \in K$). Let

104

K be a symmetric body in \mathbb{R}^n . The set $K^* = \{y \in \mathbb{R}^n : |x.y| \leq 1 \text{ for all } x \in K\}$ is called the polar set of K. Then K^* is also a symmetric body and $(K^*)^* = K$.

We state in the following a new real Paley-Wiener type theorem for functions with symmetric body-spectrum.

Theorem 9.1. A function f in $\mathcal{E}_*(\mathbb{R}^n)$ is the Multivariable Bessel transform of a square integrable function vanishing outside a symmetric body K if and only if, $\mathcal{L}^{\beta}_{\alpha}f$ belongs to $L^2_{\alpha}(\Omega_n)$ for all multi-indices $\beta = (k, ..., k)$ and

$$\sup_{a \in K^*} \| (a^2 \mathcal{L}_{\alpha})^k f \|_{\alpha, 2} \le M; k = 1, 2, \dots$$
(9.1)

M is a positive constant independent of k, and $\mathcal{L}^k_{\alpha} = \ell^k_{\alpha_n} \otimes ... \otimes \ell^k_{\alpha_n}$. **Proof.** Let the Multivariable Bessel transform of $f \in L^2_{\alpha}(\Omega_n)$ vanish outside the symmetric body K. Then $\mathcal{L}^{\beta}_{\alpha}f$ exists for all $\beta \in \mathbb{N}^n$ and $\mathcal{L}^{\beta}_{\alpha}f \in L^2_{\alpha}(\Omega_n)$. We can assume that $f \neq 0$ otherwise it is trivial. From the relation (3.3) and the Parseval equality we obtain

$$||(a^{2}\mathcal{L}_{\alpha})^{k}f||_{\alpha,2} = ||a^{2k}\lambda^{2k}\mathcal{F}_{B}(f)(\lambda)||_{\alpha,2}, \qquad (9.2)$$

where $a^{2k} = a_1^{2k} \dots a_n^{2k}$ and $\lambda^{2k} = \lambda_1^{2k} \dots \lambda_n^{2k}$. Since K is a symmetric body

$$|a.\lambda| \le 1$$
, for all $\lambda \in K$, and $a \in K^*$.

Hence

$$\begin{aligned} \|(a^{2}\lambda^{2})^{k}\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,2}^{2} &= \int_{\Omega_{n}} |(a^{2}\lambda^{2})^{k}|^{2} |\mathcal{F}_{B}(f)(\lambda)|^{2} d\mu_{\alpha}(\lambda) \\ &= \int_{K} |(a^{2}\lambda^{2})^{k}\mathcal{F}_{B}(f)(\lambda)|^{2} d\mu_{\alpha}(\lambda) \\ &\leq \int_{K} |\mathcal{F}_{B}(f)(\lambda)|^{2} d\mu_{\alpha}(\lambda) = \|\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,2}^{2} \\ &= \|f\|_{\alpha,2}^{2}. \end{aligned}$$
(9.3)

That means

$$\sup_{a \in K^*} \| (a^2 \mathcal{L}_{\alpha})^k f \|_{\alpha, 2} \le \| f \|_{\alpha, 2} = M.$$
(9.4)

Conversely suppose now that the inequality (9.1) is valid for all $k \in \mathbb{N}$. Since $\mathcal{L}^{\beta}_{\alpha} f \in L^{2}_{\alpha}(\Omega_{n})$ for all multi-indices β its Multivariable Bessel transform exists and we have from the relation (4.3)

$$\forall \lambda \in \mathbb{R}^n, \mathcal{F}_B((a^2 \mathcal{L}_\alpha)^k f)(\lambda) = (-1)^{nk} a^{2k} \lambda^{2k} \mathcal{F}_B(f)(\lambda).$$

Then from Parseval equality and inequality (9.1)

$$\sup_{a \in K^*} \| (a^2 \lambda^2)^k \mathcal{F}_B(f) \|_{\alpha, 2} = \sup_{\alpha \in K^*} \| (a^2 \mathcal{L}_\alpha)^k f \|_{\alpha, 2} \le M.$$
(9.5)

Let $\lambda_0 \notin K$, then $\lambda_0 \notin (K^*)^*$, which means that there exist $a_0 \in K^*$ such that $|a_0\lambda_0| > 1$.

Then there is a neighborhood U_{λ_0} of λ_0 with the property $|\lambda a_0| > \frac{1+|\lambda_0 a_0|}{2} > 1$ for all $\lambda \in U_{\lambda_0}$ we have

$$M^{2} \geq \sup_{a \in K^{*}} \|(a^{2}\lambda^{2})^{k}\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,2}^{2}$$

$$\geq \|(a_{0}^{2}\lambda^{2})^{k}\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,2}^{2} \geq \int_{U_{\lambda_{0}}} |(a_{0}^{2}\lambda^{2})^{k}\mathcal{F}_{B}(f)(\lambda)|^{2}d\mu_{\alpha}(\lambda)$$

$$\geq \left(\frac{1+|\lambda_{0}a_{0}|}{2}\right)^{2k} \int_{U_{\lambda_{0}}} |\mathcal{F}_{B}(f)(\lambda)|^{2}d\mu_{\alpha}(\lambda))$$
(9.6)

Since $\left(\frac{1+|\lambda_0 a_0|}{2}\right)^{2k} \xrightarrow[]{as k \to +\infty} +\infty$, the relation (9.6) holds only if $\int_{U_{\lambda_0}} |\mathcal{F}_B(f)(\lambda)|^2 d\mu_\alpha(\lambda) = 0.$

That means λ_0 does not belongs to the support of $\mathcal{F}_B(f)$. Hence $\operatorname{supp}\mathcal{F}_B(f) \subseteq K$ and Theorem 9.1 is proved.

10 Multivariable Bessel transform of function with polynomial domain support

Let P(x) be a non constant polynomial and

$$\Gamma_P = \{ x \in \mathbb{R}^n : |P(x_1^2, x_2^2, \dots, x_n^2)| \le 1 \}.$$

The set Γ_P is called polynomial domain in \mathbb{R}^n .

- A disc is a polynomial domain.

- A polynomial domain (for example $U = \{x : |x_1^2 \dots x_n^2| \le 1\}$ may be unbounded and non convex).

Theorem 9.1. The Multivariable Bessel transform $\mathcal{F}_B(f)$ of $f \in S_*(\mathbb{R}^n)$ vanishes outside a polynomial domain Γ_P , if and only if

$$\overline{\lim_{k \to +\infty}} \|P^k(-\mathcal{L}_\alpha)f(x)\|_{\alpha,p}^{\frac{1}{k}} \le 1, \quad 1 \le p \le +\infty$$
(10.1)

Proof. The theorem has to be proved only for $f \neq 0$. Let q be the conjugate exponent of p.

We see that

$$\mathcal{F}_B(P(-\mathcal{L}_\alpha)f(x)) = P(\lambda_1^2, \lambda_2^2 ..., \lambda_n^2)\mathcal{F}_B(f)(\lambda).$$

Indeed, let $P(x) = \sum_{|\beta| \le N} C_{\beta} x^{\beta}, \ \beta \in \mathbb{N}^n, \quad \beta = (\beta_1, ..., \beta_n).$ We note by $-\mathcal{L}_{\alpha} = (-\ell_{\alpha_1}) \otimes ... \otimes (-\ell_{\alpha_n})$

$$P(-\mathcal{L}_{\alpha})f(x) = \sum_{|\beta| \le N} C_{\beta}(-\mathcal{L}_{\alpha})^{\beta}f(x)$$

$$\mathcal{F}_{B}(P(-\mathcal{L}_{\alpha})f)(\lambda) = \sum_{|\beta| \le N} C_{\beta} \mathcal{F}_{B}((-\mathcal{L}_{\alpha})^{\beta} f)(\lambda)$$
$$= \sum_{|\beta| \le N} C_{\beta} \lambda^{2\beta} \mathcal{F}_{B}(f)(\lambda)$$
$$= P(\lambda_{1}^{2}, ..., \lambda_{n}^{2}) \mathcal{F}_{B}(f)(\lambda).$$

Then

$$\mathcal{F}_B(P^k(-\mathcal{L}_\alpha)f)(\lambda) = P^k(\lambda_1^2, \dots, \lambda_n^2)\mathcal{F}_B(f)(\lambda).$$
(10.2)

i) Let $1 \le p \le 2$.

Suppose that (10.1) is valid.

Applying the Hausdorff-Young inequality

$$\|\mathcal{F}_B P^k(-\mathcal{L}_\alpha) f(\lambda)\|_{\alpha,q} \le C \|P^k(-\mathcal{L}_\alpha) f(\lambda)\|_{\alpha,p}.$$

Then

$$\|P^{k}(\lambda_{1}^{2},...,\lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,q} \leq C\|P^{k}(-\mathcal{L}_{\alpha})f(\lambda)\|_{\alpha,p}$$
$$\overline{\lim_{k \to +\infty}}\|P^{k}(\lambda_{1}^{2},...,\lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,q}^{\frac{1}{k}} \leq 1.$$
(10.3)

Let $\lambda_0 \notin \Gamma_P$, that means $|P(\lambda_{0,1}^2, ..., \lambda_{0,n}^2)| > 1$ then there exists a neighborhood U_{λ_0} of λ_0 with the property $|P(\lambda_1^2, ..., \lambda_n^2)| > \frac{1 + |P(\lambda_{0,1}^2, ..., \lambda_{0,n}^2)|}{2}$ for $\lambda \in U_{\lambda_0}$.

a) Suppose p > 1, then we have

$$1 \geq \overline{\lim_{k \to +\infty}} \|P^{k}(\lambda_{1}^{2}, ..., \lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,q}^{\frac{1}{k}}$$

$$\geq \overline{\lim_{k \to +\infty}} \Big(\int_{U_{\lambda_{0}}} |P^{k}(\lambda_{1}^{2}, ..., \lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)|^{q} d\mu_{\alpha}(\lambda) \Big)^{\frac{1}{qk}}$$

$$\geq \frac{1 + |(P(\lambda_{0,1}^{2}, ..., \lambda_{0,n}^{2})|}{2} \overline{\lim_{k \to +\infty}} \Big(\int_{U_{\lambda_{0}}} |\mathcal{F}_{B}(f)(\lambda)|^{q} d\mu_{\alpha}(\lambda) \Big)^{\frac{1}{qk}}.$$

$$(10.4)$$

107

Because of $\frac{1+|P(\lambda_{0,1}^2,...,\lambda_{0,n}^2)|}{2} > 1$ and the last limit in (10.4) can be either 1 or 0 then

$$\overline{\lim_{k \to +\infty}} \left(\int_{U_{\lambda_0}} |\mathcal{F}_B(f)(\lambda)|^q d\mu_\alpha(\lambda) \right)^{\frac{1}{qk}} = 0.$$

that means $\int_{U_{\lambda_0}} |\mathcal{F}_B(f)(\lambda)|^q d\mu_\alpha(\lambda) = 0.$ Consequently $\lambda_0 \notin \text{supp } \mathcal{F}_B(f)$ and, hence, supp $\mathcal{F}_B(f) \subseteq \Gamma_P.$

b) Assume now that p = 1, then

$$1 \geq \overline{\lim_{k \to +\infty}} \|P^{k}(\lambda_{1}^{2},...,\lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,\infty}^{\frac{1}{k}}$$

$$\geq \overline{\lim_{k \to +\infty}} \sup_{\lambda \in U_{\lambda_{0}}} \exp ess|P(\lambda_{1}^{2},...,\lambda_{n}^{2})|\mathcal{F}_{B}(f)(\lambda)|^{\frac{1}{k}}$$

$$\geq \frac{1+|p(\lambda_{0,1}^{2},...,\lambda_{0,n}^{2})|}{2} \overline{\lim_{k \to +\infty}} \sup_{\lambda \in U_{\lambda_{0}}} \exp ess|\mathcal{F}_{B}(f)(\lambda)|^{\frac{1}{k}}$$
(9.5)

therefore supess_{$\lambda \in U_{\lambda_0}$} $|\mathcal{F}_B(f)(\lambda)| = 0.$

that means $\lambda_0 \notin \text{supp } \mathcal{F}_B(f)$ and hence $\text{supp} \mathcal{F}_B(f) \subseteq \Gamma_P$. Conversely, suppose that now $\text{supp} \mathcal{F}_B(f) \subseteq \Gamma_P$ we have

$$\begin{aligned} \|f\|_{\alpha,p}^{p} &= \int_{\Omega_{n}} (1+|x|^{2})^{-mp} (1+|x|^{2})^{mp} |f(x)|^{p} d\mu_{\alpha}(x) \\ &\leq \|(1+|x|^{2})^{m} f(x)\|_{2,\alpha}^{p} \|(1+|x|^{2})^{-mp}\|_{\frac{2}{2-p},\alpha} \\ &\leq C \|(1+|x|^{2})^{m} f\|_{\alpha,2}^{p} \end{aligned}$$

where the Hölder inequality is been applied then using the Parseval equality we have

$$\begin{split} \|f\|_{\alpha,p}^{p} &\leq c \|\mathcal{F}_{B}((1+|x|^{2})^{m}f)\|_{\alpha,2}^{p} \\ &\leq C \|\mathcal{F}_{B}\Big(\sum_{j=0}^{m} C_{m}^{j}|x|^{2j}f(x))\Big)\|_{2,\alpha}^{p} \\ &= C \|\sum_{j=0}^{m} C_{m}^{j}\mathcal{F}_{B}(|x|^{2j}f(x))\|_{2,\alpha}^{p} \\ &= C \|\mathcal{F}_{B}(f(x)) + \sum_{j=1}^{m} C_{m}^{j}(-1)^{nj}\mathcal{L}_{\alpha}^{j}\mathcal{F}_{B}f(x)\|_{2,\alpha}^{p} \\ &= C \|(I+(-1)^{n}\mathcal{L}_{\alpha})^{m}\mathcal{F}_{B}f(x)\|_{2,\alpha}^{p}. \end{split}$$

Consequently

$$\begin{aligned} \|P^{k}(-\mathcal{L}_{\alpha})f\|_{\alpha,p} &\leq C^{\frac{1}{p}}\|I+(-1)^{n}\mathcal{L}_{\alpha})^{m}\mathcal{F}_{B}(P^{k}(-\mathcal{L}_{\alpha})f)\|_{\alpha,2} \\ &\leq C^{\frac{1}{p}}\|(I+(-1)^{n}\mathcal{L}_{\alpha})^{m}P^{k}(\lambda_{1}^{2},...,\lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,2} \end{aligned}$$

its clear that there exists positives integers N(m) and N'(m) such that

$$(I+(-1)^n\mathcal{L}_{\alpha})^m(P^k(\lambda_1^2,...,\lambda_n^2)\mathcal{F}_B(f)(\lambda)) = k^{N(m)}P^{N'(m)}(\lambda_1^2,...,\lambda_n^2)\phi_k(\lambda).$$

with supp $\phi_k \subset \text{supp } \mathcal{F}_B(f)$, $\|\phi_k\|_{\alpha,2} \leq C_1$, where C_1 independent of k, hence

$$\|P^k(-\mathcal{L}_{\alpha})f\|_{\alpha,p} \le C^{\frac{1}{p}}C_1k^{N(m)}$$

Thus the inequality (10.1) follows.

ii) Let now 2 . $Suppose that <math>\operatorname{supp} \mathcal{F}_B(f) \subset \Gamma_P$. Then $|P(\lambda_1^2, ..., \lambda_n^2)| \leq 1$ on the support of $\mathcal{F}_B(f)$, and therefore, by the Hausdorff-Young inequality we have

$$\begin{aligned} \|P^{k}(-\mathcal{L}_{\alpha}f)\|_{\alpha,p} &\leq C_{2}\|P^{k}(\lambda_{1}^{2},...,\lambda_{n}^{2})\mathcal{F}_{B}(f)(\lambda)\|_{\alpha,q} \\ &\leq C_{2}\|\mathcal{F}_{B}(f)\|_{\alpha,q};, \end{aligned}$$
(10.6)

where C_2 is independent from k. Then

$$\overline{\lim_{k \to +\infty}} \| P^k(-\mathcal{L}_{\alpha}) f \|_{\alpha,p}^{\frac{1}{k}} \le 1$$

conversely, suppose now that (10.6) hold. Since $f \in S_*(\mathbb{R}^n)$ the function fand its derivatives vanish at infinity, therefore, integration by parts gives

$$\int_{\Omega_n} P^k(-\mathcal{L}_\alpha)\overline{f(x)}P^k(-\mathcal{L}_\alpha)f(x)d\mu_\alpha(x) = \int_{\Omega_n} \overline{f(x)}P^{2k}(-\mathcal{L}_\alpha)f(x)d\mu_\alpha(x).$$
(10.7)

Then by Hölder inequality

$$\|P^{k}(-\mathcal{L}_{\alpha})f(x)\|_{\alpha,2}^{2} \leq \|f\|_{\alpha,q}\|P^{2k}(-\mathcal{L}_{\alpha})f(x)\|_{\alpha,p}.$$
 (10.8)

Then

$$\overline{\lim_{k \to +\infty}} \|P^k(-L_\alpha)f(x)\|_{\alpha,2}^{\frac{1}{k}} \le 1.$$
(10.9)

Applying now i) with p = 2 we conclude that $\operatorname{supp} \mathcal{F}_B(f) \subseteq \Gamma_P$.

iii) Let $p = \infty$.

The same proof as ii).

Remark. Theorem 6.1 has been obtained for p = 2 by V.K.Tuan in [5].

11 Open Problem

In [4] Roe proved that if a doubly-infinite sequence $(f_j)_{j\in\mathbb{Z}}$ of functions on \mathbb{R} satisfies

 $\frac{df_j}{dx} = f_{j+1}$ and $|f_j(x)| \leq M$ for all $j = 0, \pm 1, \pm 2, ...$ and $x \in \mathbb{R}$, then $f_0(x) = a \sin(x+b)$ where a and b are real constants. This result was extended to \mathbb{R}^d by Strichartz [5] where $\frac{d}{dx}$ is substituted by the Laplacian on \mathbb{R}^d as follow. **Theorem.** (Strichartz). Let $(f_j)_{j\in\mathbb{Z}}$ be a doubly infinite sequence of measurable functions on \mathbb{R}^d such that for all $j \in \mathbb{Z}$, (i) $||f_j||_{L^{\infty}(\mathbb{R}^d)} \leq C$ for some constant C > 0 and (ii) for some $a > 0, \Delta f_j = af_{j+1}$. Then $\Delta f_0 = -af_0$.

The purpose of the future work is to generalize this theorem. In place of Laplace operator \triangle of \mathbb{R}^d , we shall extended this to multivariable Laplace-Bessel operator l_{α} .

References

- N.B. Andersen, Real Paley-Wiener theorem, Bull. London Math. Soc 34, 2004, 504-508.
- H.H.Bang, A property of infinity differentiable functions, Proc. Amer. Math. Soc 108, 1, 1999, 73-76.
- [3] H. Mejjaoli and K. Trimèche, Spectrum of functions for Dunkl transform on R^d. Frac. Calculus Appl. Anal. 345, No 1, 2008, p.19-38.
- [4] J. Roe, A characterization of the sine function, Math. Proc Comb. Phil. Soc. 87 1980, 69-73.
- [5] R.S. Strichartz, Characterization of eigenfunctions of the Laplacian by boundedness conditions, Trans. Amer. Math. Soc. 338 1993, 971-979.
- [6] K. Trimèche, *Generalized harmonic analysis and wavelet packets*, Gordon and Breach Sciences Publishers, (2001).
- [7] V.K.Tuan, Paley-Wiener type theorems, Frac. cal. App. Anal 2, 1999, 135-143.
- [8] V.K.Tuan, Paley-Wiener transforms for a class of integral transform, J.M.A.A 266, 2002, 200-226.