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Abstract

By making use of the principle of subordination, we introduce
a certain subclass of p−valent analytic functions. Such results
as subordination properties, convolution properties and distortion
theorems are proved.
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1 Introduction

Let H [a, k] be the class of analytic functions of the form:

f (z) = a+ akz
k + ak+1z

k+1 + ... (z ∈ U) .

Also, let A (p, k) denote the class of functions of the form:

f(z) = zp +
∞∑

n=p+k

anz
n (p, k ∈ N = {1, 2, 3, ...}) (1)
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which are analytic in the open unit disk U = {z ∈ C : |z| < 1} . For simplicity,
we write A (p, 1) = A (p) and A (1, 1) = A. If f (z) and g (z) are analytic in
U , we say that f (z) is subordinate to g (z) or g (z) is superordinate to f (z) ,
written as f ≺ g in U or f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function
ω (z), which ( by definition ) is analytic in U with ω (0) = 0 and |ω (z)| < 1
(z ∈ U) such that f(z) = g(ω(z)) (z ∈ U). Futher more, if the function g (z) is
univalent in U , then we have the following equivalence holds (see [8] and [9]):

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For functions f, g ∈ A (p, k) ,where f given by (1) and g is defined by

g(z) = zp +
∞∑

n=p+k

bnz
n (p, k ∈ N) ,

then the Hadamard product (or convolution) f ∗ g of the functions f and g is
defined by

(f ∗ g) (z) = zp +
∞∑

n=p+k

anbnz
n = (g ∗ f) (z).

Upon differentiating both sides of (1) j−times with respect and to z, we have

f (j)(z) = δ (p; j) zp−j +
∞∑

n=p+k

δ (n; j) anz
n−j, (2)

where

δ (p; j) =
p!

(p− j)!
(p > j; p ∈ N; j ∈ N0 = N ∪ {0}) . (3)

For a function f (j) (z) given by (2), Aouf and Seoudy [4] defined the linear
operator Dn

pf
(j) by:

D0
pf

(j)(z) = f (j)(z),

D1
pf

(j)(z) = D
(
f (j)(z)

)
= δ (p; j) zp−j +

∞∑
n=p+k

δ (n; j)

(
n− j
p− j

)
anz

n−j,

D2
pf

(j)(z) = D
(
D1
pf

(j)(z)
)

= δ (p; j) zp−j +
∞∑

n=p+k

δ (n; j)

(
n− j
p− j

)2

ankz
n−j,

and (in general)

Dm
p f

(j)(z) = D(Dm−1
p f (j)(z)) = δ (p; j) zp−j +

∞∑
n=p+k

δ (n; j)

(
n− j
p− j

)m
anz

n−j

(p > j; p,m ∈ N; j ∈ N0; z ∈ U) . (4)
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From (4), we can easily deduce that

z
(
Dm
p f

(j)(z)
)′

= (p− j)Dm+1
p f (j)(z) (p > j; p ∈ N;m, j ∈ N0; z ∈ U) . (5)

The operator Dm
p f

(j)(z) (p > j, p ∈ N, n, j ∈ N0) was introduced and studied
by Aouf [1, 2] where

f(z) = zp −
∞∑

n=p+1

anz
n (an ≥ 0) .

We note that:

(i) Dn
pf

(0)(z) = Dm
p f(z) was introduced and studied by Kamali and Orhan

[5] and Aouf and Mostafa [3];

(ii) Dm
1 f

(0)(z) = Dmf(z) was introduced by Sălăgean [10].

By making use of the linear operator Dm
p f

(j)(z) and the above-mentioned
principle of subordination between analytic functions, we now introduce the
following subclass of p−valent non-Bazilevic̃ functions.

Definition 1. A function f ∈ A (p, k) is said to be in the class Bj,µp (m;A,B, λ)
if it satisfies the following subordination condition:

(1− λ)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ 1 + Az

1 +Bz
(6)

(p, k ∈ N;λ ∈ C; 0 < µ < 1; −1 ≤ B ≤ 1, A 6= B, A ∈ R) .

In the present paper, we aim at proving such results as subordination and
superordination properties, convolution properties, distortion theorems and
inequality properties of the class Bj,µp (m;A,B, λ).

2 Main results

In order to establish our main results, we need the following lemmas.
Lemma 1 [8]. Let the function h (z) be analytic and convex (univalent)

in U with h (0) = 1. Suppose also that the function g (z) given by

g (z) = 1 + ckz
k + ck+1z

k+1 + ... (7)

is analytic in U. If

g (z) +
zg
′
(z)

γ
≺ h (z) (< (γ) > 0; γ 6= 0) ,
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then

g (z) ≺ q (z) =
γ

k
z−

γ
k

∫ z

0

h (t) t
γ
k
−1 dt ≺ h (z) ,

and q (z) is the best dominant.
Lemma 2 [6]. Let F be analytic and convex in U . If

f, g ∈ A and f, g ≺ F

then
γf + (1− γ) g ≺ F (0 ≤ γ ≤ 1) .

Unless otherwise mentioned, we assume throughout this paper that µ > 0,
−1 ≤ B ≤ 1, A 6= B, A ∈ R, p, k ∈ N, δ (p; j) is given by (3) and all powers are
understood as principle values. We begin by presenting our first subordination
property given by Theorem 1 below.

Theorem 1. Let f (z) ∈ Bj,µp (m;A,B, λ) with < (λ) > 0. Then(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ q (z) =
(p− j)µ

λk

∫ 1

0

1 + Azu

1 +Bzu
u

(p−j)µ
λk

−1du ≺ 1 + Az

1 +Bz
, (8)

and q (z) is the best dominant.
Proof. Define the function g (z) by

g (z) =

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

(z ∈ U) . (9)

Then the function g(z) is of the form (7) and analytic in U . Differentiating
(9) with respect to z and using the identity (5), we get

(1− λ)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

= g (z) +
λzg

′
(z)

µ (p− j)
.

(10)
Since f ∈ Bj,µp (m;A,B, λ), we have

g (z) +
λzg

′
(z)

µ (p− j)
≺ 1 + Az

1 +Bz
.

Applying Lemma 1 with γ = (p−j)µ
λ

, we get(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ q (z) =
(p− j)µ

λk
z

(p−j)µ
λk

−1
∫ z

0

1 + At

1 +Bt
t

(p−j)µ
λk

−1dt

=
(p− j)µ

λk

∫ 1

0

1 + Azu

1 +Bzu
u

(p−j)µ
λk

−1du ≺ 1 + Az

1 +Bz
, (11)
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and q (z) is the best dominant. The proof of Theorem 1 is thus completed.

Theorem 2. If λ > 0 and f ∈ Bj,µp (m; 1− 2ρ,−1, 0) (0 ≤ ρ < 1). Then
f ∈ Bj,µp (m; 1− 2ρ,−1, λ) for |z| < R, where

R =

√( λk

(p− j)µ

)2

+ 1− λk

(p− j)µ

 1
k

. (12)

The bound R is the best possible.
Proof. We begin by writing(

Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

= ρ+ (1− ρ) g (z) (z ∈ U ; 0 ≤ ρ < 1) . (13)

Then, clearly, the function g (z) is of the form (7), is analytic and has a positive
real part in U . Differentiating (13) with respect to z and using the identity
(5), we get

1

1− ρ

{
(1− λ)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

− ρ

}

= g (z) +
λzg

′
(z)

(p− j)µ
. (14)

By making use of the following well-known estimate (see [7]):∣∣zg′ (z)
∣∣

<{g (z)}
≤ 2krk

1− r2k
(|z| = r < 1)

in (14), we obtain that

<

(
1

1− ρ

{
(1− λ)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

− ρ

})

≥ <{g (z)}
(

1− 2λkrk

(p− j)µ (1− r2k)

)
. (15)

It is seen that the right-hand side of (15) is positive, provided that r < R,
where R is given by (12).

In order to show that the bound R is the best possible, we consider the
function f ∈ A (p, k) defined by(

Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

= ρ+ (1− ρ)
1 + zk

1− zk
(z ∈ U ; 0 ≤ ρ < 1) .
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Noting that

1

1− ρ

{
(1− λ)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

− ρ

}

=
1 + zk

1− zk
+

2λkzk

(p− j)µ (1− zk)2
= 0, (16)

for |z| = R, we conclude that the bound is the best possible. Theorem 2 is
thus proved.

Theorem 3. Let f ∈ Bj,µp (m;A,B, λ) with < (λ) > 0. Then

f (j) (z) = δ (p; j)

(
zp−j

(
1 + Aω (z)

1 +Bω (z)

) 1
µ

)
∗

zp−j +
∞∑

n=p+k

(
p−j
n−j

)m
δ (n; j)

zn−j

 ,

(17)
where ω (z) is analytic function with ω (0) = 0 and |ω (z)| < 1 (z ∈ U) .

Proof. Suppose that f ∈ Bj,µp (m;A,B, λ) with < (λ) > 0. It follows from
(8) that (

Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

=
1 + Aω (z)

1 +Bω (z)
, (18)

where ω (z) is analytic function with ω (0) = 0 and |ω (z)| < 1 (z ∈ U). By
virtue of (18), we easily find that

Dm
p f

(j)(z) = δ (p; j) zp−j
(

1 + Aω (z)

1 +Bω (z)

) 1
µ

. (19)

Combining (4) and (19), we have(
δ (p; j) zp−j +

∞∑
n=p+k

δ (n; j)

(
n− j
p− j

)m
zn−j

)
∗ f (j) (z)

= δ (p; j) zp−j
(

1 + Aω (z)

1 +Bω (z)

) 1
µ

. (20)

The assertion (17) of Theorem 3 can now easily be derived from (20).

Theorem 4. Let f ∈ Bj,µp (m;A,B, λ) with < (λ) > 0. Then

1
zp−j

[(
1 +Beiθ

) 1
µ

(
δ (p; j) zp−j +

∑∞
n=p+k δ (n; j)

(
n−j
p−j

)m
zn−j

)
∗ f (j) (z)

−δ (p; j) zp−j
(
1 + Aeiθ

) 1
µ

]
6= 0 (z ∈ U ; 0 < θ < 2π) .

(21)
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Proof. Suppose that f ∈ Bj,µp (m;A,B, λ) with < (λ) > 0. We know that
(8) holds true, which implies that(

Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

6= 1 + Aeiθ

1 +Beiθ
(z ∈ U ; 0 < θ < 2π) . (22)

It is easy to see that the condition (22) can be written as follows:

1

zp−j

[
Dm
p f

(j)(z)
(
1 +Beiθ

) 1
µ − δ (p; j) zp−j

(
1 + Aeiθ

) 1
µ

]
6= 0 (0 < θ < 2π) .

(23)
Combining (4) and (23), we easily get the convolution property (21) asserted
by Theorem 4.

Theorem 5. Let λ2 ≥ λ1 ≥ 0 and −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1.Then

Bj,µp (m;A2, B2, λ2) ⊂ Bj,µp (m;A1, B1, λ1) . (24)

Proof. Suppose that f ∈ Bj,µp (m;A2, B2, λ2). We know that

(1− λ2)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ2
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ 1 + A2z

1 +B2z
.

Since −1 ≤ B1 ≤ B2 < A2 ≤ A1 ≤ 1, we easily find that

(1− λ2)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ2
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ 1 + A2z

1 +B2z
≺ 1 + A1z

1 +B1z
, (25)

that is f ∈ Bj,µp (m;A1, B1, λ2). Thus the assertion (24) holds for λ2 = λ1 ≥ 0.
If λ2 > λ1 ≥ 0, by Theorem 1 and (25), we know that f ∈ Bj,µp (m;A1, B1, 0),
that is, (

Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ 1 + A1z

1 +B1z
, (26)

At the same time, we have

(1− λ1)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ1
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

=

(
1− λ1

λ2

)(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ
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+
λ1
λ2

(
(1− λ2)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ2
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ)
. (27)

Moreover, since 0 ≤ λ1
λ2

< 1, and the function 1+A1z
1+B1z

(−1 ≤ B1 < A1 ≤ 1) is
analytic and convex in U . Combining (25)-(27) and Lemma 2, we find that

(1− λ1)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

+ λ1
Dm+1
p f (j)(z)

Dm
p f

(j)(z)

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

≺ 1 + A1z

1 +B1z
,

that is f ∈ Bj,µp (m;A1, B1, λ1), which implies that the assertion (24) of Theo-
rem 5 holds.

Theorem 6. Let f ∈ Bj,µp (m;A,B, λ) with λ > 0 and −1 ≤ B < A ≤ 1.
Then

(p− j)µ
λk

∫ 1

0

1− Au
1−Bu

u
(p−j)µ
λk

−1du < <

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

<
(p− j)µ

λk

∫ 1

0

1 + Au

1 +Bu
u

(p−j)µ
λk

−1du. (28)

The extremal function of (28) is defined by

Dm
p F

(j)(z) = δ (p; j) zp−j
(

(p− j)µ
λk

∫ 1

0

1 + Azu

1 +Bzu
u

(p−j)µ
λk

−1du

) 1
µ

. (29)

Proof. Let f ∈ Bj,µp (m;A,B, λ) with λ > 0. From Theorem 1, we know
that (8) holds, which implies that

<

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

< sup
z∈U
<
{

(p− j)µ
λk

∫ 1

0

1 + Azu

1 +Bzu
u

(p−j)µ
λk

−1du

}
≤ (p− j)µ

λk

∫ 1

0

sup
z∈U
<
(

1 + Azu

1 +Bzu

)
u

(p−j)µ
λk

−1du

<
(p− j)µ

λk

∫ 1

0

1 + Au

1 +Bu
u

(p−j)µ
λk

−1du, (30)

and

<

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ

> inf
z∈U
<
{

(p− j)µ
λk

∫ 1

0

1 + Azu

1 +Bzu
u

(p−j)µ
λk

−1du

}
≥ (p− j)µ

λk

∫ 1

0

inf
z∈U
<
(

1 + Azu

1 +Bzu

)
u

(p−j)µ
λk

−1du

>
(p− j)µ

λk

∫ 1

0

1 + Au

1 +Bu
u

(p−j)µ
λk

−1du. (31)
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Combining (30) and (31), we get (28). By noting that the function Dm
p F

(j)(z)
defined by (29) belongs to the class Bj,µp (m;A,B, λ), we obtain that equality
(28) is sharp. The proof of Theorem 6 is evidently completed.

In view of Theorem 6, we easily derive the following distortion theorems
for the class Bj,µp (m;A,B, λ).

Corollary 1. Let f ∈ Bj,µp (m;A,B, λ) with λ > 0 and −1 ≤ B < A ≤ 1.
Then for |z| = r < 1, we have

δ (p; j) rp−j
(

(p− j)µ
λk

∫ 1

0

1− Aur
1−Bur

u
(p−j)µ
λk

−1du

) 1
µ

<
∣∣Dm

p f
(j)(z)

∣∣
< δ (p; j) rp−j

(
(p− j)µ

λk

∫ 1

0

1 + Aur

1 +Bur
u

(p−j)µ
λk

−1du

) 1
µ

. (32)

The extremal function of (32) is defined by (29).

By noting that

(< (υ))
1
2 ≤ <

(
υ

1
2

)
≤ |υ|

1
2 (υ ∈ C;< (υ) ≥ 0) .

Form Theorem 6 and Corollary 1, we easily get the following results.

Corollary 2. Let f ∈ Bj,µp (m;A,B, λ) with λ > 0 and −1 ≤ B < A ≤ 1.
Then

(
(p− j)µ

λk

∫ 1

0

1− Au
1−Bu

u
(p−j)µ
λk

−1du

) 1
2

< <

(
Dm
p f

(j)(z)

δ (p; j) zp−j

)µ
2

<

(
(p− j)µ

λk

∫ 1

0

1 + Au

1 +Bu
u

(p−j)µ
λk

−1du

) 1
2

. (33)

The extremal function of (33) is defined by (29).

Remark. Taking m = 0 in the above results, we obtain the corresponding
results for the function f (j) (z) .

3 Open Problem

Study and calculate Fekete-Sezgö problems and other properties for functions
belonging to the class Bj,µp (m;A,B, λ).
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