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Abstract

By making use of the principle of subordination, we introduce
a certain subclass of p—valent analytic functions. Such results
as subordination properties, convolution properties and distortion
theorems are proved.
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1 Introduction

Let H [a, k] be the class of analytic functions of the form:
f()=a+aq+a 2+ (€ U).
Also, let A (p, k) denote the class of functions of the form:

f(z) =2 + Z az"  (p,k e N=1{1,2,3,..}) (1)

n=p+k
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which are analytic in the open unit disk U = {z € C : |z| < 1} . For simplicity,
we write A (p,1) = A(p) and A(1,1) = A. If f (2) and g (z) are analytic in
U, we say that f(z) is subordinate to g (z) or g (z) is superordinate to f (z),
written as f < gin U or f(z) < g(z) (2 € U), if there exists a Schwarz function
w (z), which ( by definition ) is analytic in U with w (0) = 0 and |w (2)| < 1
(z € U) such that f(z) = g(w(2)) (¢ € U). Futher more, if the function g (z) is
univalent in U, then we have the following equivalence holds (see [8] and [9]):

f(z) < g(z) <= f(0) = g(0) and [f(U) Cg(U).

For functions f,g € A (p, k) ,where f given by (1) and g is defined by

then the Hadamard product (or convolution) f % g of the functions f and g is
defined by

(Jrg)(2) =2+ 3 aubaz" = (g% /) (2).

n=p+k

Upon differentiating both sides of (1) j—times with respect and to z, we have

fOM) =6 (i) 27+ > 6(n;5)anz"", (2)
n=p+k
where '
. y . .
5(p;y)=m (p>jipeN;jeNy=NU{0}). (3)

For a function £ (z) given by (2), Aouf and Seoudy [4] defined the linear
operator D;}f(j) by:

DOy = fO(2),
D9 = D(OE) =5+ Y s (A2) aer

et p—J
o) -\ 2
) . . i . n—J n—j
DpfV(z) = D(Dyf9(=) =6 (pij) =" + D 8(nij) (E) S
n=p+k

and (in general)

. _ . ) . > ) n—i\" i

Dyf9z) = DDy f9z) =6(pj)2 7+ Y 0(n; ) (p_;) 12"
n=p+k

(p>j;pmeN;jeNyzel). (4)
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From (4), we can easily deduce that
(D f92)) =(p—) Dyt f9z) (p>jipeN;ym,jeNgzeU). (5)

The operator D;”f(j)(z) (p>j,p € Nyn,j € Ny) was introduced and studied
by Aouf [1, 2] where

f(z) =2 — Z a,z"  (a, >0).

n=p+1

We note that:

(i) Drf©(z) = D f(z) was introduced and studied by Kamali and Orhan
[5] and Aouf and Mostafa [3];

(ii) D fO(2) = D™f(z) was introduced by Salagean [10].

By making use of the linear operator D' f9)(z) and the above-mentioned
principle of subordination between analytic functions, we now introduce the
following subclass of p—valent non-Bazilevi¢c functions.

Definition 1. A function f € A (p, k) is said to be in the class BJ# (m; A, B, \)
if it satisfies the following subordination condition:

D,Tf(j)(z) g D;nﬂf(j)(z) D;nf(j)(z) f LAl
(1_A)<5(p5j)zpj> o D fUl(z) \ 6 (p;j)2#~3 “11B:

(p,keN; NeC; 0<pu<l;, -1<B<1, A#B, A€eR).

In the present paper, we aim at proving such results as subordination and
superordination properties, convolution properties, distortion theorems and
inequality properties of the class Bg’“ (m; A, B, \).

2 Main results

In order to establish our main results, we need the following lemmas.
Lemma 1 [8]. Let the function h(z) be analytic and conver (univalent)
in U with h(0) = 1. Suppose also that the function g (z) given by

g(2) =1+ 2" + 1 25 4 (7)

s analytic in U. If

<h(z) R()>07#0),
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then

9(x) =< q(z) = 1=~

=2

/zh(t)tl—l dt < h(z),

and q(z) is the best dominant.
Lemma 2 [6]. Let § be analytic and convex in U. If

f,ge A and  f,g<§

then
YVf+1=7g=<F (0<y<I).

Unless otherwise mentioned, we assume throughout this paper that p > 0,
—1<B<1,A#B,AeR, pkeN,j(p;j)isgiven by (3) and all powers are
understood as principle values. We begin by presenting our first subordination
property given by Theorem 1 below.

Theorem 1. Let f(z) € BJ* (m; A, B, \) with ®()\) > 0. Then

Dmf(j)(z) g (p—Jj)u "4+ Azu woin 1+ Az
p—A — 771d
(5(p;j)ZP‘J <4() Ak /o 1+ Bzu" Y1y Bz (8)

and q(z) is the best dominant.
Proof. Define the function ¢ (z) by

m @) () \ "
9(2) = (%) cev). )

Then the function g(z) is of the form (7) and analytic in U . Differentiating
(9) with respect to z and using the identity (5), we get

(- (%) A (Wﬂ”(z)) s M)

5 (p;j) 2P~ DpfOl(z) \ 0 (p;j) 22 pp—J)
(10)
Since f € B)#* (m; A, B, \), we have
\zg (2 1+ Az
g(z)+ 9 ) .
plp—j) 1+Bz
Applying Lemma 1 with v = @, we get
D™ () g -9 P—J)K 1 At P—J)K
i =)\ q(z):(p .])NZ(M)l/ AL oy
d(p;j)zp= Ak o 1+ Bt
(p—7j)u /1 1+ Azu  wsm_, 1+ Az
d 1
Ak 0 1+ Bzu"' u<1+Bz’ (11)
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and ¢ (z) is the best dominant. The proof of Theorem 1 is thus completed.

Theorem 2. If A >0 and f € BJ* (m;1—2p,—1,0) (0<p<1). Then
fe B (m;1—2p,—1,)) for |z| < R, where

Mo \? Mk
= \/((p—j)u) T (12)

The bound R is the best possible.
Proof. We begin by writing
( D fO(z)

6 (pyg) 2r=7

=

> =p+(1—-p)g(z) (€U;0<p<1). (13)

Then, clearly, the function g (2) is of the form (7), is analytic and has a positive
real part in U. Differentiating (13) with respect to z and using the identity
(5), we get

1 D@z \"  DmrfO(z) (D po)(z) “_
0 () Vs (fes) 1)
Azg (2)
9+ (p—d)w

(14)

By making use of the following well-known estimate (see [7]):

PR

in (14), we obtain that

1 D fO)(2) a D () D fa)(z) #
R <1Tp {(1 A (5(p;j) Z“) A Dpo) (Mp?j) ij) _p}>
2\krF
> R{g(2)} (1 - p—j)uQ _T2k)) :

It is seen that the right-hand side of (15) is positive, provided that r < R,
where R is given by (12).

In order to show that the bound R is the best possible, we consider the
function f € A(p, k) defined by

<W :P+(1—P)1_2k (zeU;0<p<1).

(15)
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Noting that

1 DM ) (2) a DO (2) [ Dm U (2) K

Tp{“‘” <5<Z;j>zw> e (5(Z;j>zﬂ> B
_1+zk+ 2AkzF
TTF -y

for |z| = R, we conclude that the bound is the best possible. Theorem 2 is
thus proved.

=0, (16)

Theorem 3. Let f € BJ* (m; A, B, \) with ® (X\) > 0. Then

FD(2) =8 (p; §) (ij (ig—zgz)’l‘) w | 227 4 Z ( > ’

n= p—|—k
(17)

where w (z) is analytic function with w(0) =0 and |w(2)| <1 (z € U).
Proof. Suppose that f € BJ* (m; A, B, \) with ® (A) > 0. It follows from

(8) that
Drfi(z) \" 1+ Aw(2)
(5(]0;]') zp—j> 1+ Bw(z)’ (18)

where w (z) is analytic function with w (0) = 0 and |w(2)] < 1 (2 € U). By
virtue of (18), we easily find that

‘ 1+ A p
Dy fO(z) = 6 (p; ) 27 (—1 e E;) . (19)
Combining (4) and (19), we have

(5(]) §) 2P+ Z 5 (n;5) (Z_j)mz”_j>*f(j)(z)

n=p+k

5 (1) (20)

The assertion (17) of Theorem 3 can now easily be derived from (20).

Theorem 4. Let f € B# (m; A, B, \) with R (\) > 0. Then

[ Be) (3 i)+ 300 (i) (52) 2 ) ) (2)
—0 (p;§) 2P~ (14 Ae)» }#O (2€U; 0<0<2m).

(21)
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Proof. Suppose that f € BJ#* (m; A, B,\) with & (A) > 0. We know that
(8) holds true, which implies that

D7 fU) () g At

It is easy to see that the condition (22) can be written as follows:

1
Zpij

, N , L1
[Dgf<ﬂ>(z) (14 Be®) " — 5 (p;j) 27 (1 + Ae') ] £0 (0<6<2r).
(23)
Combining (4) and (23), we easily get the convolution property (21) asserted
by Theorem 4.
Theorem 5. Let )\2 > /\1 >0 and —1 < B < By < A2 < A1 < 1.Then
B2# (m; Ag, By, Ag) C BY* (m; Ay, By, \y) . (24)
Proof. Suppose that f € BJ* (m; Az, Ba, As). We know that

D f)(2) H DI fO(z) ( DI fO(z) 1+ A
(= 2) <5<p;j> > AT <6<p;j> ) “ 1B

Since —1 < By < By < Ay < A; <1, we easily find that

- ) ( D;nf(j)(z)> 0 DL () (D;nf(j)(z) )

6 (pyg)2P=7 > D fO)(z) \ 0 (p;j) 2

1+AQZ < 1+A12
1+BQZ ]."‘BlZ’

that is f € BJ# (m; Ay, By, A). Thus the assertion (24) holds for Ay = A; > 0.
If Ay > Ay >0, by Theorem 1 and (25), we know that f € BJ* (m; Ay, By,0),

that is,
—— p
(Dp f(J)(z)> - 1+ Az

(25)

: 26
6 (p;j)2r—i 14+ Bz’ (26)

At the same time, we have

Dy " DptOe) ((Dpioe) "
1=4) <W> NI EIE) (6<p;j>zp-f)
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A Drfz)\" D O(z) [ DR fO(z) "

Moreover, since 0 < i—; < 1, and the function % (—1< By <A <1)is

analytic and convex in U. Combining (25)-(27) and Lemma 2, we find that

DI fO)(2) a DD (2) (D fU)(z) Y+ Az
(1_A1)<5(p;j)zp‘j o DpfOG) \6wi)=ri) 1+ Bz

that is f € BJ* (m; Ay, By, A1), which implies that the assertion (24) of Theo-
rem 5 holds.

Theorem 6. Let f € B)# (m; A, B,\) with A >0 and —1< B <A< 1.

Then " p
. 1 y m £ (j
Ak o 1—DBu d(p;j)zp=
(p—J)p /1 1+ Ay @-iw_y
du. 28
ST ), 1yBat ™ (28)

The extremal function of (28) is defined by

1
- ; —J "1+ Az2u - »
DmF(J) =5 (p: i) 2P (p j)ﬂ/ 71d . 9
p F(2) = 6(psj) 2 ( W ) TyBamt T (29)

Proof. Let f € Bg’“ (m; A, B, \) with A > 0. From Theorem 1, we know
that (8) holds, which implies that

Dm ) g - ! P—J)K
3%< b f (2)> _ Supg%{(p J)M/ 1+Azuum_1du}
0

6 (p; g)zp=i zeU Ak 1+ Bzu

(p—7)p /1 1+ Azu =4
—_— R d
Ak 0 2161[1]) 1+ Bzu o "

-9 ! 1 A P—JK
< (p j)ﬁb/ AU u “Ldu, (30)
0

IA

Ak 1+ Bu

z€U Ak 1+ Bzu
(p—7J)u /1 _ 1+ Azu (p=idu 4
> M J/P e
- Ak 0 ;glff R 1+ Bzu w A du

(p—j),u/ll—l—Au (p=idu 4
du. 31
- T JyigBat ™ (31)

pDm () a — 1 p—ip
é}%(—pf (Z)> > infé)%{(p 9)“/ HAZ“uU,Jldu}
0
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Combining (30) and (31), we get (28). By noting that the function D* FU)(z)
defined by (29) belongs to the class BI{’“ (m; A, B, \), we obtain that equality
(28) is sharp. The proof of Theorem 6 is evidently completed.

In view of Theorem 6, we easily derive the following distortion theorems
for the class BJ* (m; A, B, \).

Corollary 1. Let f € BJ* (m; A, B,\) with A >0 and -1 < B <A< 1,
Then for |z| =r < 1, we have

|=

. -9 1 1— A P—=J)K " ;
e e ) R =G

Ak 1 — Bur
1
] iy (p —j),u /1 1+ Aur (e=iu _q "
S (v p—j d . 2
< 0mg)r < » Jo i4Bawr ™ (32)

The extremal function of (32) is defined by (29).
By noting that
R@)E<R(vF) <P} (WECR@)>0).

Form Theorem 6 and Corollary 1, we easily get the following results.
Corollary 2. Let f € BJ* (m; A, B,\) with A >0 and -1 < B <A<,

Then
P 1= Au : D (2) \ ¢
(p J)M/ w, e, N [ DR0E)
Ak o 1—Bu d(p;j) 2P~

-9 11 A P—JjK %
(e [ Lo ey, w
0

Mk 14+ Bu

The extremal function of (33) is defined by (29).

Remark. Taking m = 0 in the above results, we obtain the corresponding
results for the function £ (2).

3 Open Problem

Study and calculate Fekete-Sezgo problems and other properties for functions
belonging to the class Bg’“ (m; A, B, \).
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