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Abstract

In this paper, we introduce a new class of analytic p-valent functions with
negative coefficients defined in the open unit disc by using Catag operator
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1 Introduction

Let S, denote the class of functions of the form
f(Z):Zp—i-Zanz" (p<k; pkeN={1,2,..}), (1.1)
n==k

which are analytic and p-valent in the open unit disc U = {2 :| z |< 1}.
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A function f belonging to the class .S, is said to be p-valent starlike of order
a in U if and only if

+F () N
Re{f<z)}>oz 0<a<p; zel). (1.2)

Also a function f belonging to the class S, is said to be p-valent convex of
order « in U if and only if

f ”(2)}

Re<1+ >a 0<a<p, zeU). 1.3
el 80 ) (1.3
We denote by Sy (a) the class of all functions in S, which are p-valent starlike
of order « in U and by K, («) the class of all functions in S, which are p-valent
convex of order a in U. We note that Sy = Sy (0), S* (a) = 57 (o), K, =
K,(0), K (a) = K; (o), and

2f ()

f(z) € Ky (o) <= »

€ 5: (a) (1.4)

Let f € S, be given by (1.1) and g € S, given by
g(z)= 2"+ ibnz”. (1.5)
n=k
We define the Hadmard product (or convolution) of f and g by
(f*9)(2) =Zp+i@nbnzn = (g% f)(2) . (1.6)
n=k

For positive real parameters (A > 0, £ >0, p € N, m € Ny = NU{0}), Catag[3]
defined the linear operator I, (A, £) : S, — S, by:

100 £(2) = £(2)

LAOf(z)= LN f(2) = (1= N) f(2) + gapar (°f(2 )

oo
— P pHl+A(n—p) n.
=z +Zk< =, an2";
=

200 f(2) = B, (0 0) (1, (A 0) f(2))
_Zp+z<p+é4;\; p)) 42"

and (in general)

10 £(2) =1, (00 (I (0,0 £(2))

=P+ Z oy (A €) an2™, (1.7)
n==k
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where

m _(ptl+A(n—p)\"

oy (A 0) = ( o > . (1.8)
It is known that the operator generalizes many other operators sach as:
(1) I (X, 0) f (2) = Dy (A) f (2) (see El-Ashwah and Aouf [6] );
(2) I (1,0) f (2) = D] f (2) (see Kamali and Orhan [8] Aouf and Mostafa [2]);
(3) I1 (/\7 0) f(z) =1I™(\Y) f (2) (see Catag et al.[4]);
(4) 17 (1,0) f (2) = I} f (2) (see Cho and Srivastava [5]) ;
(5) 17" (1,1) f (2) = I"™f (2) (see Uralgaddi and Somanatha [13]);
(6) I7" (X, 0) f (2) = DY f (2) (see AI-Oboudi [1]);
(7) I (1,0) f (2) = D™ f (2) (see Salagean [11]).
For O<5<1 <¢E<1,0< ’y £LA>0,0>0,pe Nym e Ny and,
f €S, we define the class SJ* (A, €,, B,€) by

(0 f(2)

N IC I

< pB. (1.9)

For m =0,k =p+1,p € Nin (1.9), the class S;* (A, £,7, 8,§) reduces to the
class S) (A, 0,7, B,&) = S) (7, B, &) (see Kulkarni et al. [10]).

Let T, denote the subclass of S, consisting of functions of the form

z) = 2P — Zanz" , an > 0;z€U. (1.10)

Further, we define the class T)" (A, 4,7, 8,§) by

TIT()‘7€77767§):S;)n()\7€’,y’5’€)mT

We note that:
(1) Form = 0,in (1.9) , the class T)" (A, £, 7, 3, §) reduces to the class T:L? MOy, B,E) =

Tp (77&75)7

ff(<)) F
T RS

(0<y<5 0<p<1,3<€<1,2€U)}
which for p = 1 reduces to T (v, 8, &) studied by Kulkarni [9];
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(2) For £ = 0,1in (1.9) , the class " (A, £, 7, 8, §) reduces to the class 73" ([\, 0] , v, 8,€) =
(A, B,€)
' 2 (Dt ()
D;’?Af (2)
(omf2) ] [zonf)
* [D—m 7] [D—m ’

-Pp

T (A7, 8,8) = feTy: < B,

\
1
<0§7<§,0<ﬂ§1,§§§§1,)\20,p€N7m€NO,ZEU> =

which for p = 1 reduces to DY (v, 3,€) studied by Juma and Kulkarni [7];
(3) For £ = 0,A =1, in (1.9), the class T;" (A, £,, 3,&) reduces to the class

T ([1,0],7,8,8) =T, (v, 58,),

' (0pre)
e | DI ()
P (’7a57§)_<f€Tp / / </Ba
RECTE RN ECTE
\ Dy (2) Dy (2)

(0<y<§ 0<B<L3<E<ImeN,peNzel)}
(4) For p = 1in (1.9) the class T;" (A, £, 7, 8, §) reduces to the class T™ (A, £,7, 3,§)

ier 0.0/ ) -5

2  Coefficient Inequality

Unless otherwise mentioned, we shall assume in the reminder of this paper that
0<B<1 <<, 0<y<E XA>0,(>0,p<k,n>k m>0,z€U,
and ¢}, (A, £) is defined by (1.8).

Theorem 1. Let the function f be defined by (1.10). Then f is in the
class T (A, £, 7, B, &) if and only if

(e 9]

[(n=p) (1= B) +28¢ (n— )]y, (A, €) an <265 (p =) - (2.1)
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Proof. Assume that the inequality (2.1) holds true, we find from (1.10) that
IO () =i 00 £ () |82 I 0 @) =m0 £ ()]

= {z (100 F(2)] = pI (A 0) f (z)}\
(n—7) o'y (A 0) anz"]

e}

Z o (A 0) anz"

=k

NE

—B2¢ [(p—’v)zp—

Il
=

n

o0

—i—Zn— SO0 ay2"

[(n—=p)+26B(n—7)—B(n—p)e, (NE)an =28 (p—)

NE

3
I
=

[(n—p) (1= B)+ 285 (n—)]cp, (A 4) an — 2B (p—7) < 0.

M8

S
Il
=

Hence, by the maximum modulus theorem, we have f € T)" (A, £,7, 3,§) .
Conversely, let f € T (A, £,7,3,&) . Then

Im (M0 v . 1™ (A0 ’ <0
2 [z(p (A0 f(2)) _7] - [z(p (A0 f(2)) _p]

L (A 0) f(2)

that is, that

> (n = p)ely (0 a,z"
oo — = < 0.
’25 [(p— v) 2P — ;k (n —7) ar, (A0 anz”} + ;k (n —p) cr, (A L) anz"
(2.2)

Now since Re f(z) < | f(z)] for all z, we have



On a New Class of p-Valent Functions 19

(n —p) e, (ML) apz"
Re — — < B.
28 |(p—7) 2 — Zk (n —y)er, (A 0) anz™| + Zk (n —p)er, (A L) anz"

(2.3)

2(Im(\0) f(2))
Im (N 0) f(2)

upon clearing the denominator in (2.3) and letting z — 1~ through real values,
we have

Choose values of z on the real axis so that is real. Then

S —p)en (A0 a,

00 = 0 S ﬁ
26[0-) - £ 0 =D, (0w + 0 -pa, 00,
That is
(=P 1= 9)+ 28 (=) ey MO 2B -7 (24

This gives the required condition.
Corollary 1. Let the function f defined by (1.10) be in the class T, (A, 4,7, 8,€) ,
then we have

W < 266 (p — )
" n—p) (1= B)+ 285 (n—)] ar, (ML)

The result is sharp for the function f given by

268 (p —7) B
[(n—p) (1= B)+285(n—7)] ar, (ML)

(n>k). (2.5)

f(z) =2 =

" (n>k). (26)

3 Growth and Distortion Theorems

Theorem 2. Let the function f defined by (1.10) be in the class 77" (X, £, 7, 3,€) .
Then for |z| =7 < 1, we have

268 (p — ) k

N = = = T B) 2B G20 o D)

(3.1)
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and

268 (p— ) -k
[(k—p) (1 =8)+288 (k=) ¢, (A6

The equalities in (3.1) and (3.2) are attained for the function f given by
2668 (p—1) k

[f(2)] <7+ (3-2)

fO=" " m—ya—presc-mang Y
at z =7 and z = re!"*I7 (n > k) |
Proof. Since for n > k,
[(k—p) (1= B8)+28E(k—7)] ¢y (MO an
<> ln=p) (1= B)+28¢(n— )]y, (A a, <26B8(p—7),
n=k
then
- 268 (p— )
I I Fer (e ey pws R
From (1.10) and (3.4), we have
p_Tkooa Tp_ 25/8(1)_7) T'k
P12 07— o 20 = G e ] o D)
and
268 (p —7) K

FE <45 a, <0+

n=~k

[(k—p) (L —=B)+ 286 (k—7)] &t (L 0)

This completes the proof of Theorem 2.
Theorem 3. Let the function f defined by (1.10) be in the class T;" (A, £, «, 3, ) .
Then for |z| = r < 1,we have

2kEB (p — ) k—1

2P T = ) (L= B) + 25€ (k= )] o, 0)

e (3.5)

and
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2kE6 (p ~ ) o
[k =p) (L= B) + 286 (k=) e, A D)

The equalities in (3.5) and (3.6) are attained for the function f given by (3.3).
Proof. For n > k,

) f/(z)’ <oty (3.6)

1@ <prt =Y na, (3.7)
n=~k

and by Theorem 1, we have

3 28 (p = )
%nang [(k—p) (1 —B)+28(k—7)] o 0 (3.8)
From (3.7) and (3.8), we have
’f/(z)‘ > pret—pht inan > prP1— 2kEB (p — ) 1

[(k —p) (1= B) + 2B (k —7)] ¢, (A 0)

n=~k

and

2kE6 (p ) o
(k=) (L= B) + 286 (k=] e, A D)

’f/(Z)‘ < pr ety na, < prii+
n=~k

This completes the proof of Theorem 3.

4 Radii of Starlikeness, Convexity and Close-
to-Convexity.

In this section we obtain the radii of p-valent starlikeness, p-valent convexity
and p-valent close-to-convexity for functions in the class )" (A, £,7, 5,§) .
Theorem 4. Let the function f defined by (1.10) be in the class 17" (X, £, 7, 3,€) .
Then f is p-valent starlike of order §,0 < ¢ < p in disc |z| < Ry where

R1 = inf

n>k

25€ (=) (n—9) (4.

The result is sharp, with the extermal function f given by (2.6).

{<p—5> [(n = p) (1= ) + 266 (n— ) cmpu,ﬂ)}&
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Proof. It is sufficient to show that

2f (2)
f(2)

where R; is given by (4.1). Indeed we find, again from (1.10) that

—p’ <p-—9for |z|] < Ry, (4.2)

S (1= p) an |27

‘Zf/(z) . ‘< n=k
f(Z) a 1— i::kan ’Z‘nfp
Thus f/( )
2f (2
) - ‘ =ro
if
= (n—96) "
an |2["7" < 1. (4.3)
; (p—9)

But, by Theorem 1, (4.3) will be true if

FEDR 25— B
that is, if

<p—5>[<n_p><1_ﬁ>+255<n—v>chpr>}’*’ > k).

Rl:'z'g{ 256 (p— ) (n = 9)

(4.5)
Theorem 4 follows easily from (4.5) .
Theorem 5. Let the function f defined by (1.10) be in the class T, (A, £, 7, 3, §).
Then f is p-valent convex of order ¢, (0 < < p) in the disc |z| < Ry, where

R2 = inf

n>k{p(P—5) (n=p) (=) + 25 (n =l ey ()\’g)}n_p- (4.6)

26&n (p — ) (n —0)

The result is sharp for the function f given by (2.6).
Proof. We must show that

G

—p’ <p-—4, for |z| < Ra,
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where R, is given by (4.6) . Indeed we find from (1.10) that

> n(n—p)an|z|""

' Zf ”(Z> ' n=~k
1+ = —p| < =
f <Z> p— ;Znan |Z|n_p
Thus ,
Zf/(i? + (1 - )‘ <p— 67
if
> -0
> 7;}8—_6;% 12|"P < 1. (4.7)

But, by Theorem 1, (4.7) will be true if

[(n —p)(1=8)+28(n —7)] e, (A 0)
286n (p — ) ’

(n—9)
p(p—9)
that is, if

277 <

1
p(p—20)[(n—p)(1—-B)+28§(n—)]cp, (A"
2] < , n>k.
268¢n (p =) (n = 9)

(4.8)
Theorem 5 follows easily from (4.8) .
Corrolary 2. Let the function f defined by (1.10) be in the classT;" (A, ¢,7, 3,§).
Then f is p-valent close-to-convex of order §, (0 < < p) in the disc |z| <
R3, where

R3 = inf

n>2

(p—8)[(n—p) (1= B) +28¢ (n— )] &) (A, ) ™
{ 26&n (p — ) } - 49

The result is sharp, with the extermal function f given by (2.6).

5 Closure Theorems

m

Theorem 6. Let p; > 0 for j =1,2,....m, and ) p; < 1. If the functions f;
defined by

J=1

o0

fi (2) :zp—Zan,jz” (an; >0;7=1,2,...,m), (5.1)
n=k
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are in the class T (A, 0,7, 3,€), for every j = 1,2,...,m.Then the function

h(z) defined by
z) =2 — Z (Z pjan,j) 2",
n=~k 7=1

is in the class 10" (A, £, 7, 3,€) .
Proof. Since f; € T (), 4,7, 3,€), it follows from Theorem 1, that

> —B) +28E(n =&, (M) an; <268(p =),

n=~k

for every j =1,2,...,m. Hence

> _ln = B) +26¢ (n = e, (A1) <Z ujan,j)

=> ( [(n—p) (1= B)+2BE(n—)] ey, (ML) aw‘)

<2BE(p—7) Y 1y <286 (p—1)-
7j=1

By Theorem 1, it follows that h(z) € T;" (A, 4,7, ,§), and so the proof of
Theorem 6 is completed.

Theorem 7. Let fr_; (2) = 2P and

_ 255(17_7) 2 (n
W) = T U= 28 — e v 2R (62

Thenf is in the class T (A, £, 7, 3,€) , if and only if it can be expressed in the
form:

[e.o]

FE) =D mfal2), (5.3)

n=k—1

where 1, >0(n>k—1)and > pu,=1
n=k—1

Proof. Assume that

I . 2% (p — ) .
I Ol E e e L
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Then it follows that

—[(n —p)(1—=B)+2B(n —7)] c, (A 0)
Z 268 (p— )

n=k

266 (p—1)
T —p)(A=B)+28(m —)] o, (L O™

ZZunzl—umél.
n=k
So, by Theorem 1, f € T (X, 4,7, 3,§) .
Conversely, assume that the functions f defined by (1.10) belongs to the class
T;n ()\a g? e 67 6) . Then

266 (p— 1)
“ S (=B 20 — e g 2P
Setting
[(n —p)(1=8)+2B5(n —v)] , (A4
o = 266 (p — ) an(n 2 k),
and

pe—1=1— Zun-
n==k

We can see that f can by expressed in the form (5.3). This completes the proof
of Theorem 7.

Corrolary 3. The extreme points of the class 7" (AN 4,7, B,&) are the func-
tions fr_1 = 2P and f, (n > k) given by (5.2).

6 Modified Hadamard Product

For the functions

fi(z) =2 — Zan,jz” (an; >0;5=1,2;p < k;p, k € N), (6.1)
n=k

we denote by (f; * fo) the modified Hadamard product (or convolution) of the
functions f; and f,that is,

(fix f2) (2) = 2" — Z Q1G22 (6.2)
n=k
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Theorem 8. Let the functions f; (j = 1,2), defined by (6.1) be in the class
T (A4, B,€). Then (fi+ fo) € T)" (A 4,1, B,€) , where

28¢ (p— ) (k —p) [(1 — B) + 25¢] .
[(k —p) (1 —8)+2B6(k — e, (A €) — 45262 (p — 7)?

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [12], we
need to find the largest u such that

[ =p) (L= B)+288(n —p)] 7, (A 0)
; 266 (p— 1)

Since f;(2) € T (A, 4,7, 8,€) (j = 1,2), we readily see that

= —p)(1=B)+28{(n — )]y, (A 0)
Z::k 268 (p =)

p=p-— (6.3)

Qp,10n,2 S 1. (64)

a'n,l S ]_, (65)

n

and

— [ —p)(1=B)+26¢(n —)] i, (A 0)
; 266 (p— )

by the Cauchy-Schwarz inequality, we have

CLn’Q S ]_, (66)

—[(n —p)(1=B)+268(n —7)] e, (A1)
> (] Vamiang < 1. (6.7)

n=k

Thus it is sufficient to show that

[(n —p) (1 = B)+268(n —p)] (A1)

266 (p — ) s S
n — _ n — cm )\,f
vl 62)52?56—(7) W ®D s mz b, (69

that is, that

(p—w)[(n —p)(1—=p)+285(n —7v)]
Va2 = —p) (1= B) + 266 (n — )

(n>k). (6.9)

From (6.7) we have

265 (p — )
Ve S =) (1= 5) + 28 (n — e, .0

(n>k). (6.10)
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Consequently, we need only to prove that

2¢8(p—) (p—w)[(n_—p)(1=B)+2BE(n_—7)]
B 28 00 = lin —p) (1B 128 )]’ (6.11)

or, equivalently, that

h<p 26¢ (p =)’ (n—p) [(1 = ) + 25¢] (n> k),

T n =) (1=B)+286(n —y))Pep, (A €) — 4822 (p — v)?

(6.12)

28 (p— )% (n—p) [(1 - B) + 2B¢]

(0 =p) (1= B) +286 (0 = e, (A 0) = 45262 (0 —7)”
(6.13)
is an increasing function of n (n > k), lettingn = k in (6.13), we obtain

266 (p —7)? (k — p) [(1 — B) + 2B¢]

[(k—p) (1= B) + 2B (k — ))* e, (A 0) — 48282 (p — )°
(6.14)

p<®(k)=p-

Y

which proves the main assertion of Theorem 8.
Finally, by taking the functions f; (j = 1,2) given by

266 (p— )
[(k—p) (1= B) 4+ 2B (k= 7)] (A 0)

we can see that the result is sharp.
Theorem 9. Let the function f; (j = 1,2) defined by (6.1) , fi € T, (A, €, p1, 3, )
and f2 € T;n ()\767:“27/875) . Then (fl * f2) S T]:n ()\7‘67/’1’7675) ) where

266 (p — ) (p — p2) (k = p) [(1 = B) + 25¢]

N A oo, B ) Az (a0, B, €. K) & (N £) — 4€253% (p — 1) (p — p2)
(6.16)

fi(z) = 2P — & (=1,2), (6.15)

and

Ay (p,p, B,& k) = [(k —p) (1 = B) + 2B (k — )] (6.17)

Proof. We need to find the largest p such that

2 (n —p)(L=8)+26E(n —p)] ar, (A1)
2 266 (p — )

an,lan,2 S 1,
n=k

Since

(fl ET;gn()‘?g?,ulaﬁ?g) and fQET;n<)‘7€7/JJ2757£))
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Then

[(n —p) (A —=0)+266(n — )] e, (ML)
% 268 (p — 1)

and

= ((n —p)(1=8)+26E(n — p2)] (N0
2 260 (p — p2)

Therefore, by the Cauchy’s-Schwarz inequality, we obtain

n==k

N

ety (A0

Vanian2 <1, (6.18)

i [As (1, p, B,€,m)]7 [As (2, p, B, €, )]
ot 268/ (p — 1) (p — pa)

where

Ay (2, p, 3,6,m) = [(n —p) (1 = B) +2BE (n — pa)] -

Thus we only need to show that find largest p such that

= ((n —p) (1= B)+28{(n —p)] e, (N 0)
Z::k 268 (p — 1)

Ap,1Gp 2

n

< i [Al (:ulap767£7 n)]% [A2 (/1’27pvﬁ7£7 n)]% CnmJ’ ()\’£>
Bt 266/ (p — 1) (p — p2)

or, equivalently, that

vV O0n,10n.2

p—u [Al (Mlapaﬂa€7n)]%[142 (Mﬂapa67§7n)]%
\VOn1Gn2 < Vo—m) p—pm) [ —p) (1 —=5)+268(n — p)
Hence, in light of inequality (6.18), it is sufficient to prove that
268/ (p — 1) (p — o)
[Al (lulapa 67 57 n)]§ [A2 (M?ap7 B? 5’ n)]i cnm,p ()\7 g)
b—u [Al (Mlupaﬁvéan”% [AQ (M2ap7ﬁagan>]% (619)

S o= (1 —p) (-5 25 — ]
It follows from (6.19) that

h—po 268 (p — ) (p— p2) (n —p) [(1 = B) +25¢]
Ay (M17p757§a TL) A (MQ,p, 6757”) qu;rfp ()‘7€) - 45252 (p - /Ll) (p - IUQ) .

(n>k).
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Now, defining the function ® (n) by

B 2608 (p — 1) (p — p2) (n — p) [(1 — B) + 26¢]
Al (,ulapa 6757”) 'AZ (/Lg,p,ﬁ,f, n) CZ’LP ()‘76) - 46252 (p - ,ul) (p - NZ) ‘

We see that @ (n) is an increasing function of n (n > k) . Therefore, we conclued
that

®(n)=p

B 268 (p — 1) (p — p2) (k — p) [(1 — B) + 25¢]
Al (:ulvpa 6757 k) 'A2 (N’Zapa B?ga k) CZ?p (/\76) - 45262 (p - Nl) (p - qu)’

where Ay (u1,p, 8,€, k) and Ay (u2,p, 5,€, k) are given by (6.17), which evi-
dently completes the proof of Theorem 9.

Theorem 10. Let the functions f; (j = 1,2) defined by (6.1) be in the class
7 (A 4,7, B,€) Then the function

p=2=2(k) =p

[e.e]

h(z) =2\ — Z (a2, +a5,) 2" (6.20)

n=~k

belongs to the class T (A, £, 7, 3,§) , where

4BE (p — )% (n — p) (1 — B+ 2¢)

<p-— 6.21
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The result is sharp for the functions f; (j = 1,2) defined by (6.15) .
Proof. By virtue of Theorem 1, we obtain
X [l(n —p)(1—B)+28¢(n —7)] e, (A0,
; { 268 (p— 1) | =
= (n —p) (1= +286 —7)] e, A0 |
[2 20 (p— ) bl =t (622
e (0 —p) (1= B)+ 286 (1 — )] e, (MO
> n —p)(1=0)+285(n =) g, (MO,
2 [ 2% (p— ) | 2=
= [(n —p)(1-B)+266m —7)] er, A0 |
[gk 25 (p— ) “] =t (6.23)

It follows from (6.22) and (6.23) that

~ n — ) (1 — 286 (n — ), (A 0)7° 2 2
Zkﬂ[( p)( 52);(55_(7) 7)) ( )} (a2, +a2,) < 1. (6.24)
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Therefore, we need to find the largest 7 such that
[(n —p)(1=B)+28¢(n —7)]c, (A 0)

266 (p— 1) =
1[[(n —p)(1—B)+28¢(n —]er, (A0
2 266 (p— ) (2 k), (6:29)

that is, that
4B¢ (p—7)* (n—p) (1 — B+ 2B¢)

T<p-— 5 5. (6.26)
[(n =p) (1 =B)+265(n — )] cr, (A £) = 85%€ (p—7)
Since
Dn)=p-— 4B¢ (p—7)* (n—p) (1 — B+ 26¢)

[(n —p) (1= B)+28E(n — N em (A 0) — 85262 (p —7)*

is an increasing function of n (n > k), we readily have

48¢ (p —7)* (k —p) (1 — B+ 26€)
[(k —p) (1—B8)+2B6(k — )] e, (A 0) — 8822 (p—7)*

and Theorem 9 follows at once.

T<D(k)=p-—

Remark. Specializing the parameters m, A, ¢ and p in the above results, we
obtained results corresponding to the subclasses maintain in the introduction.

7 Open problem

The authors suggest to study:
Neighbourhood problems partial sums for the class T)" (A, £, 7, 3,€) .
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