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Abstract
In this paper, we obtain Fekete-Szego inequalities for a certain

’ o " B
class of analytic functions f(z) € A, for which H—1 (L(Z)> (1 + zf/_(z)) —1| <
b |\ f(z) f'(z)
©(2)(b # 0, complex and o, > 0). Sharp bounds for the Fekete-Szegé

functional |az — pa3| are obtained.
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1. Introduction

Let A denote the class of functions f(z) which are analytic in the open unit
disc U = {z: z € C and |z| < 1} of the form:

fz)=z+) at (z€0). (1.1)



2 R. M. El-Ashwah, M. K. Aouf and F. M. Abdulkarem

Let S be the family of functions f(z) € A, which are univalent. A function
f(z) € S is said to be starlike of order p, denote by S*(p), if and only if

/() .
Re{f(z) }>p(0§p<1, el). (1.2)

A function f(z) € S is said to be convex of order p, denote by K(p), if and
only if

2f"(2)
f'(z)

The classes S*(p) and K(p) were defined by Robertson [20]. From (1.2) and
(1.3) it follows that

Re{l—i— }>p(0§p<1;z€U). (1.3)

f(z) € K(p) & 2f'(2) € §(p). (1.4)

A function f(z) € S is said to be close-to-convex of order p, denote by C(p) if
and only if

Re{]gcl((j))}>p(0§p<1;g€l€;z€U). (1.5)
where C(0) = C (see Kaplan [6]).
We note that:

S§*(0) =8 and £(0) = K

and
KcS*cCcsS.

A classical theorem of Fekete-Szeg0 [4] states that, for f(z) € S given by (1.1),

—2
as — paz| <14 2exp <1—’“‘> if0<pu<l, (1.6)
—H
holds for any normalized univalent function of the form (1.1) in the open unit
disc U and for 0 < p < 1. This inequality is sharp for each p(see [4]) . The
coefficient functional

1) = aa it = ¢ (170 - Z170]). (1)
on normalized analytic functions in U represents various geometric quantities
for example, when =1, ¢1(f) = az — a3, becomes S;(0)/6, where S; denote
the Schwarzain derivative (f”/f") — (f”/f")?/2 of locally univalent functions
in U. In literature, there exists a large number of results about inequalities for
¢u(f) corresponding to various subclass S. The problem of maximising the
absolute value of the functional is called the Fekete-Szegd problem (see [4] and
[7]) , Koepf [8], solved the Fekete-Szegd problem for close-to-convex functions
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and the largest real number p for which ¢,(f) is maximised by the Koebe
function z/(1 —2)? is u = 1/3 (see [8] and [13]), this result was generalized for
functions that are close-to-convex.

Given two functions f and g, which are analytic in U, we say that the function
f(z) is subordinate to g(z) in U and write f(z) < g(z), if there exists a Schwarz
function w(z), analytic in U with w(0) = 0 and |w(z)| < 1 such that f(z) =
g(w(z)) (z € U). Indeed it is known that f(z) < g(z) = f(0) = g(0) and
F(U) < 9(U).

In particular, if the function ¢ is univalent in U, the above subordination is
equivalent to f(0) = ¢(0) and f(U) C g(U) (see [15]).

Let ¢(z) be an analytic function with positive real part on U satisfies ¢(0) =
1 and ¢’(0) > 0 which maps U onto a region starlike with respect to 1 and
symmetric with respect to the real axis. Let S*(¢) be the class of functions
f(z) € S for which

2f'(2)
) < p(z) (z€U), (1.8)
and IC(p) be the class of functions f(z) € S for which
2f"(z)
1+ 702 < p(z) (z € U). (1.9)

The classes of S*(¢) and K(¢) were introduced and studied by Ma and Minda
[14]. The class 8*(p) of starlike functions of order p and the class K(p) of convex

functions of order p (0 < p < 1) are the special cases of S* () and KC(p), respectively,
1 1-2
when ¢(z) = M (0<p<1).
—z
For 0 <a<1,0<8<1andbe C*=C\{0}. The class P} 5() consists of
all analytic functions f(z) € A satisfying:

() (4 75)

We note that for suitable choices of «, 5, b and ¢(z), we obtain the following
subclasses:
(i) Piolp) = S*(¢) and Py, () = K(p) (see Ma and Minda [14]);
(it) Pyo(p) = Si(@)(b € C*) and P§ (@) = Cy()(b € C*) (see Ravichandran
et al. [19]);

1
14—

; < o(2). (1.10)
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(i) Pio(1552) = S[A, B](—1 < B < A < 1) and P, (134%) = K[A, B)(—

1+Bz 1+Bz
B < A <1) (see Janowski [5]);

(iv) Pl <1+ B+(14+§2(1 p)]z) =S*(A,B,p)(0<p<1 -1<B<A<LI1) (see

Aouf [1], with p = 1);
(V)P}o(32) = S(b)(b € C*) (see Nasr and Aouf [17] and Aouf et al. [2]);

)
(vi) P, 1(HZ) =C(b)(b € C*) (see Waitrowski[QQ] and Nasr and Aouf [16]);
(vii) PLP(E) = S*(p)(0 < p < 1) and PAT(E2) = K(p)(0 < p < 1) (see
Roberston [20])
(iix) P} 5() = Mas(p) (see Ravichandran et al. [18]);
(ix) PCOS)‘e_M( — 2) = SM|A| < %) (see Spacek [21]);

(x) 7711 p)cos e (1£2) =8*(p)(0 < p < 1, |A| < 5) (see Keogh and Merkes [9]
and Libera [10, 11]);

(xi) PP (1H2) = eMp) (0< p < 1, |A| < T) (see Chichra [3]).

1—2

Also, we note that:
(i) Putting @ = f =1 and b= (1 — p) cos \e=*(0 < p < 1;|A| < ). Then, we

have
o C80) (1 F80) e

(2

P o) = P9

= e (1 —p)cosA

(0§p<1;W<g;zeU) ;

(ii) Putting b = (1 — p) cos Ae7(0 < p < 1;]|A| < Z). Then, we have
1—p) cos e~
PP 0) = Ple)

[e2)

feA: - (ZJJ:(/S))Q (1 T Z]{:i/;(;))ﬂ — pcos A —isin

< ()

< p(2)

(1 —p)cos A

(O§a§1;0§ﬁ§1;0§p<1;])\|<g;zEU) :
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(iii) Putting 8 = 0 and b = (1 — p)cos Ae (0 < p < 1;|A| < %). Then, we
have
iA

PL () = 82 ()

«,

() oo
(1 —p)cos A

= S feA: < ¢(2)

(O§&§1;0§p<1;])\|<g;z€U) ;

(iv) Putting @ = 0 and b = (1 — p)cos e (0 < p < 1;|A| < %). Then, we
have

(2

’P(l P cos Ae™ (@) — ’Cg’p((p)

e ( Zf//
feA:

) — pCcosA —isin A

) cos A <¢(2)

(0§B§1;O§p<1;|)\|<g;z€U)

In this paper, we obtain the Fekete-Szego inequalities for functions in the class

733,5(@)-

2. Fekete-Szego problem

To prove our results, we need the following lemmas.
Lemma 1 [9, 12]. If p(2) =1+ c12 + c22* + ... is a function with positive
real part in U and p is a complexr number, then

ez — pei| < 2max{1;[2p — 1]},
The result is sharp for the functions given by

1+ 22 1+ 2
Ty and p(z) =

p(z) = T
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Lemma 2 [14]. If pi1(2) = 1+ 12+ 2 + ... is a function with positive real
part in U, then

—4y + 2 if v <0,
|02—1/cﬂ§ 2 if 0<rv <1,
dv — 2 if v>1.

1
When v < 0 or v > 1, the equality holds if and only if pi(z) = . tz or
z

one of its rotations. If 0 < v < 1, then the equality holds if and ;nly if

1 2
po(2) = ] i 22 or one of its rotations. If v =0, the equality holds if and only
—z
of
1 1 \1+4z 1 1 \1—-=
(1.1 Sy )2 0<H<1
m) = (5+5) T+ (5-30) T 0= <)

or one of its rotations. If v =1, the equality holds if and only if

1 1 1 \1+4z 1 1 \1—-=z
=|=+z —— 0<~y<1).
pa(2) (24_27)1_24_(2 27)1—1-2( sys)
or one of its rotations. Also the above upper bound is sharp and it can be
improved as follows when 0 < v < 1:

)7

N | —

|02—uc%’+1/]cl\2§2(0<1/§

and

1
|02—ch|+(1—y)]cl\2 <2 (5 <v<1).

Unless otherwise mentioned, we assume throughout this paper that b € C*,
0<a<land0< g <1

Theorem 1. Let o(z) = 1+ Byz+ Byz? +....... , By > 0. If f(z) given by (1.1)
belongs to the class Pg’ﬁ(go) and (v is a complex number, then

By |b| B
2 1 2
CL:s—,lmz‘ < mmax{l,‘——

N [(a+28)% — 3(a+48) + 4u(a + 38)]b
2(a+2p)?

By

}.2.1 (1)

The result is sharp.
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Proof. If f(z) € P} 4(p), then there is a Schwarz function w(z) in U with
w(0) =0 and |w(z)| < 1in U and such that

(JJ:(—())) (1 * }c(()))ﬂ - 1] = p(w(2)). (2.2)

Define the function p;(z) by

1+1
b

14 w(z)

pi(z) = T—w(z) =1+ciz+c?+... (2.3)
Since w(z) is a Schwarz function, we see that Re pi(z) > 0 and p(0) =
1. Define
Ll (zf"(2)\" 2f"(2)\ 2
=1+ 1 -1 =1+0b b e (24
p(z) =1+ 2 ( 8 + 702 + b1z + by2” + (2.4)

In view of (2.2), (2.3) and (2.4), we have

p(z) =¢ <%> ' (2:5)
Since
1}% = % {clz+ (@—Cg) 22+ (03+CZ?—0102) 23—1—..} .

Therefore, we have

pi(z) —1 1 1 ‘i Lo af 2
— < | =14+-B -B - = -B 2.6
© (p1(2) n 1) + 5 1C12 + 5 b1 Co 9 + 1 2y 2+ ..., (2.6)

and from this equation and (2.4), we obtain

1
by = 531017
and ) |
C
bg = —B1 (CQ — 51) + ZBQC%

A computation shows that
/()
f(2)
and therefore we have
(Zf’(Z)
f(2)

=1+ azz+ (2a3 — a3)z* + ...,

a? — 3a
az)z* 4 ..

) =1+ aazz + (2aaz +
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Similarly, we have

2f"(2)
f'(2)

and therefore we have

1+ =1+ 2ayz + (6az — 4a3)2* + ...,

1" B
(1 i (z)) = 1+ 2Bayz + (68az + 2(8% — 38)a22% + ...

f'(2)

Thus, we have

() (55

23)? — 4
=1+ (a+205)az + {2(04 +308)as + (o +25) 5 Sla+45) a%} 2427
Then, from (2.4), we see that
bb1 = (Oé + 2&)@2, (28)
and )
28)* — 4
bby = 2(av + 3B)as + (o +26) 5 Sla+ ﬁ)ag, (2.9)
or, equivalently, we have
Blclb
Ay = ——m8M8—
7 2(a+28)
and
_ b Bic, 1 [(a+28)" = 3(a+48)]b ., »
a3_2(a+3ﬁ)[ 2 4(31 Bz + 2(a + 28)? By el
Therefore B
as — pas = e i 35) (co — vel), (2.10)
where
2 _
L1 {1 _ By [(a+28)° ~3(a+45) +dula + 36>]b31} @11

2 B 2 + 28)?

Our result now follows by an application of Lemma 1. The result is sharp for

the functions

+% [(%S))a <1+%§>))6— 1] = (%),

(2.12)
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S (o AG) e e

This completes the proof of Theorem 1.

and

Putting b = 1 in Theorem 1, we improve the result obtained by Ravichandran
et al. [18, Theorem 2.2], for the following corollary.

Corollary 1. If f(z) given by (1.1) belongs to the class M, z(p) and p is a
complex number, then

‘ag—ua2| —max{l, _D
2(a+3p) By

N [(a+28)% —3(a+48)] + du(a + 3ﬂ)B }

2(a +2)? Y

The result is sharp.

By using Lemma 2, we can obtain the following theorem.
Theorem 2. Let p(z) = 1+ Bz + Bz + ...,(B; > 0,i € N, b > 0). If
f(2) given by (1.1) belongs to the class Pgﬁ, then

( b ~ '
e e L
2 Blb .
aa—uaz\é 2a+38) if o1 < p <o,
b ¥ .
| 2(0+35) {‘32 "ot 25)23%} =
(2.14)
where
_ 2(a+28)*(B: — Bi) — [(a +2B)* — 3(a + 48)|bBY
o= 4(a + 30)bB2 215 ()
_ 2(a+2P)*(By + Bi) — [( +28)* — 3(a + 45)]bB}
7z = A(a + 3B)bB2 216 (3)
and
v = [(+28)* = 3(a +48) + 4p(a + 33)]b. (2.17)

The result is sharp.

To show that the bounds are sharp, we define the functions K,(2) (n > 2) by

1+% [(%)a (1 v Z;{an))y _ 1] = ("), Kon(0) = 0 = K7,(0)—1,
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and the functions F,(z) and G,(z) (0 <n <1) by

1+% (Zg(f)))a <1 + zg((;)))ﬁ - 1] =y <Z1(2++nz)> L Fy(0) = 0= F(0)-1,
and
+% (%)a <1+%)5— 1 <_Z1(i+nz)>’ G,(0) = 0 = G (0)—1.

Cleary the functions K, (z), F;)(2) and G, (z) € P} 5. Also we write K, = Ko.

If p < o1 or p > o9, then the equality holds if and only if f is K, or one of
its rotations. When oy < p1 < 09, then the equality holds if f is K3 or one of
its rotations. If 1 = oy, then the equality holds if and only if f is F;, or one of
its rotations. If i = o, then the equality holds if and only if f is G, or one of
its rotations. This completes the proof of Theorem 2.

Remark 1. Putting b = 1 in Theorem 2, we obtain the result obtained by
Ravichandran et al. [18, Theorem 2.1].

Using arguments similar to those in the proof of Theorem 2, we obtain the
following theorem.
Theorem 3. Let o(z) =1+ Byz+ By2? +...(B; > 0,i € N, b > 0) and

2(a +28)?By — [(a +28)* — 3(a + 4P)] be.

73 = 4(a + 3B)bB? (2.18)
If f(z) given by (1.1) belongs to the class Pabﬂ, then we have
(i) If o1 < p < o3, then
(a+23)? 4(a + 3B)bB?
o= ]+ g 208~ B
[(a+28)% — 3(a + 48)] bB? 9 bB
s L e
(ii) If o3 < pu < o9, then
(a+23)* 4(a+ 3P)bB?
a3 = n3| + 0 3 aE {2<Bl B e
[(+28)% — 3(a + 48)] bB? 9 bB,
(o +20)2 }'” S et (2:20)
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where oy and oy given by (2.15) and (2.16).

Remark 2. Putting b = 1 in Theorem 3, we obtaine the result obtained by
Ravichandran et al. [18, Theorem 2.1].

Remark 3. Specializing the parameters o, 5 and b, we obtain results corre-
sponding to the classes P (@), Py z,(¢), Sa,(@) and K3 (), mentioned in
the introdution.

3. Open problems

The authors suggest to introduce different operator on the function to define
different classes and obtain different results.
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