
Int. J. Open Problems Complex Analysis, Vol. 5, No. 3, November 2013
ISSN 2074-2827; Copyright c©ICSRS Publication, 2013
www.i-csrs.org

Intertwining operators associated with a singular

integro-differential operator on the real line and

certain of their applications

Mohamed Ali Mourou

Department of Mathematics, College of Sciences for Girls
University of Dammam

P.O.Box 1982, Dammam 31441, Saudi Arabia
E-mail : mohamed ali.mourou@yahoo.fr

(Communicated by Professor H.M. Srivastava)

Abstract

We consider a singular integro-differential operator Λ on the
real line which includes as a particular case the Dunkl operator
associated with the reflection group Z2 on R. We build intertwining
operators of Λ and its dual Λ̃ into the first derivative operator d/dx.
Using these intertwining operators, we firstly establish a Paley-
Wiener theorem for the Fourier transform associated to Λ, and
secondly introduce a generalized convolution on R tied to Λ.

Keywords: integro-differential operator, intertwining operators, Paley-
Wiener theorem, generalized convolution.

2000 Mathematical Subject Classification: 42A38, 44A35, 47G20.

1 Introduction

Consider the second-order singular differential operator on the real line

∆f(x) =
d2f

dx2
+
A′(x)

A(x)

df

dx
+ q(x)f(x), (1)
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where q is a real-valued C∞ even function on R, and

A(x) = |x|2α+1B(x), α > −1

2
,

B being a positive C∞ even function on R. Lions [7] has constructed an
automorphism X of the space Ee(R) of C∞ even functions on R, satisfying

X d2

dx2
f = ∆X f and X f(0) = f(0) (2)

for all f ∈ Ee(R). The construction of the Lions operator X was aimed to allow
the resolution of certain mixed value problems. Delsarte and Lions [2] have
exploited the intertwining operator X to define in Ee(R) translation operators
corresponding to the differential operator ∆. Later, Trimeche [12] investigated
the dual operator tX of X , and obtained a Paley-Wiener theorem for the
Fourier transform associated with ∆.

The main intention of this paper is to establish analogous results for the
first-order singular integro-differential operator on R

Λf(x) =
df

dx
+
A′(x)

A(x)

(
f(x)− f(−x)

2

)
+

1

A(x)

∫ x

0

(
f(t) + f(−t)

2

)
q(t)A(t)dt.

(3)

For A(x) = |x|2α+1 and q(x) = 0, we regain the differential-difference
operator

Dαf =
df

dx
+ (α +

1

2
)
f(x)− f(−x)

x
,

which is referred to as the Dunkl operator with parameter α+ 1/2 associated
with the reflection group Z2 on R. Such operators have been introduced by
Dunkl in connection with a generalization of the classical theory of spherical
harmonics (see [3, 4, 11, 13] and the references therein). Besides its mathe-
matical interest, the Dunkl operator Dα has quantum-mechanical applications;
it is naturally involved in the study of one-dimensional harmonic oscillators
governed by Wigner’s commutation rules [5, 10, 15].

More precisely, we show in Section 2 that the solutions Φλ (λ ∈ C) of the
eigenvalue problem

Λf(x) = iλf(x), f(0) = 1,

possess the Laplace type integral representation

Φλ(x) =

∫ |x|
−|x|

K(x, y)eiλydy, x 6= 0.
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Such a representation allows us to introduce in Section 3 a pair of integral
transforms defined by

V f(x) =


∫ |x|
−|x|

K(x, y)f(y)dy if x 6= 0,

f(0) if x = 0,

tV f(y) =

∫
|x|≥|y|

K(x, y)f(x)A(x)dx, y ∈ R.

Mainly, we show that V is the only automorphism of the space E(R) of C∞
functions on R, satisfying

V
d

dx
f = ΛV f and V f(0) = f(0)

for all f ∈ E(R). Moreover, we establish that tV is an automorphism of the
space D(R) of C∞ compactly supported functions on R, satisfying

d

dx
tV f = tV Λ̃f, f ∈ D(R),

Λ̃ being the dual operator of Λ defined by

Λ̃f(x) =
df

dx
+
A′(x)

A(x)

(
f(x)− f(−x)

2

)
+ q(x)

∫ x

−∞

(
f(t)− f(−t)

2

)
dt. (4)

The integral transform V (resp. tV ) is said to be an intertwining operator

between Λ (resp. Λ̃) and the first derivative operator d/dx.

Section 4 deals with the generalized Fourier transform defined on the space
E ′(R) of compactly supported distributions on R by

FΛ(S)(λ) = 〈S,Φ−λ〉, λ ∈ C.

This transform is factorized as the product of the usual Fourier transform
on R and the intertwining operator tV . Such a factorization gives rise to
a Paley-Wiener theorem describing the spaces D(R) and E ′(R) through the
properties of their generalized Fourier transforms. Furthermore, an inversion
type formula for the generalized Fourier transform FΛ is provided.

In Section 5, we exploit the intertwining operators V and tV to introduce a
generalized convolution on R corresponding to the integro-differential operator
Λ. Such a convolution is mapped firstly by the generalized Fourier transform
FΛ into the simple product, and secondly by the intertwining operator tV into
the ordinary convolution on R. The paper concludes with a Plancherel type
formula for the generalized Fourier transform FΛ.



Intertwining operators associated with a singular integro-differential operator 61

It is pointed out that all the results obtained in [9] may be recovered from
those stated in the present article by simply taking q = 0. As for Lions oper-
ators [8], it is believed that our intertwining operators will be of great utility
in the study of integro-differential problems, and will lead to generalizations
of various analytic structures on the real line.

2 Laplace integral formula

In order to study the eigenfunctions of Λ, we need those of the differential
operator ∆. Our basic reference about ∆ will be the paper [12] from which we
recall the following result.

Lemma 2.1 (i) For each λ ∈ C, the differential equation

∆u = −λ2 u, u(0) = 1, u′(0) = 0, (5)

admits a unique even C∞ solution on R denoted by ϕλ.

(ii) For every x ∈ R, the function λ→ ϕλ(x) is analytic.

(iii) For nonnegative x and complex λ, we have the majorization :

|ϕλ(x)| ≤ Ce|Imλ|x√
B(x)(1 + |λ|x)α+1/2

exp

(
Cx

1 + |λ|x

∫ x

0

|χ(t)|dt
)
,

where C is a positive constant, and

χ(x) = (2α + 1)
B′(x)

2xB(x)
+

1

2

(
B′(x)

B(x)

)′
+

1

4

(
B′(x)

B(x)

)2

− q(x). (6)

Remark 2.2 (i) For A(x) = |x|2α+1 and q(x) = 0, the differential operator
∆ is just the so-called Bessel operator. Furthermore,

ϕλ(x) = jα(λx),

where

jα(z) = Γ(α + 1)
∞∑
n=0

(−1)n (z/2)2n

n! Γ(n+ α + 1)
(z ∈ C) (7)

is the normalized spherical Bessel function of index α (see [14]).

(ii) For A(x) = (sinh |x|)2α+1 (coshx)2β+1 and q(x) = (α + β + 1)2 with
β ≥ −1/2, the differential operator ∆ reduces to the so-called Jacobi operator.
Moreover,

ϕλ(x) = ψ
(α,β)
λ (x),

where ψ
(α,β)
λ is the Jacobi function of index (α, β) given by

ψ
(α,β)
λ (x) = 2F1

(α + β + 1 + iλ

2
,
α + β + 1− iλ

2
;α + 1;− sinh2 x

)
, (8)

2F1 being the Gauss hypergeometric function (see [6]).
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Theorem 2.3 For each λ ∈ C, the integro-differential equation

Λu = iλu, u(0) = 1, (9)

admits a unique C∞ solution on R, denoted Φλ given by

Φλ(x) = ϕλ(x) +
iλ

A(x)

∫ x

0

ϕλ(t)A(t)dt. (10)

Proof. Write u = ue + uo with

ue(x) =
u(x) + u(−x)

2
and uo(x) =

u(x)− u(−x)

2
.

Then (9) is equivalent to the system
(Auo)

′ = iλAue,

(Au′e)
′ + Aque = −λ2Aue,

ue(0) = 1.

Identity (10) is now immediate. �

Remark 2.4 (i) Assume that q(x) = c, where c is a given real number.
Then (1) and (5) yield

d

dx
ϕλ(x) = −λ

2 + c

A(x)

∫ x

0

ϕλ(t)A(t)dt.

From this and (10) it follows that

Φλ(x) =


ϕλ(x)− i λ

λ2 + c

d

dx
ϕλ(x) if λ2 + c 6= 0,

1 +
iλ

A(x)

∫ x

0

A(t)dt if λ2 + c = 0.

(ii) If A(x) = |x|2α+1 and q(x) = 0, then according to [4],

Φλ(x) = eα(iλx),

where eα is the Dunkl kernel of index α given by

eα(z) = jα(iz) +
z

2(α + 1)
jα+1(iz) (z ∈ C),

jα being as in (7).
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(iii) Assume that A(x) = (sinh |x|)2α+1 (coshx)2β+1 and q(x) = (α+β+1)2

with β ≥ −1/2. As by [6],

d

dx
ψ

(α,β)
λ (x) = − λ2 + ρ2

4(α + 1)
sinh(2x)ψ

(α+1,β+1)
λ (x),

we deduce from (i) that

Φλ(x) = ψ
(α,β)
λ (x) +

iλ

4(α + 1)
sinh(2x)ψ

(α+1,β+1)
λ (x),

ψ
(α,β)
λ being as in (8).

Proposition 2.5 (i) For every x ∈ R and λ ∈ C, we have the estimate :

|Φλ(x)| ≤ m(x)(1 + |λ|)e|Imλ||x|,

where m is an even continuous function on R.

(ii) For every x ∈ R, the function λ→ Φλ(x) is analytic.

(iii) For every x ∈ R and λ ∈ C, we have

Φ−λ(x) = Φλ(−x), Φλ(x) = Φ−λ(x). (11)

Proof. Assertions (i) and (ii) follow directly from (10) and Lemma 2.1. As-
sertion (iii) is easily checked. �

Trimeche [12] obtained for x 6= 0 and λ ∈ C the following Mehler type
representation for the eigenfunction ϕλ(x) of the differential operator ∆ :

ϕλ(x) =

∫ |x|
0

K(x, y) cosλy dy, (12)

where

K(x, y) = H(x, y) +
2 Γ(α + 1) |x|−2α

√
π Γ(α + 1/2)

√
B(0)

B(x)
(x2 − y2)

α−1/2
+ , (13)

H(x, ·) being an even continuous function on R, with support in [−|x|, |x|].

Lemma 2.6 For x ∈ R \ {0} and λ ∈ C , we have

iλ

A(x)

∫ |x|
0

ϕλ(t)A(t)dt = − 1

2A(x)

∫ |x|
−|x|

∂

∂y
GK(x, y) eiλy dy, (14)

where

GK(x, y) =


∫ |x|
|y|
K(t, y)A(t)dt if |y| < |x|,

0 otherwise .

(15)
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Proof. Recall first (see [9]) that the function GK(x, ·) is continuous on R, of
class C1 on ]− |x|, |x|[, and ∂

∂y
GK(x, ·) is integrable on R. By using (12) and

Fubini’s theorem we obtain

iλ

A(x)

∫ |x|
0

ϕλ(t)A(t)dt =
iλ

A(x)

∫ |x|
0

(∫ t

0

K(t, y) cosλy dy

)
A(t)dt

=
iλ

A(x)

∫ |x|
0

(∫ |x|
y

K(t, y)A(t)dt

)
cosλy dy

=
iλ

A(x)

∫ |x|
0

GK(x, y) cosλy dy.

An integration by parts yields

iλ

A(x)

∫ |x|
0

GK(x, y) cosλy dy =
−i
A(x)

∫ |x|
0

∂

∂y
GK(x, y) sinλy dy.

Identity (14) is now obvious. �

By combining (10), (12) and (14) we obtain the following result.

Theorem 2.7 For x ∈ R \ {0} and λ ∈ C, the eigenfunction Φλ(x) has the
Laplace type integral representation

Φλ(x) =

∫ |x|
−|x|

K(x, y) eiλy dy, (16)

where

K(x, y) =
1

2
K(x, y)− sgn(x)

2A(x)

∂

∂y
GK(x, y). (17)

3 Intertwining operators

Notation. We denote by E(R) the space of C∞ functions on R, provided
with the topology of compact convergence for all derivatives. E ′(R) stands
for the space of distributions on R with compact support. Clearly Λ is a
bounded linear operator from E(R) into itself. If S ∈ E ′(R), we write ΛS for
the compactly supported distribution on R defined by

〈ΛS, f〉 = −〈S,Λf〉, f ∈ E(R).

Recall that each function f in E(R) may be decomposed uniquely into the sum
f = fe+fo, where the even part fe is defined by fe(x) = (f(x)+f(−x))/2 and
the odd part fo by fo(x) = (f(x)−f(−x))/2. Ee(R)(resp. Eo(R)) stands for the
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subspace of E(R) consisting of even (resp. odd) functions. For a > 0, Da(R)
designates the space of C∞ functions on R supported in [−a, a], equipped
with the topology induced by E(R). Put D(R) =

⋃
a>0Da(R) endowed with

the inductive limit topology. De(R) (resp. Do(R)) denotes the subspace of
D(R) consisting of even (resp. odd) functions. Let I (resp. J ) denotes the
map defined on E(R) (resp. D(R)) by Ih(x) =

∫ x
0
h(t)dt (resp. J h(x) =∫ x

−∞ h(t)dt).

Starting from the Laplace representation (16), we construct in this section
a pair of integral transforms which turn out to be intertwining operators of Λ
and its dual Λ̃ into the first derivative operator d/dx.

Definition 3.1 We define the integral transform V on E(R) by

V f(x) =


∫ |x|
−|x|

K(x, y)f(y)dy if x 6= 0,

f(0) if x = 0,

(18)

where K(x, y) is given by (17).

Remark 3.2 (i) It follows from (16) that

Φλ = V (eiλ·), for all λ ∈ C. (19)

(ii) If A(x) = |x|2α+1 and q(x) = 0, then the integral transform V is given
by

V (f)(x) =
Γ(α + 1)√
π Γ(α + 1/2)

∫ 1

−1

f(tx)(1− t2)α−1/2 (1 + t) dt,

and referred to as the Dunkl intertwining operator of index α+ 1/2 associated
with the reflection group Z2 on R (see [11]).

Trimeche [12] has proved that the Lions operator X may be written as

X f(x) =


∫ |x|

0

K(x, y)f(y)dy if x 6= 0,

f(0) if x = 0,

(20)

where K(x, y) is given by (13). For A(x) = |x|2α+1 and q(x) = 0, the Lions
operator X is just the Riemann-Liouville integral transform of order α defined
by

Rα(f)(x) =
2 Γ(α + 1)√
π Γ(α + 1/2)

∫ 1

0

f(tx)(1− t2)α−1/2 dt, x ∈ R.

Identity (20) will enable us to express the integral transform V in terms of X .
The following technical lemma, stated without proof, will be useful.
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Lemma 3.3 (i) The integral operator

Mf(x) =
1

A(x)

∫ x

0

f(t)A(t)dt (21)

is an isomorphism from Ee(R) onto Eo(R), and its inverse operator is just Λ.

(ii) For all f ∈ Ee(R), we have the relations

Λ2f = ∆f,

Λf =M∆f, (22)

MX f =
sgn(x)

A(x)

∫ |x|
0

GK(x, y)f(y)dy, (23)

where GK(x, y) is given by (15).

(iii) For any f ∈ Ee(R) and g ∈ Do(R), we have∫
R
Mf(x)g(x)A(x)dx = −

∫
R
f(x)J g(x)A(x)dx. (24)

Theorem 3.4 For all f ∈ E(R) we have

V f = X (fe) +MX d

dx
(fo). (25)

Proof. If f ∈ Ee(R), then (25) follows by combining (17), (18) and (20). If
f ∈ Eo(R), then by (17), (18), (23) and an integration by parts we get

V f(x) = −sgn(x)

A(x)

∫ |x|
0

∂

∂y
GK(x, y)f(y)dy

=
sgn(x)

A(x)

∫ |x|
0

GK(x, y)f ′(y)dy

= MX d

dx
f(x).

Therefore, identity (25) is true for every f ∈ E(R). �

Remark 3.5 (i) It follows from (2) and (22) that

MX d

dx
(fo) =MX d2

dx2
I(fo) =M∆XI(fo) = ΛXI(fo).

So
V f = X (fe) + ΛXI(fo) (26)

for all f ∈ E(R).

(ii) If q(x) = 0, then by (3) and (26),

V f = X (fe) +
d

dx
XI(fo) (27)

for all f ∈ E(R).
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Theorem 3.6 The integral transform V is the only automorphism of E(R)
satisfying

V
d

dx
f = ΛV f and V f(0) = f(0) (28)

for all f ∈ E(R). The inverse transform V −1 is given by

V −1f = X−1(fe) + IX−1Λ(fo). (29)

Proof. Notice that the first derivative operator d/dx is one-to-one from Eo(R)
onto Ee(R), and (d/dx)−1 = I. So according to (25) and Lemma 3.3(i), V is
an automorphism of E(R). Let us check (28). If f ∈ Ee(R), then by (2), (22)
and (25),

V
d

dx
f =MX d2

dx2
f =M∆X f = ΛX f = ΛV f.

If f ∈ Eo(R), then by (25) and Lemma 3.3(i),

ΛV f = ΛMX d

dx
f = X d

dx
f = V

d

dx
f.

Finally, assume that Ṽ is another automorphism of E(R) satisfying (28). Set

θλ(x) = Ṽ (eiλ·)(x), x ∈ R, λ ∈ C. By (28) we have

Λθλ(x) = ΛṼ (eiλ·)(x) = Ṽ
d

dx
(eiλ·)(x) = iλṼ (eiλ·)(x) = iλθλ(x),

θλ(0) = Ṽ (eiλ·)(0) = 1.

From this and Theorem 2.3 we deduce that θλ(x) = Φλ(x). As the functions

x → eiλx, λ ∈ C, are dense in E(R), it follows that Ṽ = V . This clearly
achieves the proof. �

Remark 3.7 (i) By Theorem 3.6, V is an intertwining operator between Λ
and d/dx on the space E(R).

(ii) If q(x) = 0, it follows from (27) that

V −1f = X−1(fe) +
d

dx
X−1I(fo)

for all f ∈ E(R).

(iii) The inverse transform X−1 has been determined in [12, Theorem 5.3]
in the form of an integro-differential operator.

(iv) For a > 0, let Ea(R) be the subspace of E(R) consisting of functions
vanishing inside [−a, a]. Then from (18), (29) and [12, Theorem 5.3], it is not
difficult to prove that the integral transform V is an automorphism of Ea(R).
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Theorem 3.8 (i) The dual transform tV of V , defined on E ′(R) by

〈 tV S, f〉 = 〈S, V f〉, f ∈ E(R),

is a bijection from E ′(R) onto itself. More precisely, suppS ⊂ [−a, a] if, and
only if, supp tV S ⊂ [−a, a]. Moreover,

d

dx
tV S = tV ΛS, for all S ∈ E ′(R). (30)

(ii) If f ∈ D(R), then the distribution tV (Af) is given by the function

tV f(y) =

∫
|x|≥|y|

K(x, y)f(x)A(x)dx, y ∈ R, (31)

where K(x, y) is given by (17).

Proof. Statement (ii) is obtained by using (18) and Fubini’s theorem. Let us
check (i). The fact that tV is one-to-one from E ′(R) onto itself follows readily
from Theorem 3.6. Identity (30) is a direct consequence of (28). Let S ∈ E ′(R)
be supported in [−a, a]. If f ∈ E(R) with support in |x| > a, then there is δ > 0
such that f = 0 on [−δ−a, a+δ], which implies that V f = 0 on [−δ−a, a+δ]
by virtue of Remark 3.7(iv). Then suppV f ⊂ |x| ≥ a + δ ⊂ |x| > a, and
consequently 〈 tV S, f〉 = 〈S, V f〉 = 0. This proves that |x| > a is a nullity
open for tV S, that is, supp tV S ⊂ [−a, a]. The same argument shows that
supp tV −1S ⊂ [−a, a]. �

Remark 3.9 Theorem 3.8(ii) means that the integral transforms V and tV ,
given respectively by (18) and (31), are transposed, i.e.,∫

R
V f(x)g(x)A(x)dx =

∫
R
f(y) tV g(y)dy (32)

for any f ∈ E(R) and g ∈ D(R).

In order to study the integral transform tV , we introduce an auxiliary
integral transform tX defined on De(R) by

tX f(y) =

∫ ∞
|y|
K(x, y)f(x)A(x)dx, y ∈ R, (33)

where K(x, y) is given by (13). It was shown in [12] that tX is an automorphism
of De(R) satisfying the intertwining relation

d2

dx2
tX f = tX∆f, f ∈ De(R). (34)
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Moreover, X and tX are dual in the sense of the relation∫
R
X f(x)g(x)A(x)dx =

∫
R
f(y) tX g(y)dy, (35)

which is valid for any f ∈ Ee(R) and g ∈ De(R). For A(x) = |x|2α+1 and
q(x) = 0, the intertwining operator tX is exactly the Weyl integral transform
of order α defined by

Wα(f)(y) =
2 Γ(α + 1)√
π Γ(α + 1/2)

∫ ∞
|y|

f(x) (x2 − y2)α−1/2 x dx, y ∈ R.

Theorem 3.10 For all f ∈ D(R),

tV f = tX (fe) +
d

dx
tXJ (fo). (36)

Proof. If f ∈ De(R), then (36) follows directly from (17), (31) and (33).
Suppose f ∈ Do(R). By (24), (25) and (35), we have∫

R
V g(x)f(x)A(x)dx =

∫
R
MX d

dx
(go)(x)f(x)A(x)dx

= −
∫
R
X d

dx
(go)(x)J f(x)A(x)dx

= −
∫
R

d

dx
(go)(x) tXJ f(x)dx

=

∫
R
go(x)

d

dx
tXJ f(x)dx

=

∫
R
g(x)

d

dx
tXJ f(x)dx

for any g ∈ E(R). This ends the proof in view of (32). �

Remark 3.11 (i) It follows from (1), (4) and (34) that

d

dx
tXJ (fo) = J d2

dx2
tXJ (fo) = J tX∆J (fo) = J tX Λ̃(fo).

So
tV f = tX (fe) + J tX Λ̃(fo) (37)

for all f ∈ D(R).

(ii) If q(x) = 0, then by (3), (4) and (37),

tV f = tX (fe) + J tX Λ(fo)

for all f ∈ D(R).
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A generalization of the classical integration by parts formula is as follows.

Lemma 3.12 Let f ∈ E(R) and g ∈ D(R). Then∫
R

Λf(x)g(x)A(x)dx = −
∫
R
f(x)Λ̃g(x)A(x)dx, (38)

where Λ̃ is given by (4).

Proof. We have∫
R

Λf(x)g(x)A(x)dx =

∫
R
(Λf)e(x)ge(x)A(x)dx+

∫
R
(Λf)o(x)go(x)A(x)dx

= κ1 + κ2.

By (3), (4) and (24) we get

κ1 =

∫
R

(
f ′o(x) +

A′(x)

A(x)
fo(x)

)
ge(x)A(x)dx

=

∫
R
(A(x)fo(x))′ge(x)dx

= −
∫
R
fo(x)g′e(x)A(x)dx

= −
∫
R
fo(x)(Λ̃g)o(x)A(x)dx

and

κ2 =

∫
R
f ′e(x)go(x)A(x)dx+

∫
R
M(qfe)(x)go(x)A(x)dx

= −
∫
R
fe(x)(A(x)go(x))′dx−

∫
R
q(x)fe(x)J (go)(x)A(x)dx

= −
∫
R
fe(x)

(
g′o(x) +

A′(x)

A(x)
go(x) + q(x)J (go)(x)

)
A(x)dx

= −
∫
R
fe(x)(Λ̃g)e(x)A(x)dx

Hence

κ1 + κ2 = −
∫
R
fe(x)(Λ̃g)e(x)A(x)dx−

∫
R
fo(x)(Λ̃g)o(x)A(x)dx

= −
∫
R
f(x)Λ̃g(x)A(x)dx.

This clearly yields the result. �
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Theorem 3.13 (i) The integral transform tV is an automorphism of D(R).
More precisely, f ∈ Da(R) if, and only if, tV f ∈ Da(R).

(ii) The inverse transform tV −1 is given by

tV −1f = tX−1(fe) +
d

dx
tX−1J (fo).

(iii) The transform tV satisfies the permutation relation

d

dx
tV f = tV Λ̃f, f ∈ D(R). (39)

Proof. Observe that J is one-to-one from Do(R) onto De(R), and J −1 =
d/dx. So (i) and (ii) follow from (36). Moreover, by (28), (32) and (38),∫

R

d

dx
tV f(x)g(x)dx = −

∫
R

tV f(x)
d

dx
g(x)dx

= −
∫
R
f(x)V

d

dx
g(x)A(x)dx

= −
∫
R
f(x) ΛV g(x)A(x)dx

=

∫
R

Λ̃f(x)V g(x)A(x)dx

=

∫
R

tV Λ̃f(x) g(x)dx

for any f ∈ D(R) and g ∈ E(R). This proves (39). �

Remark 3.14 (i) From Theorem 3.13, we deduce that tV is an intertwining

operator between Λ̃ and d/dx on the space D(R).

(ii) The inverse transform tX−1 has been expressed in [12, Theorem 6.3]
in the form of an integro-differential operator.

4 Generalized Fourier transform

Notation. We denote by

−Ha, a > 0, the space of entire, rapidly decreasing functions of exponential
type a; that is, f ∈ Ha if and only if , f is entire on C and for all m = 0, 1, ...,

pm(f) = sup
λ∈C

∣∣(1 + λ)mf(λ)e−a|Imλ|
∣∣ <∞.

The topology of Ha is defined by the semi-norms pm, m = 0, 1, ... .
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− H = ∪a>0Ha, endowed with the inductive limit topology.

− Ha, a > 0, the space of entire, slowly increasing functions of exponential
type a; that is, f ∈ Ha, if and only if, f is entire on C and there is m = 0, 1, ...
such that,

sup
λ∈C

∣∣(1 + |λ|)−mf(λ)e−a|Imλ|
∣∣ <∞.

− H = ∪a>0Ha.

Definition 4.1 (i) The generalized Fourier transform of a distribution S ∈
E ′(R) is defined by

FΛ(S)(λ) = 〈S,Φ−λ〉, λ ∈ C.

(ii) The generalized Fourier transform of a function f ∈ D(R) is defined
by

FΛ(f)(λ) =

∫
R
f(x)Φ−λ(x)A(x)dx, λ ∈ C.

Remark 4.2 For A(x) = |x|2α+1 and q(x) = 0, the transform FΛ is exactly
the Dunkl transform with parameter α+1/2 associated with the reflection group
Z2 on R (see [3]).

Theorem 4.3 (i) We have

FΛ(S)(λ) = Fu
(
tV S

)
(λ), for all S ∈ E ′(R), (40)

FΛ(f)(λ) = Fu
(
tV f

)
(λ), for all f ∈ D(R), (41)

where Fu denotes the usual Fourier transform on R given by

Fu(S)(λ) =

∫
R
e−iλx dS(x), S ∈ E ′(R).

(ii) For all f ∈ D(R) and λ ∈ C,

FΛ

(
f
)
(λ) = FΛ(f)

(
−λ
)
, FΛ(f−)(λ) = FΛ(f)(−λ),

where f−(x) = f(−x), x ∈ R.

(iii) We have

FΛ(ΛS)(λ) = iλFΛ(S)(λ), for all S ∈ E ′(R),

FΛ(Λ̃f)(λ) = iλFΛ(f)(λ), for all f ∈ D(R). (42)

(iv) For all f ∈ D(R),

FΛ(f)(λ) = F∆(fe)(λ) + iλF∆J (fo)(λ), (43)
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where F∆ stands for the Fourier transform related to the differential operator
∆, defined (see [12]) on De(R) by

F∆(h)(λ) =

∫
R
h(x)ϕλ(x)A(x)dx, λ ∈ C,

ϕλ being the eigenfunction of ∆ defined by Lemma 2.1.

Proof. Assertion (i) follows directly from (19), Theorem 3.8 and Definition
4.1. Assertion (ii) is a consequence of (11). Assertion (iii) follows by applying
the usual Fourier transform to both sides of (30) (resp. (39)) and by using (40)
(resp. (41)). Assertion (iv) follows by combining (36), (41) and the identity

F∆(h)(λ) = Fu
(
tXh

)
(λ), h ∈ De(R),

(see [12]). �

Remark 4.4 (i) For A(x) = |x|2α+1 and q(x) = 0, the transform F∆ is
just the Fourier-Bessel transform of order α (see [14]).

(ii) For A(x) = (sinh |x|)2α+1 (coshx)2β+1 and q(x) = (α + β + 1)2 with
β ≥ −1/2, the transform F∆ coincides with the Jacobi transform of order
(α, β)(see [6]).

We can now state the main result of this section.

Theorem 4.5 (Paley-Wiener) (i) The generalized Fourier transform FΛ

is a bijection from E ′(R) onto H. More precisely, S has its support in [−a, a]
if, and only if, FΛ(S) ∈ Ha.

(ii) The generalized Fourier transform FΛ is an isomorphism from D(R)
onto H. More precisely, f ∈ Da(R) if, and only if, F(f) ∈ Ha.

Proof. The result follows by combining Theorems 3.8 and 3.13, identities (40)
and (41), and the classical Paley-Wiener theorem. �

Trimeche [12] has obtained for the transform F∆ the following inversion
result.

Theorem 4.6 For all f ∈ De(R),

f(x) =

∫
R
F∆(f)(λ)ϕλ(x)dµ1(λ) +

∫
R
F∆(f)(iλ)ϕiλ(x)dµ2(λ), (44)

where µ1 is an even positive tempered measure on R, and µ2 is an even positive
measure on R satisfying∫

R
ea|y|dµ2(y) <∞, for all a > 0.
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Remark 4.7 (i) The pair (µ1, µ2) is called the spectral measure associated
with the differential operator ∆.

(ii) When q(x) = 0, it was shown in [9] that µ2 = 0. Furthermore, if the
function χ defined by (6), is integrable at infinity, then according to Bracco [1],

dµ1(λ) =
dλ

|c(|λ|)|2
,

where c(s) is a continuous function on ]0,∞[ such that c(s) ∼ k/sα+1/2, as
s→∞, for some k ∈ C.

(iii) If A(x) = |x|2α+1 and q(x) = 0, then by [12],

dµ1(λ) =
1

22α+2 (Γ(α + 1))2
|λ|2α+1dλ and µ2 = 0.

(iv) For A(x) = (sinh |x|)2α+1 (coshx)2β+1 and q(x) = (α + β + 1)2 with
α ≥ β > −1/2, we know by [6] that

dµ1(λ) =
dλ

|c(|λ|)|2
and µ2 = 0,

where

c(s) =

√
π 2α+β+2−is Γ(is) Γ(α + 1)

Γ[(α + β + 1 + is)/2] Γ[(α− β + 1 + is)/2]
, s > 0.

A direct consequence of Theorem 4.6 is as follows.

Theorem 4.8 For all f ∈ D(R),

f(x) +M(qJ fo)(x) =

∫
R
FΛ(f)(λ)Φλ(x)dµ1(λ) +

∫
R
FΛ(f)(iλ)Φiλ(x)dµ2(λ),

(45)
µ1 and µ2 being as in Theorem 4.6.

Proof. By (5), (10), (21) and (43),∫
R
FΛ(f)(λ)Φλ(x)dµ1(λ) =

∫
R
F∆(fe)(λ)ϕλ(x)dµ1(λ)

−
∫
R
λ2F∆J (fo)(λ)M(ϕλ)(x)dµ1(λ)

=

∫
R
F∆(fe)(λ)ϕλ(x)dµ1(λ)

+ M∆

(∫
R
F∆J (fo)(λ)ϕλ(·)dµ1(λ)

)
(x)



Intertwining operators associated with a singular integro-differential operator 75

and∫
R
FΛ(f)(iλ)Φiλ(x)dµ2(λ) =

∫
R
F∆(fe)(iλ)ϕiλ(x)dµ2(λ)

+

∫
R
λ2F∆J (fo)(iλ)M(ϕiλ(x)dµ2(λ)

=

∫
R
F∆(fe)(iλ)ϕiλ(x)dµ2(λ)

+ M∆

(∫
R
F∆J (fo)(iλ)ϕiλ(·)dµ2(λ)

)
(x).

But by (3), (22) and (44),∫
R
F∆(fe)(λ)ϕλ(x)dµ1(λ) +

∫
R
F∆(fe)(iλ)ϕiλ(x)dµ2(λ) = fe(x)

and

M∆

(∫
R
F∆J(fo)(λ)ϕλ(·)dµ1(λ) +

∫
R
F∆J (fo)(iλ)ϕiλ(·)dµ2(λ)

)
(x) =

= M∆J (fo)(x)

= ΛJ (fo)(x)

= fo(x) +M(qJ fo)(x),

which concludes the proof. �

5 Generalized translation

With the help of the intertwining operators studied in Section 3, we introduce
in E(R) translation operators corresponding to the integro-differential operator
Λ, and which generalize the usual translation operators on the real line :

f → τxf(y) = f(x+ y).

Definition 5.1 We define the generalized translation operators T x, x ∈ R,
on E(R) by

T xf(y) = VxVy
[
V −1f(x+ y)

]
, y ∈ R.

This generalized translation shares several properties with the ordinary trans-
lation on R.

Theorem 5.2 (i) For all x ∈ R, T x is a linear bounded operator from E(R)
into itself; the function x 7→ T x is C∞.
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(ii) We have

T 0 = identity, T xT y = T yT x, ΛT x = T xΛ.

(iii) For all f ∈ E(R),

T xf(y) = T yf(x).

(iv) For each λ ∈ C, the eigenfunction Φλ satisfies the product formula :

T x(Φλ)(y) = Φλ(x)Φλ(y).

(v) For f ∈ E(R), the function u(x, y) = T xf(y) is the unique solution of
the problem 

Λxu(x, y) = Λyu(x, y),

u(0, y) = f(y).

In order to construct a convolution product tied to the integro-differential
operator Λ, we need to compute the transposed operators of T x, x ∈ R.

Theorem 5.3 For all f ∈ E(R) and g ∈ D(R), we have∫
R
T xf(y)g(y)A(y)dy =

∫
R
f(y) tT xg(y)A(y)dy,

where
tT xg(y) = Vx

(
tV −1

)
y

[
tV g(y − x)

]
, y ∈ R.

Proof. By (32) and Definition 5.1,∫
R
T xf(y)g(y)A(y)dy =

∫
R
VxVy

[
V −1f(x+ y)

]
g(y)A(y)dy

= Vx

(∫
R
Vy
[
V −1f(x+ y)

]
g(y)A(y)dy

)
= Vx

(∫
R
V −1f(x+ y) tV g(y)dy

)
= Vx

(∫
R
V −1f(z) tV g(z − x)dz

)
= Vx

(∫
R
f(z)

(
tV −1

)
z

[
tV g(z − x)

]
A(z)dz

)
=

∫
R
f(z)Vx

(
tV −1

)
z

[
tV g(z − x)

]
A(z)dz

=

∫
R
f(z) tT xg(z)A(z)dz,

which is the desired result. �
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Remark 5.4 (i) According to the proof of Theorem 5.3, the operators tT x,
x ∈ R, may also be formulated as

tT xf(y) =
(
tV −1

)
y
Vx
[
tV f(y − x)

]
, y ∈ R.

(ii) If q(x) = 0, then by [9], tT x = T−x, for all x ∈ R.

Theorem 5.5 Let f be in Da(R), a > 0. Then for all x ∈ R, tT xf is an
element of Da+|x|(R) and

F
(
tT xf

)
(λ) = Φ−λ(x)Ff(λ), λ ∈ C. (46)

Proof. Set

Kx =


K(x, ·) if x 6= 0,

δ0 if x = 0,

where K(x, ·) is given by (17), and δ0 is the Dirac measure at the point x = 0.
It is not hard to see that

tT xf = tV −1
[
Kx ∗ tV f

]
,

where ∗ stands for the usual convolution on R. The result is now a consequence
of (16), (41) and Theorem 3.13. �

Remark 5.6 Let f ∈ D(R). From (11), (45) and (46) we get

tT xf(0) =

∫
R
FΛ(f)(λ)Φλ(−x)dµ1(λ) +

∫
R
FΛ(f)(iλ)Φiλ(−x)dµ2(λ)

= f(−x)−M(qJ fo)(x).

Delsarte and Lions [2] have defined in Ee(R) translation operators Sx,
x ∈ R, related to the differential operator ∆, and which generalize the usual
symmetric translation operators on the real line :

f → σxf(y) =
f(x+ y) + f(x− y)

2
.

More explicitly,

Sxf(y) = XxXy
[
σxX−1f(y)

]
, y ∈ R.

The Sx, x ∈ R, are linear bounded operator from Ee(R) into itself, and possess
the following fundamental properties :

S0 = identity, Sxf(y) = Syf(x) and ∆Sx = Sx∆. (47)

Trimeche [12] pointed out that the Sx map De(R) into itself, and satisfy
the relation

F∆ (Sxf) (λ) = ϕλ(x)F∆(f)(λ), f ∈ De(R). (48)

In the following theorem, the operators tT x are expressed in terms of Sx.
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Theorem 5.7 For all f ∈ D(R),

tT xf(y) = Sxfe(y)− ΛSyJ fo(x) +
∂

∂y
SxJ fo(y)− ∂

∂y
M(Syfe)(x).

Remark 5.8 Notice that for f ∈ De(R),

Sxf(y) =
tT xf(y) + tT xf(−y)

2
.

In order to simplify the proof of Theorem 5.7, we first establish the following
technical lemma.

Lemma 5.9 For all f ∈ D(R),∫
R

ΛSyJ fo(x)ϕλ(y)A(y)dy = −λ2Mϕλ(x)F∆(J fo)(λ),

∫
R
MSyfe(x)ϕλ(y)A(y)dy =Mϕλ(x)F∆(fe)(λ).

Proof. By use of (21), (22), (47), (48) and the identity

F∆(∆h)(λ) = −λ2F∆(h)(λ), h ∈ De(R),

(see [12]), we obtain∫
R

ΛSyJ fo(x)ϕλ(y)A(y)dy =

∫
R
M∆SyJ fo(x)ϕλ(y)A(y)dy

=

∫
R

(
1

A(x)

∫ x

0

∆SyJ fo(t)A(t)dt

)
×

× ϕλ(y)A(y)dy

=

∫
R

(
1

A(x)

∫ x

0

St∆J fo(y)A(t)dt

)
×

× ϕλ(y)A(y)dy

=
1

A(x)

∫ x

0

F∆

(
St∆J fo

)
(λ)A(t)dt

=
1

A(x)

∫ x

0

ϕλ(t)A(t)dt F∆(∆J fo)(λ)

= −λ2Mϕλ(x) F∆(J fo)(λ)

and∫
R
MSyfe(x)ϕλ(y)A(y)dy =

∫
R

(
1

A(x)

∫ x

0

Syfe(t)A(t)dt

)
ϕλ(y)A(y)dy
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=

∫
R

(
1

A(x)

∫ x

0

Stfe(y)A(t)dt

)
ϕλ(y)A(y)dy

=
1

A(x)

∫ x

0

F∆

(
Stfe

)
(λ)A(t)dt

=
1

A(x)

∫ x

0

ϕλ(t)A(t)dt F∆(fe)(λ)

= Mϕλ(x) F∆(fe)(λ).

This ends the proof. �

Proof of Theorem 5.7. Let f ∈ D(R). Put

ux(y) =
tT xf(y) + tT xf(−y)

2
and vx(y) =

tT xf(y)− tT xf(−y)

2
.

A combination of (10), (43) and (46) yields

F∆(ux)(λ) = ϕλ(x)F∆(fe)(λ) + λ2Mϕλ(x)F∆(J fo)(λ) (49)

and
F∆(J vx)(λ) = ϕλ(x)F∆(J fo)(λ)−Mϕλ(x)F∆(fe)(λ). (50)

As by (48),

ϕλ(x)F∆(fe)(λ) = F∆ (Sxfe) (λ) and ϕλ(x)F∆(J fo)(λ) = F∆(SxJ fo)(λ),

it follows from (49), (50) and Lemma 5.9 that

ux(y) = Sxfe(y)− ΛSyJ fo(x)

and
J vx(y) = SxJ fo(y)−M (Syfe) (x).

This clearly yields the result. �

Definition 5.10 For f ∈ D(R) and g ∈ E(R), the generalized convolution
product f#g is defined by

f#g(x) =

∫
R

tT yf(x)g(y)A(y)dy, x ∈ R.

Theorem 5.11 (i) Let f ∈ Da(R) and g ∈ Db(R). Then f#g ∈ Da+b(R)
and

FΛ(f#g)(λ) = FΛ(f)(λ)FΛ(g)(λ), λ ∈ C. (51)

(ii) For all f, g ∈ D(R),

tV (f#g) = tV f ∗ tV g. (52)
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Proof. Assertion (i) follows from Theorem 4.5(ii) and formula (46). Identity
(52) follows by applying the usual Fourier transform to both its sides and by
using formulas (41) and (51). �

We conclude the paper by a Plancherel type formula for the generalized
Fourier transform FΛ.

Theorem 5.12 For all f, g ∈ D(R),∫
R
f(y)g(−y)A(y)dy +

∫
R
q(y)J fo(y)J go(y)A(y)dy =

=

∫
R
FΛ(f)(λ)FΛ(g)(λ)dµ1(λ) +

∫
R
FΛ(f)(iλ)FΛ(g)(iλ)dµ2(λ),

µ1 and µ2 being as in Theorem 4.6.

Proof. By (24) and Remark 5.6,

f#g(0) =

∫
R

tT yf(0)g(y)A(y)dy

=

∫
R

[f(−y)−M(qJ fo)(y)] g(y)A(y)dy

=

∫
R
f(−y)g(y)A(y)dy −

∫
R
M(qJ fo)(y)go(y)A(y)dy

=

∫
R
f(y)g(−y)A(y)dy +

∫
R
q(y)J fo(y)J go(y)A(y)dy.

Moreover, it follows from (45) and (51), that

f#g(0) =

∫
R
FΛ(f)(λ)FΛ(g)(λ)dµ1(λ) +

∫
R
FΛ(f)(iλ)FΛ(g)(iλ)dµ2(λ).

This completes the proof. �

6 Open Problems

The most important open questions about the integro-differential operator Λ
are as follows :

1. Is-it possible to determine sufficient conditions on the function A, in
order to ensure the positivity of the kernel K(x, y) in the Laplace integral
formula (16).

2. Is-it possible to obtain a product type formula for the eigenfunctions
Φλ(x), namely,

Φλ(x)Φλ(y) =

∫
R

Φλ(z) dΩx,y(z),
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where Ωx,y are finite Borel measures on R satisfying

‖Ωx,y‖ ≤ C for all x, y ∈ R,

for some constant C > 0.

The resolution of these problems will certainly allow us to extend many
mathematical theories on the real line to the integro-differential operator Λ.

Acknowledgements. The author is deeply grateful to Professor H.M. Sri-
vastava for his kindness and encouragement.
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Vol. 33, No. 1 (1959), 59-69.

[3] M.F.E. De Jeu, The Dunkl transform, Invent. Math. 133 (1993), 147-162.

[4] C.F. Dunkl, Integral kernels with reflection group invariance, Can. J.
Math. 43 (1991), 1213-1227.

[5] S. Kamefuchi and Y. Ohnuki, Quantum Field Theory and Parastatistics,
University of Tokyo Press, Springer-Verlag, 1982.

[6] T.H. Koornwinder, A new proof of a Paley-Wiener type theorem for the
Jacobi transform, Ark. Math. 13 (1975), 145-159.

[7] J.L. Lions, Equations d’Euler-Poisson-Darboux généralisées, C. R. Acad.
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