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1 Introduction

Let Hn(p) denote the class of functions of the form

f(z) = zp +
∞∑

k=n+p

akz
k, (n, p ∈ N = {1, 2, · · ·}), (1)

which are analytic and multivalent in the open unit disk U = {z ∈ C : |z| < 1}.
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A function f ∈ Hn(p) is said to be in the class S∗n(p, α) of multivalent
starlike functions of order α in U if it satisfies the following inequality:

Re
(zf ′(z)

f(z)

)
> α, 0 ≤ α < p, p ∈ N, z ∈ U . (2)

On the other hand, a function f ∈ Hn(p) is said to be in the class Cn(p, α) of
multivalent close-to-convex functions of order α in U if it satisfies the following
inequality:

Re(z1−pf ′(z)) > α, 0 ≤ α < p, p ∈ N, z ∈ U . (3)

We observe that S∗1 (1, α) = S∗(α) and C1(1, α) = C(α), where S∗(α) are
the usual subclasses of H1(1) consisting of functions which are starlike of order
α(0 ≤ α < 1) and close-to-convex of order α(0 ≤ α < 1) in U , respectively
(see, for details, [1, 2]).

Recently Frasin (see [3]) introduced and studied the following class of an-
alytic and multivalent functions defined as follows (see also [4]).

Definition 1.1. A function f ∈ Hn(p) is said to be a member of the class
Bn(p, µ, α) if and only if∣∣∣( zp

f(z)

)µ−1
z1−pf ′(z)− p

∣∣∣ < p− α, (p ∈ N) (4)

for some µ ≥ 0, α(0 ≤ α < p), z ∈ U.
Note that condition (1.4) implies that

Re
(( zp

f(z)

)µ−1
z1−pf ′(z)

)
> α, z ∈ U . (5)

The class B1(1, 1, α) = B(α) is the class which has been introduced and studied
by Frasin and Darus [5] (see also [6]).

To prove our main result, we need the following Lemma:
Lemma 1.1 (see [7]). Let the function w(z) be(nonconstant) analytic in U

with w(0) = 0. If |w(z)| attsts its maximum value on the circle |z| = r < 1 at
a point z0 ∈ U , then

z0w
′(z0) = kw(z0), (6)

where k ≥ 1 is a real number.

2 Main results and their consequences

Theorem 2.1. Let f ∈ Hn(p), w ∈ C \ {0}, µ ≥ 0, 0 ≤ α < p, p ∈ N, and also
let the function H be defined by

H(z) =
( ( zp

f(z)
)µ−1z1−pf ′(z)

( zp

f(z)
)µ−1z1−pf ′(z)− p

)(
1+

zf ′′(z)

f ′(z)
+(1−µ)

zf ′(z)

f(z)
+(µ−2)p

)
. (7)
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If H(z) satisfies one of the following conditions:

Re{H(z)} =


< |w|−2Re{w} ifRe{w} > 0,
6= 0 ifRe{w} = 0,
> |w|−2Re{w} ifRe{w} < 0.

(8)

or

Im{H(z)} =


< |w|−2Im{w̄} if Im{w̄} > 0,
6= 0 if Im{w̄} = 0,
> |w|−2Im{w̄} if Im{w̄} < 0.

(9)

then ∣∣∣((
zp

f(z)
)µ−1z1−pf ′(z)− p

)w∣∣∣ < p− α, (10)

where the value of complex power in (10) is taken to be as its principal value.
Proof. We define the function Ω by(

(
zp

f(z)
)µ−1z1−pf ′(z)− p

)w
= (p− α)Ω(z), (11)

where w ∈ C \ {0}, µ ≥ 0, 0 ≤ α < p, p ∈ N, z ∈ U , f ∈ Hn(p).
We see clearly that the function Ω is regular in U and Ω(0) = 0.Making

use of the logarithmic differentiation of both sides of (11) with respect to the
known complex variable z, and if we make use of equality (11) once again,
then we find that

wz
(

(
zp

f(z)
)µ−1z1−pf ′(z)− p

)−1(
(
zp

f(z)
)µ−1z1−pf ′(z)− p

)′
=
zΩ′(z)

Ω(z)
, (12)

which yields

H(z) =
w̄

|w|2
zΩ′(z)

Ω(z)
, w ∈ C \ {0}, z ∈ U . (13)

Assume that there exists a point z0 ∈ U such that

max
|z|<|z0|

|Ω(z)| = |Ω(z0)| = 1, z ∈ U . (14)

Applying Lemma 1.1, we can then write

z0Ω
′(z0) = cΩ(z0), c ≥ 1. (15)

Then (13) yields

Re{H(z0)} = Re
{ w̄

|w|2
z0Ω

′(z0)

Ω(z0)

}
= Re{cw̄|w|−2}, (16)
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so that

Re{H(z0)} =


≥ |w|−2Re{w} ifRe{w} > 0,
= 0 ifRe{w} = 0,
≤ |w|−2Re{w} ifRe{w} < 0,

(17)

or

Im{H(z0)} =


≥ |w|−2Im{w̄} if Im{w̄} > 0,
= 0 if Im{w̄} = 0,
≤ |w|−2Im{w̄} if Im{w̄} < 0.

(18)

But the inequalities in (17) and (18) contradict, respectively, the inequalities
in (8) and (9). Hence, we conclude that |Ω(z)| < 1 for all z ∈ U . Consequently,
it follows from (11) that∣∣∣((

zp

f(z)
)µ−1z1−pf ′(z)− p

)w∣∣∣ = (p− α)|Ω(z)| < p− α. (19)

Therefore, the desired proof is completed. �
This theorem has many interesting and important consequences in analytic

function theory and geometric function theory. We give some of these with
their corresponding geometric properties.

First, if we choose the value of the parameter w as a real number with
w = δ ∈ R \ {0} in the theorem, then we obtain the following corollary.

Corollary 2.2. Let f ∈ Hn(p), δ ∈ R \ {0}, µ ≥ 0, 0 ≤ α < p, p ∈ N,
and let the function H be defined by (7). Also, if H(z) satisfies the following
conditions:

Re{H(z)} =

{
< 1

δ
if δ > 0,

> −1
δ

if δ < 0,
or Im{H(z)} 6= 0, (20)

then

Re
{

(
zp

f(z)
)µ−1z1−pf ′(z)

}
> p− (p− α)1/δ. (21)

Putting w = 1 in the theorem, we get the following corollary.
Corollary 2.3. Let f ∈ Hn(p), 0 ≤ α < p, p ∈ N, z ∈ U , and let the

function H be defined by (7). Also, if H(z) satisfies the following conditions:

Re{H(z)} < 1 or Im{H(z)} 6= 0, (22)

then f ∈ Bn(p, µ, α).
Setting w = 1 and µ = 1 in the theorem, we have the following corollary.
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Corollary 2.4. Let f ∈ Hn(p), 0 ≤ α < p, p ∈ N, z ∈ U , and let the
function H be defined by

H(z) =
( z1−pf ′(z)

z1−pf ′(z)− p

)(
1 +

zf ′′(z)

f ′(z)
− p
)
. (23)

If H(z) satisfies the following conditions:

Re{H(z)} < 1 or Im{H(z)} 6= 0, (24)

then Re{zf ′(z)/f(z)} > α, that is, f is multivalent starlike of order α in U .

Setting w = 1 and µ = 2 in the theorem, we have the following corollary.

Corollary 2.5. Let f ∈ Hn(p), 0 ≤ α < p, p ∈ N, z ∈ U , and let the
function H be defined by

H(z) =
( zf ′(z)

zf ′(z)− pf(z)

)(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
. (25)

If H(z) satisfies the following conditions:

Re{H(z)} < 1 or Im{H(z)} 6= 0, (26)

then Re{z1−pf ′(z)} > α, that is, f is multivalent close-to-convex of order α in
U .

Lastly, if we take p = 1 in Corollaries 2.4 and 2.5, then we easily obtain
the three important results involving starlike functions of order α(0 ≤ α < 1)
in U , and close-to-convex functions of order α(0 ≤ α < 1) in U , respectively,
(see, e.g., [8,9]).

3 Open Problem

With regards to the problems solved, the this work can also be applied to other
classes. For example, can the same problem be applied for following classes.

Definition 3.1.(see [10]) A function f ∈ Hn(p) is said to be a member of
the class Bp(α, µ, λ) if and only if

∣∣∣(1− α)
( z

f(z)

)µ
+ α

zf ′(z)

pf(z)

( z

f(z)

)µ
− 1
∣∣∣ < 1− λ, (p ∈ N, z ∈ U) (27)

for some µ ≥ 0, 0 ≤ λ < 1, α ∈ C.
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