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Abstract

In this paper we introduce and study some new subclasses of p-valent star-
like, convex, close-to-convex and quasi-convex functions defined by generalized
Srivastava-Attiya operator. Inclusion relationships are established and integral
operator of functions in these subclasses is discussed.
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1. Introduction

Let A (p) denote the class of functions of the form:
FE) =2+ awmd (peN={12.}), (1)
k=1

which are analytic and p—valent in the open unit disc U = {z € C: |2| < 1} . For
simplicity, we write A (1) = A.
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For functions f(z) € A (p), given by (1), and ¢(z) given by
9(2) = 2"+ > b (pEN), (2)
k=1
the Hadamard product (or convolution) of f(z) and g(z) is defined by

(f*9)(2) = 2"+ apiphrsp?™ = (g% f)(2) (2€U; peN).  (3)

A function f € A(p) is said to be in the class S; (a) of p—valently starlike
of order o in U if and only if

£ () N
§R<f(z)>>a 0<a<p;, z€U). (4)

Also, a function f € A(p) is said to be in the class C,(«) of p—valently
convex of order « in U if and only if

%<1+%g>>a 0<a<p;, z€U). (5)
It is easy to observe from (4) and (5) that
f(2) € Cyla) & 21 p(z> € 5% (). (6)

The class S5 («) was introduced by Patil and Thakare [13] and The class C),(«)
was introduced by Owa [10].

Furthermore, a function f € A (p), we say that f € K,(8, «) if there exists
a function g € S;; (a) such that

z2f '(Z))
§R< >3 (0<a,B<p; z€U). 7
e ( ) @
Functions in the class K,(8, ) are called p—valently close-to-convex of order
B and type a. The class K,(3, a) was studied by Aouf [1]. We also say that a
function f € A(p) is in the class K (3, ) of p—valently quasi-convex of order
B and type « if there exists a function g € C,(«) such that

%(@%)))>>ﬁ 0<a,B<p;, z€U). (8)
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The class K;(3, a) was studied by Aouf [2].
It follows from (7) and (8) that

f(z) € KX(B,0) & =

€ Ky(8, ). (9)

Recently, Srivastava and Attiya [18] (see also [4, 5, 8, 14]) introduced and
investigated the linear operator:

Tsnf (2 Z+Z (iii) a2’ (ZEU; beC\Z ={-1,-2,...}; s€C; fE.A) )

Motivated essentially by the above-mentioned Srivastava-Attiya operator, Wang
et al. [19] (see also [20]) introduced the linear operator:

TNEf(z): A(p) — Alp)
which is defined as

— k+p+0
(s€eC; beC\Z; peN; A>—p; z€U), (10)

(N + b \°

where (6), is the Pochhammer symbol defined, in terms of the Gamma function
[, by

() _Te+v) (1 (r=0; 6 € C* =C\{0}),
TTl) | 000+1)..(0+v—1) (veEN; 0eC).
(11)
It is readily verified from (10) that
(T0FR) = 0+ N TN - AT ) (12)
and
2 (T0,0E)) = (4 DTN FE) BTN (2) (13)
By specializing the parameters \, p, s and b, we obtain:
) JEf(2) = Tanf(2) (s€C, be C\Zy) (see Srivastava and Attiya

ii) jlobl f(z) =Jf(2) (b> —1) (see Bernardi [3] and Libera [7]);

(
1 ]2,
(it}) T f(2) =T f(2) (s > 0) (see Jung [6]);
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(iv) j£7’1f( ) = O‘f(z) ( > 1, B> 1) (see Patel and Sahoo [11];
(v) TP f(2) = z) (s is any integer) (see Patel and Sahoo [12]);

oS (
(vi) J. sllpp f(z) = IS f(2) (s >0) (see Shams et al. [17]).
Also, we note that:

Tow""f(z) = Thf(2)

(sE(C;bE(C\Z_;pEN).

We now define the followmg subclasses of p-valent function class A (p) by
means of the linear operator J 3 given by (10).
Definition 1. In conjunction with (4) and (10),

S () ={f(x) € Alp): TWF(2) € Sp(a), 0<a<p).
Definition 2. In conjunction with (5) and (10),

O (@) ={f(z) € AW): TYI() € Cyla), 0<a<pf.
Definition 3. In conjunction with (7) and (10),

K0 (8,0) = {(z) € A(p): TP F(2) € Kyp(B,a), 0 a8 <p}.
Definition 4. In conjunction with (8) and (10),

K7 (B.0) = {£(z) € Ap) : TI(2) € K;(B,0). 0< 0,8 <.

Obviously, we know that

!/

f(2) e ()& p(z) € 7 (), (15)

and

T e 2 3 (16

f(z) € K37 (8,0) &
In order to prove our main results, we need the following lemma.
Lemma 1 [9]. Let ®(u,v) be complex valued function, ® : D — C, D C CxC
(C is the complex plane) and let uw = uy+ius, v = v1+ivy. Suppose that ®(u,v)
satisfies the following conditions:
(i) ®(u,v) is continuous in D;
(i1) (1,0) € D and R{P(1,0)} > 0;
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1+ 2
(111) R{P(iug,v1)} <0 for all (iug,v1) € D and such that vy < ! Zug)

Let
q(2) =1+ qz+ @+ .. (17)

be reqular in the unit disc U such that (q(z),2q (2)) € D for all z € U. If

R{0(().24 (=)} >0 (z€0),

then
R{q(z)} >0 (z€U).

2. The Main Inclusion Relationships

Unless otherwise mentioned, we assume throughout this paper that :

seC,beC\Z, peN and A > —p.

In this section, we give several inclusion relationships for p-valent function
classes, which are associated with the linear operator js’\;)p .
Theorem 1. Let 0 < a < p and Re{b} = b > —a. Then

Syt (@) C S (@) © Sy (). (18)
Proof. We first prove that
SN (@) € SiF (a). (19)

Let f(z) € Si;rl’p () and set

2 (T 1(2)
AT O + (p — a)q(2), (20)
s,b
where ¢(z) is given by (17). By using identity (12), we obtain
)\+1 pf( )
s,b

Differentiating (21) logarithmically with respect to z, we have

() 20) - wae)

TNE () TG Atatp-a

(p—a)zq
Aa+(p—a)g(z)

= a+(p—a)(z) +
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Let

(p—av
(p—a)u+ A+«
with u = ¢(2) = uy +iuy and v = 2q'(2) = vy +ivy, this show that ®(u, v) sat-
isfies the hypothese of Lemma 1. Consequently, we easily obtain the inclusion
relationship (19). Now, we will prove the second part of relation (18), i.e.

S;\,f (o) C S;\fl,b (). (22)

O(u,v) = (p— Ju+

Let f(2) € Si’,f) () and set

z <‘7s><\£,b (2)>/

= a+(p—a)q(z), (23)
*Zﬁﬁ,bf(z)
where ¢(z) is given by (17). By using identity (13), we obtain
Tl f(2)
(p+b) —=———=b+a+ (p—a)g(z). (24)
J:tﬁ,bf(z)

Differentiating (24) logarithmically with respect to z, we have

7)) p-aede)

+
T f(2) TSz brat(p—a)g(z)

(p—a)zq (2)
b+a+ (p—a)g(z)

= a+(p—a)g(z)+

Let
(p = ajv
p—a)u+b+a
with u = ¢(2) = u; + iug and v = 2q'(2) = v; + iv,, this show that ®(u,v).
Then
(i) ®(u,v) is continuous in D = (C\ﬁ) x C;
(i7) (1,0) € D and R{P(1,0)} =p—a > 0;

(113) for all (iug,v1) € D and such that v; < —

O (u,v) = (p— a)u+

(1+u)

, we have

' (p — @)ur
R{P(iuz,v1)} = N { (p — a)iug + by + by + a}

(p—a) (b +a)uv
(b + @) + (b + (p — @)ua)?
 (pma) (i) (1 +u3)
2 [(b1 + @)’ + (b2 + (p — @)uz)’]
<0,

IN
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which shows that ®(u,v) satisfies the hypothese of Lemma 1. Consequently,
we easily obtain the inclusion relationship (22). Combining the inclusion rela-
tionships (19) and (22), we complete the proof of Theorem 1.

Theorem 2. Let 0 < a < p and Re{b} = by > —a. Then

Coy P (@) © O (@) € C2f () (25)
Proof. Let f(z) € C’;\;l’p (). Then, by Definition 2, we have

T Tf(2) € Gyla), 0<a <p.

S,

Furthermore, in view of the relationship (6), we find that

(7))

p

€ 5,(a),

that is, that
2f (2) )
Ji;rl’p( p ) € Sy (a).

Thus, by using Definition 1 and Theorem 1, we have

%}Z) € S (a) € 87 (a),

which implies that
C;\’Xl’p () C C’;’f ().
The right part of Theorem 2 can be proved by using similar arguments. The

proof of Theorem 2 is thus completed.
Theorem 3. Let 0 < o, < p. Then

KXW (B.0) € KN (B.0) € KN, (B,0). (26)
Proof. Let us begin by proving that

KX (B,a) C K)P (i) (0<a,B8<p). (27)
Let f(z2) € Ks’\jjl’p (8,a) . Then there exists a function ¢(z) € S} («) such that

(7))
0

Re >p (zeU).
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We put \7>‘+1p (2) = 1(z), so that we have

)\+1Pf( )
g(z) € 58)‘;171” (o) and Re (‘7:;1’109(2) ) >3 (z€U).
We next put
(70 5)
u =B+ (p—Balz), (28)

T 9(z)
where ¢(z) is given by (17). Thus, by using identity (12), we obtain

( >\+1Pf( )) _ )\+1p(2f( ))
T g(2) T g(2)

[ G5 @) 2 [0 GrO)]
z [j;}&pg(z)}/ + )\\7;\[,1)9(2)

!

[ (o1 (2)] OO

_ T T9(2)
2|70 9(2)]
Tep 9(2)

Since g(z) € Si;“l’p (a), by using Theorem 1, we can put

\,p e '
J§§§§Xa+@am@x

where
G(z) = g1(x,y) +ig2(x,y) and Re(G(z)) =gi(z,y) >0 (z€U).

Then

!

e @)
( T p( )> Z’};}pg(z) + A B+ (p— B)a(2)]

Zﬁ”ﬂ@ B Ata+(p—a)G(z)

(29)
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We thus find from (28) that

(T2 1) = 18+ (- D] T o). (30)

Differentiating both sides of (30) with respect to z, we obtain

2[72 (1 @) = [7200)] B+ 0 D)) + (0 - B)zd (T o)

) R A L)
T L )

= (p=P)2q (2)+[B+ (p = Ba(2)] [a+ (p — )G(2)] . (31)
By substituting (31) into (29), we have

S(TE) = Bed () + B+ (= Dl A+ a+ (p— )G()

T "9(2) Atat(p—a)G(z)

=B s

: (‘72:1,;;“2)), (p = P)zq (2)
GO {(p BLSR v e } ‘

Taking u = q(2) = u; + iug and v = zq () = vy + ivy, we define the function

O (u,v) by

(p — B)v
Ao+ (p—a)G(2)

CI)(U’ U) = (p - 6)“ + ) (32)

where (u,v) € D = (C\D*) x C and

A
D — {z :2€C and R(G(2)) = qi(z,y) > 1 —ita}.
Then it follows from (32) that
(i) ®(u,v) is continuous in D;

(i1) (1,0) € D and R{P(1,0)} =p— 5 > 0;
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(1 +u)

(111) for all (iug,v1) € D and such that v; < — , we have

R} = M e e
(p—B)vi[(p — )gi(z,y) + A+ q]

[(p — a)gi(z, y) + A+ af* + [(p — a)ga(, )]
(p— )1 +u3) [(p— Vg, y) + A+

2[(p— a)gi(r,y) + A+ al +2[(p — a)ga(, )]
< 0,

<

which shows that ®(u,v) satisfies the hypothese of Lemma 1. Thus, in light
of (28), we easily deduce the inclusion relationship (27).

The remainder of our proof of Theorem 3 would make use of the identity
(13) in analogous manner and assume that

P+ b
p—

D*= {z:zeC and R (G(2)) =g1(z,y)>1 — } , where bj=Re {b} . (33)
We, therefore, choose to omit the details involved.
Theorem 4. Let 0 < o, < p. Then

Ko (8,0) € K9P (B,a) € K2 (B, ). (34)

Proof. Just as we derived Theorem 2 as a consequence of Theorem 1 by
using the equivalence (6), we can also prove Theorem 4 by using Theorem 3
in conjunction with the equivalence (9).

3. A set of integral-preserving properties

In this section, we present several integral-preserving properties of the mero-
morphic function classes introduced here. We first recall a familiar integral
operator J.,(f)(z) defined by Saitoh [15] (see also Saitoh et al. [16]):

TP () = Jep(F)(2) = 2 fre f(t)a

C
250

ct+tp+k

_ (zp_i_ic—i_—pzk*p)*f(z) (c>—p; z€U), (35)
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which satisfies the following relationship:

I

2 (T TealDE)) = (4 0) TNSE) = T T £)(2). (36)
Theorem 5. Let ¢ > 0and 0 < o <p. If f(z) € S?”f (a), then J.p(f)(2) €
Sif ().

Proof. Suppose that f(z) € Si’g’ () and let

/

2 (T Te(D(2)) e -
=« —a) h(z),
T s PE) !
where h(z) = 1+ ¢12 + 2% + ..., using the identity (36), we have
T fz)
TN erp TR (38)

Differentiating (38) logarithmically with respect to z, we obtain

2 (701 <Z>>, 2 (Il ﬂz))l (p—a) = (2)

Jiépf(z) B JQ’ch,p(f)(z) c+a+ (p—a)h(z)
- (fof(z))l (p —a) zh'(2)
W_a:(p_a)h(z)+c+a+(p_Q)h(z)' (39)

Now, we form the function ®(u,v) by taking u = h(z) and v = zh'(z) in (39)
as:

(p—a)v
cta+(p—a)u

S(u,v)=(p—a)u+

It is easy to see that the function ®(u,v) satisfies the conditions (i) and (ii) of
Lemma 1 in D = (C\ﬁ) x C. To verify the condition (iii), we proceed as

follows:

RA{D(ius, 1)} = m{—(p (p = 2o }

—a)iug + c+ «
(p—a)(ct+ta)u
(p— a)2ud + (c + @)’
_(p—a)(c+a) (1 +uj)
2[(p — @)?ud + (¢ + )7

IN

< 0,
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where v; = —1(1 + u3) and (iup,v1) € D. Therefore the function ®(u,v)
satisfies the conditions of Lemma 1. This shows that if ® {®(h(2), zh'(z))} >
0 (2€U), then R{h(2)} > 0 (z2€U), that is, if f(z) € Ss)‘”,f’ (), then
Jep(f)(2) € Sg’f (cv) . This completes the proof of Theorem 5.

Theorem 6. Let ¢ > 0and 0 < a <p. If f(z) € C:f (o), then J.,(f)(z) €
CoP (o).

Proof. By applying Theorem 5, it follows that

i) e cﬁfmwﬁzﬂf)esﬁwm
= (L) e Sif(a)

p

(Jepf(2)) € S (@)
»(f) (2 )6035( ),

z
p
Je

which proves Theorem 6.
Theorem 7. Let ¢ > 0 and 0 < o, < p. If f(2) € Ks’\f (B, ), then

Jep()(2) € K7 (B,a).
Proof. Suppose that f(z) € KQ}JP (B, ). Then, by using Definition 3, there
exists a function g(z) € S;\f (cv) such that

(7))
—J:gpg(Z) >0 (z€U).

Thus, upon setting

!

2 (T Te(D2)
Toi! Jenl9)(2)
where h(z) =14 ¢12 + c22® + ... From (36) and (40), we have
(c+p) T F(2) = T Tep(@)(2) [B+ (0 = B)h(2)] + T Jep()(2)  (41)

Differentiating both sides of (41) with respect to z, we obtain

=B+ (p—pH)h(z), (40)

(+0)2 (T01()) == (TN Iesl0)(2)) 18+ (0~ Ah(2)

+(p—B)2h () (T Ten(0)(2)) + ez (T Tl £)(2) 5 (42)
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now apply (36) for the function g(z) and using (42), we obtain

2 (01 <z>), - TN Ten(9)(2) (p— B)=H(2)
N7 e Tez)  ctp “3)

Since g(z) € S;\f (), we know from Theorem 5 that J.,g(z) € Sj,’zf (). So
we can set

!

2 (T epl9)(2)
T Jep(9)(2)

=a+(p—a)H(z), (44)
where
H(z) = hi(z,y)+iha(z,y) and Re(H(z)) = hi(z,y) >0 (z€U).

Then we have

p <~7s),\épf(z))/ - (p — B)zh'(2)

(45)

Then, by setting u = h(z) = u; +iuy and v = zh'(2) = vy + ivy, we can define
the function ®(u,v) by

(p— B)v
cta+(p—a)H(z)
It is easy to see that the function ®(u,v) satisfies the conditions (i) and (ii) of
Lemma 1 in D = C x C. To verify the condition (iii), we proceed as follows:

(p - 5)“1
R { ct+a+ (p—a)hi(z,y)+i(p — a)ha(z,y) }
(p—Buife+a+(p—a)ulz,y)]
e+ a+ (p— a)hi(z,9)]* + [(p — A)halz, y)]”
p—B)(A+u)[ct+a+(p—a)u(zy)

®(u,v) = (p— Blu+ (46)

R{P(iug,v1)} =

< —
T 2[etat (p-a)h(ey)] + 2[(p - @)ha(a,y))
< 0,
where v; = —3(1 + 3) and (iup,v1) € D. Therefore the function ®(u,v) sat-

isfies the conditions of Lemma 1. This shows that if

R{®(h(z),2h'(2))} > 0 (2 €U), then R{h(z)} > 0 (z€U), that is, if
f(z) € KX (B,a), then J.,(f)(z) € K)F (3, a). This completes the proof of
Theorem 7. 7

Theorem 8. Let ¢ > 0 and 0 < o, < p. If f(z) € K::,)A’p (B,), then
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Jep(£)(2) € K37 (B,0).

Proof. Just as we derived Theorem 6 from Theorem 5, we easily deduce the
integral-preserving property asserted by Theorem 8 from Theorem 7.
Remark. By specializing the parameters s, A and b, we obtain various results
associated with operators jsp p and I f(z2).

4. Open Problem

The inclusion results we established in this paper can be obtained by using
Jack’s Lemma (see I. S. Jack, Functions starlike and convex of order «, J.
London Math. Soc., 2(1971), no. 3, 469-474). Compare these results with the
results given by using Jack’s Lemma.

Acknowledgements. The authors thank the referees for their valuable sug-
gestions which led to improvement of this paper.
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