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Abstract

In this paper, we examine the convolutions of convex harmonic
functions with some other classes of univalent harmonic functions
defined by certain coefficient conditions and prove that such con-
volutions belong to some well known classes of univalent harmonic
functions.
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1 Introduction

A continuous function f(x+iy) = u(x, y)+iv(x, y) defined in a domain D ⊂ C
(Complex plane) is harmonic in D if u and v are real harmonic in D. Clunie
and Shiel-Small [1] showed that such function can be written in the form f =
h + ḡ, where h and g are analytic.We call g the co-analytic part and h, the
analytic part of f . In the unit disc E = {z : |z| < 1}, g and h can be expanded
in Taylor series as

h(z) = z +
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n.

The mapping f is sense-preserving and locally one-to-one in E iff the Jacobian
of the mapping, given by

Jf (z) = |h′(z)|2 − |g′(z)|2,
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is positive. So,the condition for f to be sense-preserving and locally one-to-one
is that |h′(z)| > |g′(z)| in E, or equivalently, if the dilatation function w(z)=
g′(z)
h′(z)

satisfies |w(z)| < 1 in E. In such case, we say that f is locally univalent.

We denote by SH , the class of harmonic, sense preserving and univalent
functions f in E, normalized by the conditions f(0) = 0 and fz(0) = 1.Denoted
by KH , S∗H and CH the subclasses of SH consisting of harmonic functions which
map E onto convex, starlike and close-to-convex domains, respectively. The
classical family S of normalized univalent functions in E is a subclass of SH .
We let K, S∗ and C denote the subclasses of S consisting of functions which are
convex, starlike (w.r.t. origin) and close-to-convex in E, respectively. Finally,
let S0

H be the subclass of SH whose members f satisfy additional condition,
fz̄(0) = b̄1 = 0 and K0

H , S0∗
H and C0

H be the subclasses of S0
H of convex, starlike

and close-to-convex mappings, respectively.

For analytic functions f(z) = z +
∑∞

n=2 anz
n and F (z) = z +

∑∞
n=2 Anz

n,
their convolution (or Hadamard product) is defined as (f ∗ F )(z) = z +∑∞

n=2 anAnz
n. In case of harmonic functions

F (z) = H +G = z +
∞∑
n=2

Anz
n +

∞∑
n=1

Bnz
n (1)

and

f(z) = h+ g = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnz
n, (2)

we define their convolution as,

(F ∗ f)(z) = (H ∗ h)(z) + (G ∗ g)(z)

= z +
∑∞

n=2 anAnz
n +

∑∞
n=1 bnBnz

n

In 1973, Ruscheweyh and Shiel-Small [6] proved the following:
(i) If φ and ψ ∈ K, then φ ∗ ψ also belongs to K.
(ii) If φ ∈ K and ψ ∈ C, then φ ∗ ψ ∈ C.

The above results do not extend naturally to harmonic case i.e the con-
volution of a function F ∈ K0

H with another harmonic function f may not
preserve the properties of f . For example let;

F = H +G, where H +G =
z

1− z
with dilatation W (z) = −z

and

f = h+ g, where h+ g =
z

1− z
and dialatation w(z) = −zn, n ∈ N
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Then, both F andf belong to K0
H , but their convolution f ∗ F is not even

univalent in E for n ≥ 3 ( see M.Dorff [3])

Although, some results on convolution of harmonic functions are available
in literature, but still very little is known in this direction. Clunie and Shiel-
Small [1] proved that if φ ∈ K and F ∈ KH then,

(αφ+ φ) ∗ F ∈ CH (|α| ≤ 1)

They posed a question: if F ∈ KH , then what is the collection of harmonic
functions f , such that F ∗ f ∈ KH? Ruscheweyh and Salinas [5] presented a
partial reply to their question. They proved that if φ is analytic in the unit
disk E then F ∗ φ = Re(F ) ∗ φ+ Im(F ) ∗ φ ∈ KH for all F ∈ KH iff for each
real number γ, the function (φ+ iγzφ′) is convex in the direction of imaginary
axis.(A domain Ω is said to be convex in direction φ, 0 ≤ φ < π, if every line
parallel to the line through 0 and eiφ has a connected intersection with Ω).

In this paper, we investigate the properties of the Hadamard products of
a function F ∈ KH (K0

H) with some other harmonic functions f defined by
some coefficient conditions and prove that such Hadamard products belong to
some well known subclasses of univalent harmonic functions.

2 Preliminaries

We shall need the following results to prove our main theorems.

Lemma 2.1 If F ∈ KH is given by (1), then for n ∈ N

|An| ≤
n− 1

2
|B1|+

n+ 1

2
and |Bn| ≤

n− 1

2
+
n+ 1

2
|B1|.

In particular, for n = 2, 3, 4...

|An| < n and |Bn| < n.

Lemma 2.2 Let F = H + G be locally univalent in E and let H + εG be
convex for some ε (|ε| ≤ 1). Then F is univalent close-to-convex in E.

Lemma 2.3 If f = h+g, of the form (2), satisfies
∑∞

n=2 n
2|an|+

∑∞
n=1 n

2|bn| ≤
1, then f ∈ KH (or K0

H if b1 = 0).
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Lemma 2.4 Let f = h+g, of the form (2), satisfy
∑∞

n=2 n|an|+
∑∞

n=1 n|bn| ≤
1. Then f ∈ S∗H(or S∗0H if b1 = 0).

Lemma 2.5 If f(z) = z +
∑∞

n=2 anz
n is analytic in E,then f maps onto a

convex domain if
∑∞

n=2 n
2|an| ≤ 1.

Lemma 2.1 and 2.2 are due to Clunie and Shiel-Small [1] whereas Lemma 2.3
and 2.4 are due to Silverman [8] and Lemma 2.5 is by Silverman [7].

3 Main Results

To begin with, in the following theorem, we identify a class of harmonic func-
tions f such that f ∗ F ∈ K0

H for all F ∈ K0
H

Theorem 3.1 If a harmonic function f , where

f(z) = z +
∞∑
n=2

anz
n +

∞∑
n=2

bnz
n (3)

satisfies
∞∑
n=2

n3(|an|+ |bn|) ≤ 1, (4)

then F ∗ f ∈ K0
H for all F ∈ K0

H .

Proof. Let F given by

F (z) = z +
∞∑
n=2

Anz
n +

∞∑
n=2

Bnz
n (5)

be any member of the class K0
H . Then

F ∗ f = H ∗ h+G ∗ g
= z +

∑∞
n=2 anAnz

n +
∑∞

n=2 bnBnz
n

Since∑∞
n=2 n

2(|anAn|+ |bnBn|) =
∑∞

n=2 n
2(|an||An|+ |bn||Bn|)

<
∑∞

n=2 n
2(n+1

2
|an|+ n−1

2
|bn|) (using Lemma 2.1,with B1 = 0)

<
∑∞

n=2 n
2(n|an|+ n|bn|) (since n+1

2
< n, n−1

2
< n)

=
∑∞

n=2 n
3(|an|+ |bn|)

≤ 1,
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in view of given condition (4). The result, now, follows by Lemma 2.3 (with
b1 = 0).

In the example below, we show that there do exist harmonic functions
which satisfy the criteria in above theorem.

Example 3.2 Let f = z + 1
23
z2 be a harmonic polynomial. Clearly, coeffi-

cients of f satisfy the condition (4) of Theorem 3.1. Now, let F = H + G be
the right half-plane mapping such that, H+G = z

1−z and dilatation w(z) = −z,
which maps the unit disk E onto R = {w : Re(w) > −1/2}. A simple calcula-
tion gives

H(z) = z +
∞∑
n=2

1 + n

2
zn and G(z) =

∞∑
n=2

1− n
2

zn.

Then, obviously

F ∗ f = z − 1

24
z2,

satisfies the coefficient condition in Lemma 2.3 (with b1 = 0). So, F ∗f ∈ K0
H .

Next example (see Dorff [2]) shows that if coefficients of f do not satisfy
condition (4) then F ∗ f 6∈ K0

H for some F ∈ K0
H . In fact, convolution may

not even be univalent in E.

Example 3.3 Let f = h + g be the right half-plane mapping as given in
Example 3.2. So,

h(z) = z +
∞∑
n=2

1 + n

2
zn and g(z) =

∞∑
n=2

1− n
2

zn.

Now ∑∞
n=2 n

3(|an|+ |bn|) =
∑∞

n=2 n
3(|1+n

2
|+ |1−n

2
|)

=
∑∞

n=2 n
3(1+n

2
+ n−1

2
)

=
∑∞

n=2 n
4

6< 1.

Therefore, coefficients of f do not satisfy condition (4). Let F = H +G ∈ K0
H

be a harmonic mapping that maps the unit disk E onto a 6− gon, where

H(z) = z +
∞∑
n=1

1

6n+ 1
z6n+1 and G(z) =

∞∑
n=1

−1

6n− 1
z6n−1.

Then
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∣∣∣∣ (G(z) ∗ g(z))′

(H(z) ∗ h(z))′

∣∣∣∣ =

∣∣∣∣z4(2 + z6)

1 + 2z6

∣∣∣∣ 6< 1.

It shows that the function F ∗ f is not sense-preserving. Hence, F ∗ f 6∈ K0
H .

Theorem 3.4 Let f be a harmonic function of the form (3) whose coeffi-
cients satisfy

∞∑
n=2

n2(|an|+ |bn|) ≤ 1.

Then, F ∗ f ∈ S∗0H for all F ∈ K0
H .

Proof. Proceeding as in proof of Theorem 3.1, we get∑∞
n=2 n(|anAn|+ |bnBn|) =

∑∞
n=2 n(|an||An|+ |bn||Bn|)

<
∑∞

n=2 n(n|an|+ n|bn|) (using Lemma 2.1)
=
∑∞

n=2 n
2(|an|+ |bn|)

≤ 1.

Proof, now, follows by Lemma 2.4.

The result in Theorem 3.1 can be extended to the class KH by using the
coefficients bounds as given in Lemma 2.1.

Theorem 3.5 If f , given by (2), is any harmonic function such that

∞∑
n=2

n3(|an|+ |bn|) ≤ 1− |b1|. (6)

Then, F ∗ f ∈ KH for any F ∈ KH .

Proof. Let F given by (1) be any function in KH .Then

F ∗ f = H ∗ h+G ∗ g
= z +

∑∞
n=2 anAnz

n +
∑∞

n=1 bnBnz
n.

Since∑∞
n=2 n

2|anAn|+
∑∞

n=1 n
2|bnBn| =

∑∞
n=2 n

2|an||An|+
∑∞

n=1 n
2|bn||Bn|

=
∑∞

n=2 n
2|an||An|+

∑∞
n=2 n

2|bn||Bn|+ |b1B1|
<

∑∞
n=2 n

2(n|an|+ n|bn|) + |b1B1| (using Lemma 2.1)
<

∑∞
n=2 n

3(|an|+ |bn|) + |b1|
≤ 1,
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in view of given condition (6). Here, since F is sense-preserving, therefore
|B1| < 1. Hence, by Lemma 2.3, F ∗ f ∈ KH

Similarly, an application of Lemma 2.4 immediately gives

Theorem 3.6 Let F ∈ KH and let f be a harmonic function given as in
(2) which satisfies

∞∑
n=2

n2(|an|+ |bn|) ≤ 1− |b1|.

Then, F ∗ f ∈ S∗H .

Remark 3.7 We denote by S∗0H (α) and K0
H(α), the subclasses of S0

H con-
sisting of starlike and convex functions of order α, (0 ≤ α < 1) respectively.
Jahangiri [4] proved that f ∈ S∗0H (α) if

∞∑
n=2

n− α
1− α

|an|+
∞∑
n=2

n+ α

1− α
|bn| ≤ 1

and f ∈ K0
H(α) if

∞∑
n=2

n(n− α)

1− α
|an|+

∞∑
n=2

n(n+ α)

1− α
|bn| ≤ 1.

We, now, state (without proof) the following two theorems pertaining to
the classes S∗0H (α) and K0

H(α).

Theorem 3.8 Let f be a harmonic function given as in (3) which satisfies

∞∑
n=2

n(n− α)

1− α
|an|+

∞∑
n=2

n(n+ α)

1− α
|bn| ≤ 1.

Then, F ∗ f ∈ S∗0H (α), for every F ∈ K0
H .

Theorem 3.9 Let f be harmonic function given as in (3) such that

∞∑
n=2

n2(n− α)

1− α
|an|+

∞∑
n=2

n2(n+ α)

1− α
|bn| ≤ 1.

Then, F ∗ f ∈ K0
H(α) for all F ∈ K0

H .
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We close this paper by presenting a class of harmonic functions whose con-
volutions with functions in KH are close-to-convex harmonic.

Theorem 3.10 Let f be a harmonic function given by (2) for which

∞∑
n=2

n3|an| ≤ 1.

Assume that F , given by (1), belongs to KH . If F ∗ f is locally univalent, then
F ∗ f is close to convex harmonic.

Proof: We write the convolution of F and f as

F ∗ f = H ∗ h+G ∗ g
= H1 +G1 (say).

We will show that H1 is convex. The result will, then, follow by Lemma 2.2
(with ε = 0). Now∑∞

n=2 n
2|anAn| =

∑∞
n=2 n

2|an||An|
<

∑∞
n=2 n

2|nan| (using Lemma 2.1)
=

∑∞
n=2 n

3|an|
≤ 1 (given).

Therefore, by Lemma 2.5, H1 is convex. Hence the result.

4 Open Problem

In this paper, we investigated convolution properties of univalent harmonic
convex functions only. Study of convolution properties of functions from classes
S∗H and CH is still an open problem.
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