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Abstract

In this paper, we examine the convolutions of convex harmonic
functions with some other classes of univalent harmonic functions
defined by certain coefficient conditions and prove that such con-
volutions belong to some well known classes of univalent harmonic
functions.
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1 Introduction

A continuous function f(z+iy) = u(x,y)+iv(z,y) defined in a domain D C C
(Complex plane) is harmonic in D if u and v are real harmonic in D. Clunie
and Shiel-Small [1] showed that such function can be written in the form f =
h + g, where h and g are analytic.We call g the co-analytic part and h, the
analytic part of f. In the unit disc £ = {z : |z| < 1}, g and h can be expanded
in Taylor series as

h(z) =z + i a,z", g(z) = i b, 2".
n=2 n=1

The mapping f is sense-preserving and locally one-to-one in E iff the Jacobian
of the mapping, given by

Jp(2) =W ()" = 1g' (=),
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is positive. So,the condition for f to be sense-preserving and locally one-to-one
is that |W'(z)| > |¢'(2)| in E, or equivalently, if the dilatation function w(z)=
% satisfies |{w(z)| < 1in E. In such case, we say that f is locally univalent.

We denote by Sy, the class of harmonic, sense preserving and univalent
functions f in F, normalized by the conditions f(0) = 0 and f,(0) = 1.Denoted
by Ky, S}; and Cy the subclasses of Sy consisting of harmonic functions which
map F onto convex, starlike and close-to-convex domains, respectively. The
classical family S of normalized univalent functions in F is a subclass of Sp.
We let K, §* and C denote the subclasses of S consisting of functions which are
convex, starlike (w.r.t. origin) and close-to-convex in E, respectively. Finally,
let SY be the subclass of Sy whose members f satisfy additional condition,
f2(0) = b; = 0 and KY, S% and CY% be the subclasses of SY of convex, starlike

and close-to-convex mappings, respectively.

For analytic functions f(z) =z + ", a,2" and F(z) = 2+ >~ , A,2",
their convolution (or Hadamard product) is defined as (f x F)(z) = z +
Z;O:z a,A,z". In case of harmonic functions

F(z)=H+G=z+) A,2"+» B,z (1)
n=2 n=1
and . .
fE)=h+g=2+) az"+ ) b7, (2)
n=2 n=1

we define their convolution as,

(Fxf)(z) = (H*h)(2)+ (Gxg)(z)
N 4 A + 3 BB

In 1973, Ruscheweyh and Shiel-Small [6] proved the following;:
(i) If ¢ and ¢ € K, then ¢ * 1 also belongs to K.
(ii)) If ¢ € K and ¢ € C, then ¢ x ¢ € C.

The above results do not extend naturally to harmonic case i.e the con-
volution of a function F' € K9 with another harmonic function f may not
preserve the properties of f. For example let;

F=H+G, where H+G = % with dilatation W (z) = —z
—z

and

and dialatation w(z) = —2", ne€N

f=h+79, whereh+g= ] :
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Then, both F' andf belong to K%, but their convolution f * F' is not even
univalent in E for n > 3 ( see M.Dorff [3])

Although, some results on convolution of harmonic functions are available
in literature, but still very little is known in this direction. Clunie and Shiel-
Small [1] proved that if ¢ € K and F' € Ky then,

(ap+¢)x FeCny (o] <1)

They posed a question: if F' € Ky, then what is the collection of harmonic
functions f, such that F' % f € Ky? Ruscheweyh and Salinas [5] presented a
partial reply to their question. They proved that if ¢ is analytic in the unit
disk E then F'x ¢ = Re(F) x ¢+ Im(F) x ¢ € Ky for all F' € Ky iff for each
real number ~, the function (¢ +iyz¢') is convex in the direction of imaginary
axis.(A domain € is said to be convex in direction ¢,0 < ¢ < m, if every line
parallel to the line through 0 and ¢ has a connected intersection with ).

In this paper, we investigate the properties of the Hadamard products of
a function F' € Ky (KY) with some other harmonic functions f defined by
some coefficient conditions and prove that such Hadamard products belong to
some well known subclasses of univalent harmonic functions.

2  Preliminaries
We shall need the following results to prove our main theorems.

Lemma 2.1 [If F € Ky is given by (1), then forn € N

n — n+1 n—1 n+1
+

1

In particular, for n = 2,3,4...
|A,| <n and |B,| <n.

Lemma 2.2 Let F = H + G be locally univalent in E and let H + €G be
convex for some € (|e|] < 1). Then F is univalent close-to-convex in E.

Lemma 2.3 If f = h+g, of the form (2), satisfies > -, n?|an|+> oe n%[b,| <
1, then f € Ky (or K% if by =0).
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Lemma 2.4 Let f = h+g, of the form (2), satisfy Y -, nlan|+Y o nlb,| <
1. Then f € Sy (or S3) if by =0).

Lemma 2.5 If f(2) =z + > ", a,2" is analytic in E,then f maps onto a
convex domain if > oo, n?la,| < 1.

Lemma 2.1 and 2.2 are due to Clunie and Shiel-Small [1] whereas Lemma 2.3
and 2.4 are due to Silverman [8] and Lemma 2.5 is by Silverman [7].

3 Main Results

To begin with, in the following theorem, we identify a class of harmonic func-
tions f such that fx F € K for all F € K%

Theorem 3.1 If a harmonic function f, where

z)zz—i—Zan ZT)E (3)
n=2 n=2
satisfies
S (lanl 1) <1, ()
n=2
then F x f € K9 for all F € K},.

Proof. Let I given by

be any member of the class K. Then

Fxf = Hxh+Gxg
= z+ Y 2 an A2t + Y b, B E"

Since

5 2 (ndal + 0uBal) = X2 02(anl|An] + [Bal| B
< 3o (" a,| + 25 b,|)  (using Lemma 2.1, with By = 0)
(n
(

)

< 3o n*(nla,| + n|b,|)  (since 2 < n, 2t < n)

=2 a7 (an + [bn)
<1,
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in view of given condition (4). The result, now, follows by Lemma 2.3 (with
bl - O)

In the example below, we show that there do exist harmonic functions
which satisfy the criteria in above theorem.

Example 3.2 Let f = 2+ 2%52 be a harmonic polynomial. Clearly, coeffi-
cients of f satisfy the condition (4) of Theorem 3.1. Now, let F = H 4+ G be
the right half-plane mapping such that, H+G = % and dilatation w(z) = —z,
which maps the unit disk E onto R = {w : Re(w) > —1/2}. A simple calcula-
tion gives

“1+n “1-n
H(z) = " d G(z2)= "
(2) =z+ 322 54 an (2) 3:2 57
Then, obuviously
1
Fxf=z— ﬂzz,

satisfies the coefficient condition in Lemma 2.8 (with by = 0). So, Fx f € KY%.

Next example (see Dorff [2]) shows that if coefficients of f do not satisfy
condition (4) then F x f & K% for some F' € K%. In fact, convolution may
not even be univalent in £.

Example 3.3 Let f = h + g be the right half-plane mapping as given in
Ezxample 3.2. So,

1+n 1-n
h(z):z—kz 5 z" and g(z)zz 5 2"
n=2 n=2

Yo (lan] + [0al) = T, (152 + 15520)

Therefore, coefficients of f do not satisfy condition (4). Let F = H+G € K9
be a harmonic mapping that maps the unit disk E onto a 6 — gon, where

— 1 — 1
H(z)=z+ Z ol 1z6"+1 and G(z) = Z - 126”’1
n=1 n=1

Then
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(G(z) *g(2))"| _ |22+ 2%
(H(z)* h(z)) 14220
It shows that the function F x f is not sense-preserving. Hence, F x f & KY,.

Theorem 3.4 Let f be a harmonic function of the form (3) whose coeffi-

cients satisfy
Zn2(|an| + [bal) <

Then, F x f € S3P forallFEKO

Proof. Proceeding as in proof of Theorem 3.1, we get

2 onma lanAn| + [0 Bnl) = 3207 n|an] | An| + [bn][ Bal)
<>, n(nla,| +n|b,|) (using Lemma 2.1)
= 2 oneo 1 (|an] + [ba])
<1

Proof, now, follows by Lemma 2.4.

The result in Theorem 3.1 can be extended to the class Ky by using the
coefficients bounds as given in Lemma 2.1.

Theorem 3.5 If f, given by (2), is any harmonic function such that

S 0¥ (anl + loul) < 1= Jbn] (6)

n=2

Then, F'x f € Ky for any F € Ky.
Proof. Let F given by (1) be any function in Kp.Then

Fxf = Hxh+Gxg
= 2432 a, 42"+ > 00 b, B E"

Since

2:}:2 ”2|an‘4n| + 220:1 ”Q‘ann|

32l Al + X5 1B

2 | an[An] 4 320 02 [bnl| Bul + b1 B

>0y n?(n]ay| 4+ nlb,]) + b1 By (using Lemma 2.1)
> onza 1 (lan] + [bn]) + (b1 ]

1

INA A

Y
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in view of given condition (6). Here, since F' is sense-preserving, therefore
|B;| < 1. Hence, by Lemma 2.3, F'x f € Ky

Similarly, an application of Lemma 2.4 immediately gives

Theorem 3.6 Let F' € Ky and let f be a harmonic function given as in
(2) which satisfies

> (lan] + [ba]) < 1= |bi].
n=2
Then, F'x f € Sy.

Remark 3.7 We denote by Si(a) and K% (), the subclasses of SY con-
sisting of starlike and convex functions of order o, (0 < a < 1) respectively.
Jahangiri [4] proved that f € Si () if

Oon—a Oon—i—a
DT a2 T Ibl

and f € K%(a) if

. n(n —a) = n(n+a)
N 7 —_ <
>+ 3o <1

=2

3

We, now, state (without proof) the following two theorems pertaining to
the classes S3 () and K%(«).

Theorem 3.8 Let f be a harmonic function given as in (3) which satisfies

RS Dt e IS

1— 1
n=2

Mg

U
N

n

Then, F x f € S¥(«a), for every F € KY.

Theorem 3.9 Let f be harmonic function given as in (3) such that

in(n—a|n|+z n—l—a|b|§1‘

n=2

Then, F x f € K%(«) for all F € KY,.
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We close this paper by presenting a class of harmonic functions whose con-
volutions with functions in Kz are close-to-convex harmonic.

Theorem 3.10 Let f be a harmonic function given by (2) for which

o
Zn3|an| <1
n=2

Assume that F, given by (1), belongs to Ky. If F'x f is locally univalent, then
F x f is close to convex harmonic.

Proof: We write the convolution of F' and f as

Fxf = Hxh+Gxg
= H,+G; (say).

We will show that H; is convex. The result will, then, follow by Lemma 2.2
(with € = 0). Now

Do P |an Ay Do 1|l Ay
> ,n*na,| (using Lemma 2.1)
ZZO:Q n’|ay|

1 (given).

IA I A

Therefore, by Lemma 2.5, H; is convex. Hence the result.

4 Open Problem

In this paper, we investigated convolution properties of univalent harmonic
convex functions only. Study of convolution properties of functions from classes
S} and Cp is still an open problem.
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