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1 Introduction

A meromorphic function will mean meromorphic in the whole complex plane.
We shall use the standard notations in Nevanlinna value distribution theory
of meromorphic functions such as T (r, f), N(r, f), m(r, f) etc (see [4], [5]).
By S(r, f) we denote any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞,
possibly outside a set of r with finite linear measure. Then the meromorphic
function β is called a small function of f if T (r, β) = S(r, f). We say that
two non-constant meromorphic functions f and g share a small function β IM
(ignoring multiplicities), if f and g have the same β-points. If f and g have the
same β-points with the same multiplicities, we say that f and g share the small
function β CM (counting multiplicities). Let k be a positive integer, and let b
be a small function of f or ∞, we denote by Nk)(r,

1
f−b) the counting function
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of b-points of f with multiplicity ≤ k and by N(k(r,
1
f−b) the counting function

of b-points of f with multiplicity > k. In like manner we define N̄k)(r,
1
f−b)

and N̄(k(r,
1
f−b) where in counting the b-points of f we ignore the multiplicities.

In [2] G. G. Gundersen proved the following theorem:

Theorem 1.1 Let f be a non-constant meromorphic function. If f and f ′

share two distinct values 0, a 6=∞ CM , then f ≡ f ′

In 2009, A. H. H. Al-Khaladi [1] proved the following theorems which are
improvement and extension of Theorem 1.1:

Theorem 1.2 Let f be a non-constant meromorphic function. If f and f ′

share the value a 6= 0,∞ CM and if N̄(r, 1
f
) = S(r, f), then either f ≡ f ′ or

f(z) = az+A
1+ce−z , where A and c 6= 0 are constants,

Theorem 1.3 Let f be a non-constant meromorphic function. If f and f ′

share the value a 6= 0,∞ IM and if N̄(r, 1
f
) + N̄(r, 1

f ′
) = S(r, f), then either

f ≡ f ′ or

f(z) =
2a

1 + ce−2z
, (1)

where c is a nonzero constant.

On the other hand, Q. C. Zhang [3] proved the following theorem:

Theorem 1.4 Let f be a non-constant meromorphic function, a be a nonzero
finite complex constant. If f and f ′ share 0 CM , and share a IM , then f ≡ f ′

or f is given as (1).

In this paper we will generalize the above results (Theorem 1.1, Theorem
1.2, Theorem 1.3 and Theorem 1.4).

2 Main Results

Lemma 2.1 Let f ′ be a non-constant meromorphic function, and let β be
a small function of f ′ such that β′ ≡ β 6≡ 0,∞. Then

m
(
r,

1

f ′ − β

)
≤ 2N̄

(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f ′)

Proof Set

W =
(F ′
F

)2
− 2
(F ′
F

)′
+ 2

F ′

F
, (2)
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where F = f ′

β
. Then from Nevanlinna’s fundamental estimate of the logarith-

mic derivative we obtain

m(r,W ) ≤ 4m
(
r,
F ′

F

)
+ S

(
r,
F ′

F

)
+O(1) = S(r, F ) + S

(
r,
F ′

F

)
.

Since

T
(
r,
F ′

F

)
= N

(
r,
F ′

F

)
+m

(
r,
F ′

F

)
≤ N̄(r, F ) + N̄

(
r,

1

F

)
+ S(r, F )

≤ 2T (r, F ) + S(r, F ),

this means that
m(r,W ) = S(r, F ) = S(r, f ′). (3)

Suppose that z∞ is a simple pole of f . Then the Laurent expansion of f
about z∞ is

f(z) = a−1(z − z∞)−1 +O(1)

where a−1 be the residue of f at z∞. Hence

F ′

F
= −2(z − z∞)−1 − 1 +O(z − z∞).

Substitution of this into (2) gives

W (z∞) = O(1). (4)

It follows from (2) that the poles of f with multiplicity p ≥ 2 are poles of W
with multiplicity 2 at most. We can also conclude from (2) that the zeros of
f ′ with multiplicity q ≥ 1 are poles of W with multiplicity 2. Thus, from (4)
we get

N(r,W ) ≤ 2N̄(2(r, f) + 2N̄
(
r,

1

f ′

)
. (5)

We distinguish the following the two cases:
Case 1. W 6≡ 0. We write (2) in the form

1

F − 1
=

1

W

( F ′

F − 1
− F ′

F

)(3F ′

F
− 2F ′′

F ′
+ 2
)
.

Then it is clear that

m
(
r,

1

F − 1

)
≤ m

(
r,

1

W

)
+ S(r, F ) ≤ T (r,W ) + S(r, F )

≤ m(r,W ) +N(r,W ) + S(r, f ′).

Combining this with (3) and (5), we have

m
(
r,

1

F − 1

)
≤ 2N̄(2(r, f) + 2N̄

(
r,

1

f ′

)
+ S(r, f ′).
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That is,

m
(
r,

1

f ′ − β

)
≤ 2N̄(2(r, f) + 2N̄

(
r,

1

f ′

)
+ S(r, f ′).

Case 2. W ≡ 0. If F ′

F
≡ 0, then f ′ = cβ and so T (r, f ′) = S(r, f ′) a

contradiction. Therefore F ′

F
6≡ 0 and (2) becomes

y′

y + 2
− y′

y
=

1

2
, (6)

where y = F ′

F
. Integrating (6) twice we obtain

f ′ = βA
(
c− e−

1
2
z
)4
,

where A and c 6= 0 are constants. So

T (r, f ′) = 4T
(
r, e−

1
2
z
)

+ S(r, f ′).

But

T (r, β) = 2T
(
r, e−

1
2
z
)

+O(1).

Therefore

T (r, f ′) = 2T (r, β) + S(r, f ′) = S(r, f ′).

This is a contradiction. �

The following lemma belongs to [4].

Lemma 2.2 Let f be a non-constant meromorphic function, and a1, a2, a3
be distinct small functions of f . Then

T (r, f) ≤
3∑
j=1

N̄
( 1

f − aj

)
+ S(r, f).

Theorem 2.3 Let f be a non-constant meromorphic function, and let β be
a small meromorphic function of f such that β 6≡ 0,∞. If f and f ′ share β
CM and if N̄(r, 1

f
) = S(r, f), then either f ≡ f ′ or

f(z) =

∫ z
0
β(t)dt+ A

1 + ce−z
, (7)

where A and c 6= 0 are constants.
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Proof Suppose that f 6≡ f ′ and let Ω be the function defined by

Ω =
1

f

[(f ′/β)′

f ′ − β
− (f/β)′

f − β

]
=

1

β2

[f ′
f

( (f ′/β)′

(f ′/β)− 1
− (f ′/β)′

f ′/β

)
−
( (f/β)′

(f/β)− 1
− (f/β)′

f/β

)]
. (8)

Then from Nevanlinna’s fundamental estimate of the logarithmic derivative we
obtain

m(r,Ω) ≤ m
(
r,

1

β2

)
+m

(
r,
f ′

f

)
+m

(
r,

(f ′/β)′

(f ′/β)− 1

)
+

m
(
r,

(f ′/β)′

f ′/β

)
+m

(
r,

(f/β)′

(f/β)− 1

)
+m

(
r,

(f/β)′

f/β

)
+O(1)

= S(r, f) + S(r, f ′).

Since
T (r, f ′) ≤ 2T (r, f) + S(r, f),

this means that
m(r,Ω) = S(r, f). (9)

It follows from (8) that if z∞ is a pole of f with multiplicity p ≥ 1 and
β(z∞) 6= 0,∞, then

Ω(z) = O
(

(z − z∞)p−1
)
. (10)

Since f and f ′ share β CM, we find from (8) that Ω is holomorphic at the
zeros of f − β and f ′ − β. Thus the pole of Ω can only occur at zeros of f .
However the zeros of f with multiplicity q ≥ 2 are pole of Ω with multiplicity
2. Thus, from N̄(r, 1

f
) = S(r, f) we get

N(r,Ω) ≤ N̄
(
r,

1

f

)
+ N̄(2

(
r,

1

f

)
+ S(r, f)

≤ 2N̄
(
r,

1

f

)
+ S(r, f) = S(r, f).

Together with (9) we have

T (r,Ω) = m(r,Ω) +N(r,Ω) = S(r, f). (11)

If Ω ≡ 0, then from integration of (8) we get f − β = c(f ′ − β), where c
is some nonzero constant. This implies that N̄(r, f) = S(r, f). If c = 1, then
f ≡ f ′, a contradiction. Therefore c 6= 1 and so

1

f
=

c

β(c− 1)

(f ′
f
− 1
)
.
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Hence, we obtain

T (r, f) ≤ T
(
r,
f ′

f

)
+ S(r, f) = N

(
r,
f ′

f

)
+m

(
r,
f ′

f

)
+ S(r, f)

≤ N̄
(
r,

1

f

)
+ N̄(r, f) + S(r, f) = S(r, f),

which is impossible. Therefore, we obtain Ω 6≡ 0. Writing (8) as

f =
1

βΩ

[ (f ′/β)′

(f ′/β)− 1
− (f/β)′

(f/β)− 1

]
.

Consequently, from (11),

m(r, f) ≤ m
(
r,

1

β

)
+m

(
r,

1

Ω

)
+ S(r, f) ≤ m

(
r,

1

Ω

)
+ S(r, f) (12)

≤ T (r,Ω) + S(r, f) = S(r, f). (13)

Furthermore, from (10) and (11) we deduce that

N(2(r, f)− N̄(2(r, f) ≤ N
(
r,

1

Ω

)
+ S(r, f)

≤ T (r,Ω) + S(r, f) = S(r, f),

so that,
N(2(r, f) = S(r, f). (14)

We set

ω =
f ′ − f
f(f − β)

=
1

f − β

(f ′
f
− 1
)
. (15)

Then

m(r, ω) ≤ m
(
r,

1

f − β

)
+m

(
r,
f ′

f

)
+O(1)

= m
(
r,

1

f − β

)
+ S(r, f). (16)

Since f and f ′ share β CM, from (15) we deduce that ω is holomorphic at the
zeros of f − β. Also it is clear that the poles of f being not the poles of ω.
Thus,

N(r, ω) ≤ N̄
(
r,

1

f

)
+ S(r, f) = S(r, f). (17)

Further, if z∞ is a simple pole of f and β(z∞) 6= 0,∞, by a simple computation,
we deduce from (8) and (15) that

Ω(z∞) =
−1

β(z∞)a−1
and ω(z∞) =

−1

a−1
, (18)
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where a−1 be the residue of f at z∞. In the following we shall treat two cases
βΩ ≡ ω and βΩ 6≡ ω separately.

Case 1. βΩ ≡ ω. From (8) and (15) we know that if

h =
f ′ − β
f − β

=
f ′/β − 1

f/β − 1
, (19)

βΩ =
1

f

(h′
h

)
and ω =

1

f
(h− 1).

Hence,
h′

h− 1
− h′

h
= 1.

By integration, we get h(z) = 1
1−cez , where c nonzero constant. Combining

this with (19) yields

f ′ − 1

1− cez
f =

−cβez

1− cez
,

which leads to
d

dz

[
f(z)

(
1− 1

c
e−z
)]

= β(z).

From this we arrive at (7).
Case 2. βΩ 6≡ ω. Then from (18), (11), (16) and (17) we see that

N1)(r, f) ≤ N
(
r,

1

βΩ− ω

)
≤ T (r, βΩ− ω) +O(1)

≤ T (r,Ω) + T (r, ω) + S(r, f) ≤ m
(
r,

1

f − β

)
+ S(r, f).

Combining this, (14) and (13), we obtain

T (r, f) = m(r, f) +N(r, f) = N1)(r, f) + S(r, f)

≤ m
(
r,

1

f − β

)
+ S(r, f).

Hence, we find that

N
(
r,

1

f − β

)
= S(r, f). (20)

We define

µ =
(f/β)′

f(f − β)
=

1

β2

[ (f/β)′

(f/β)− 1
− (f/β)′

f/β

]
. (21)

Then it is clear that
m(r, µ) = S(r, f). (22)
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If z∞ is a simple pole of f and β(z∞) 6= 0,∞, by a simple calculation on the
local expansions we find that

µ(z∞) =
−1

β(z∞)a−1
. (23)

Thus, it can be obtained from (22), (23), (14), (20) and N̄(r, 1
f
) = S(r, f) that

T (r, µ) = m(r, µ) +N(r, µ) = N(r, µ) + S(r, f)

≤ N̄
(
r,

1

f

)
+ N̄

(
r,

1

f − β

)
+ S(r, f) = S(r, f). (24)

Further, from (23) and (18) we have

Ω(z∞) = µ(z∞). (25)

If Ω ≡ µ, we know from (8) and (21) that

2
(f/β)′

f/β − 1
=

(f ′/β)′

f ′/β − 1
.

By integration once, (f − β)2 = cβ(f ′− β), where c is a nonzero constant. We
rewrite this in the form

β′ − β
f − β

=
f − β
cβ

− (f − β)′

f − β
. (26)

If β′ − β 6≡ 0, from this, (13) and (20) we conclude that

T (r, f) = T
(
r,

1

f − β

)
+ S(r, f)

= m
(
r,

1

f − β

)
+N

(
r,

1

f − β

)
+ S(r, f)

≤ m
(
r,

1

β′ − β

)
+m(r, f) +N

(
r,

1

f − β

)
+ S(r, f)

= S(r, f)

This is impossible. Therefore we have β′ − β ≡ 0, and (26) becomes

(f ′ − β)′

(f − β)2
=

β′

cβ2
.

By integration, we get
−1

f − β
=
−1

cβ
+ A,
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where A is a constant. So T (r, f) = S(r, f), a cotradiction. Thus Ω 6≡ µ. It
follows from this, (13), (14), (25), (11) and (24) that

T (r, f) = N(r, f) +m(r, f) = N1)(r, f) +N(2(r, f) +m(r, f)

= N1)(r, f) + S(r, f) ≤ N
(
r,

1

Ω− µ

)
+ S(r, f)

≤ T (r,Ω) + T (r, µ) + S(r, f) = S(r, f).

This is impossible. The proof of Theorem 2.3 is complete. �

Theorem 2.4 Let f be a non-constant meromorphic function, and let β be
a small meromorphic function of f such that β 6≡ 0,∞. If f and f ′ share β
IM and if N̄(r, 1

f
) + N̄(r, 1

f ′
) = S(r, f), then either f ≡ f ′ or β is a constant

and f is given as (1) when β = a.

Proof In the following, we assume that f 6≡ f ′. Suppose z0 is a zero of
f − β with multiplicity n ≥ 1 and β(z∞) 6= 0,∞. Then the Taylor expansion
of f − β about z0 is

f(z)− β = an(z − z0)n + . . . , an 6= 0. (27)

Since f and f ′ share β IM,

f ′(z)− β = bm(z − z0)m + . . . , bm 6= 0. (28)

Differentiating (27) and then using (28), we obtain

β(z)− β′(z) = nan(z − z0)n−1 − bm(z − z0)m + . . . . (29)

We consider the following two cases.
Case I. β − β′ 6≡ 0. Then we get from (29) that

N̄(2

(
r,

1

f − β

)
≤ N

(
r,

1

β′ − β

)
+ S(r, f) ≤ T (r, β′ − β) + S(r, f)

≤ 3T (r, β) + S(r, f) = S(r, f). (30)

If z0 is a simple zero of f−β and f ′−β, from (8) we see that Ω is holomorphic
at z0. It follows from this, (8), (10), f and f ′ share β IM, N̄(r, 1

f
) = S(r, f)

and (30) that

N(r,Ω) ≤ N̄
(
r,

1

f

)
+ N̄(2

(
r,

1

f

)
+ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f)

≤ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f).
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Combining with (9) we obtain

T (r,Ω) ≤ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f). (31)

Also we know from (10), (12) and (31) that

N(2(r, f)− N̄(2(r, f) ≤ N
(
r,

1

Ω

)
+ S(r, f)

≤ T (r,Ω)−m
(
r,

1

Ω

)
+ S(r, f)

≤ N̄(2

(
r,

1

f ′ − β

)
−m(r, f) + S(r, f). (32)

We set

H =
(f ′/β)′(f − β)

f ′(f ′ − β)
=
f − β
β2

[ (f ′/β)′

(f ′/β)− 1
− (f ′/β)′

f ′/β

]
. (33)

Then it is clear that

m(r,H) ≤ m(r, f) + S(r, f). (34)

From (33) we deduce that if z∞ is a pole of f with multiplicity p ≥ 1 and
β(z∞) 6= 0,∞,

H(z∞) =
1

β(z∞)

(p+ 1

p

)
. (35)

Substituting (27) and (28) into (33) gives

H(z) = O
(

(z − z∞)n−1
)
. (36)

Thus the pole of H can only occur at zeros of f ′. However, the zeros of f ′

with multiplicity s ≥ 1 are poles of H with multiplicity 1. Therefore from this,
(35), (36) and N̄(r, 1

f ′
) = S(r, f) we get

N(r,H) ≤ N̄
(
r,

1

f ′

)
+ S(r, f) = S(r, f).

Together with (34) we have

T (r,H) ≤ m(r, f) + S(r, f). (37)

If z∞ is a simple pole of f , then by (35) there are two cases.
Case 1. H ≡ 2

β
. This and (33) imply that

1

f − β
=

1

2β

[ (f ′/β)′

(f ′/β)− 1
− (f ′/β)′

f ′/β

]
. (38)
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Obviously, by logarithmic derivative lemma m(r, 1
f−β ) = S(r, f). Combining

with (16) we get

m(r, ω) = S(r, f). (39)

From (38), (27) and (28) we know that if z0 is a zero of f −β with multiplicity
n ≥ 1 and β(z0) 6= 0,∞, then n = 1. In addition since f and f ′ share β IM,
from (15) we see ω is holomorphic at z0. Also it is easily verified that the pole
of f being not the pole of ω. Thus, from N̄(r, 1

f
) = S(r, f) we obtain

N(r, ω) ≤ N̄
(
r,

1

f

)
+ S(r, f) = S(r, f).

Together with (39) we have

T (r, ω) = S(r, f). (40)

If ω ≡ 0, then f ≡ f ′ a contradiction. In the following we assume ω 6≡ 0.
Further, it can be obtained from (15), (40) and N̄(r, 1

f
) = S(r, f) that

T (r, f) ≤ T
(
r,

1

ω

)
+ T

(
r,
f ′

f

)
+ S(r, f)

= N
(
r,
f ′

f

)
+m

(
r,
f ′

f

)
+ S(r, f)

≤ N̄
(
r,

1

f

)
+ N̄(r, f) + S(r, f)

= N̄(r, f) + S(r, f),

which shows that

T (r, f) = N1)(r, f) + S(r, f). (41)

Using an argument similar to that in the proof of Theorem 2.3, we can conclude
that βΩ ≡ ω or βΩ 6≡ ω. If βΩ ≡ ω, then (see Case 1 in the proof of Theorem
2.3)

f(z) =

∫ z
0
β(t)dt+ A

1 + ce−z
.

Hence

f ′(z) =
β +

(
β + A+

∫ z
0
β(t)dt

)
ce−z

1 + ce−z
.

Since N̄(r, 1
f
) + N̄(r, 1

f ′
) = S(r, f), we must have β + A +

∫ z
0
β(z)dz ≡ 0.

Differentiating this we obtain β′ + β ≡ 0. Integrating once, β(z) = c1e
−z,

where c1 is a nonzero constant. So β can not small function of f . Therefore,
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we get βΩ 6≡ ω. It follows from this, (41), (18), (40) and (31) that

T (r, f) = N1)(r, f) + S(r, f) ≤ N
(
r,

1

βΩ− ω

)
+ S(r, f)

≤ T (r, β) + T (r,Ω) + T (r, ω) + S(r, f)

≤ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f). (42)

Since f and f ′ share β IM,

N̄
(
r,

1

f − β

)
= N̄

(
r,

1

f ′ − β

)
.

By this and (42) we have

N1)

(
r,

1

f ′ − β

)
= S(r, f). (43)

If we rewrite (38) and (15) in the form

f ′′

f ′
− β′

β
= 2
(f ′ − β
f − β

)
and fω + 1 =

f ′ − β
f − β

respectively, and then elimination f ′−β
f−β between the last two equations we

obtain
f ′′

f ′
− β′

β
= 2(fω + 1). (44)

Let z0 be a zero of f ′ − β with multiplicity m ≥ 2 and β(z0) 6= 0,∞. By (27),
(28) and (44) we find that

β(z0)ω(z0) + 1 = 0 (45)

If βω + 1 6≡ 0, then from this, (42), (45) and (40) we see that

T (r, f) ≤ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f) ≤ N

(
r,

1

βω + 1

)
+ S(r, f)

≤ T (r, β) + T (r, ω) + S(r, f) = S(r, f)

This is impossible. Therefore, βω + 1 ≡ 0. Thus, from this, (44) and (15) we
get

f ′′

f ′
− β′

β
= − 2

β
(f − β)

and

− 1

β
(f − β) =

f ′

f
− 1 (46)
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respectively. If we now eliminate − 1
β
(f − β) between the last two equations

leads to
f ′′

f ′
− β′

β
= 2
(f ′
f
− 1
)

By integrating once,
f ′(z) = cβ(z)f 2e−2z.

Substituting this into (46) gives

f(z) =
2β(z)

1 + cβ2(z)e−2z
.

Hence,

f ′(z) =
2β′ − 2β2ce−2z(β′ − 2β)

(1 + cβ2e−2z)2
.

Since N̄(r, 1
f ′

) = S(r, f), therefore we must have β′ ≡ 0 and so β is a constant.

Thus (1) holds when β = a.
Case 2. H 6≡ 2

β
. Then from (35) and (37) we have

N1)(r, f) ≤ N
(
r,

1

H − 2
β

)
+ S(r, f) ≤ T (r,H) + S(r, f)

≤ m(r, f) + S(r, f). (47)

From Lemma 2.2 (a1 = 0, a2 = β and a3 = ∞), N̄(r, 1
f ′

) = S(r, f), (47), (37)

and (32) we get

T (r, f ′) ≤ N̄
(
r,

1

f ′

)
+ N̄

(
r,

1

f ′ − β

)
+ N̄(r, f) + S(r, f)

≤ N̄
(
r,

1

f ′ − β

)
+ N̄1)(r, f) + N̄(2(r, f) + S(r, f)

≤ N̄
(
r,

1

f ′ − β

)
+m(r, f) + N̄(2(r, f) + S(r, f)

≤ N̄
(
r,

1

f ′ − β

)
+ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f)

which results in

N(3

(
r,

1

f ′ − β

)
= S(r, f). (48)

Writing (15) as

f = β +
1

ω

(f ′
f
− 1
)
,

which implies

m(r, f) ≤ m(r, β) +m
(
r,

1

ω

)
+m

(
r,
f ′

f

)
+O(1) = m

(
r,

1

ω

)
+ S(r, f). (49)
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Also we know from (15) that if z∞ is a pole of f with multiplicity p ≥ 1, then
z∞ is a zero of ω with multiplicity p− 1. Thus

N(r, f)− N̄(r, f) ≤ N
(
r,

1

ω

)
+ S(r, f). (50)

Combining (49), (50) and (16) we have

m(r, f) +N(r, f)− N̄(r, f) ≤ T (r, ω) + S(r, f)

= m(r, ω) +N(r, ω) + S(r, f)

≤ N(r, ω) +m
(
r,

1

f − β

)
+ S(r, f). (51)

From (15), (27), (28), (50) and N̄(r, 1
f
) = S(r, f), we conclude that

N(r, ω) ≤ N̄
(
r,

1

f

)
+N(2

(
r,

1

f − β

)
+ S(r, f)

= N(2

(
r,

1

f − β

)
+ S(r, f).

Together with (51) we get

m(r, f) +N(2(r, f)− N̄(2(r, f) ≤ N(2

(
r,

1

f − β

)
+m

(
r,

1

f − β

)
+ S(r, f). (52)

From (31), it is easily verified that H 6≡ 0 and

m
(
r,

1

f − β

)
≤ m

(
r,

1

H

)
+ S(r, f). (53)

By (36),

N(2

(
r,

1

f − β

)
− N̄(2

(
r,

1

f − β

)
≤ N

(
r,

1

H

)
+ S(r, f).

Combining this, (51) and (37) we obtain

m
(
r,

1

f − β

)
+N(2

(
r,

1

f − β

)
− N̄(2

(
r,

1

f − β

)
≤ T (r,H) + S(r, f)

≤ m(r, f) + S(r, f).

Adding this, (52) and (30) we deduce that

N(2(r, f) = S(r, f), (54)
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and

m(r, f) = N(2

(
r,

1

f − β

)
+m

(
r,

1

f − β

)
+ S(r, f). (55)

By (55) we see that

m(r, f) +N1)

(
r,

1

f − β

)
= T (r, f) + S(r, f).

Hence from (54) and (30) we get

N1)(r, f) = N1)

(
r,

1

f − β

)
+ S(r, f) = N̄

(
r,

1

f − β

)
+ S(r, f)

= N̄
(
r,

1

f ′ − β

)
+ S(r, f).

From this, (47) and (32) we see

N̄
(
r,

1

f ′ − β

)
= N1)(r, f) + S(r, f) ≤ m(r, f) + S(r, f)

≤ N̄(2

(
r,

1

f ′ − β

)
+ S(r, f),

which results in

N1)

(
r,

1

f ′ − β

)
= S(r, f) (56)

Set

G =
1

f

[(f ′/β)′

f ′ − β
− 2

(f/β)′

f − β

]
. (57)

Similarly as (8) we have
m(r,G) = S(r, f). (58)

if z0 is a zero of f − β and f ′ − β with multiplicity 1 and 2 respectively, and
β(z0) 6= 0,∞, then G is holomorphic. Also, if z∞ is a simple pole of f , then
by (57) we see G(z∞) = 0. We discuss the following two cases.

Case 1. G 6≡ 0. Then from (58), (56), (48), (54), (30) and N̄(r, 1
f
) =

S(r, f), we deduce that

N1)(r, f) ≤ N
(
r,

1

G

)
+ S(r, f)

≤ −m
(
r,

1

G

)
+N(r,G) +m(r,G) + S(r, f)

≤ −m
(
r,

1

G

)
+N(r,G) + S(r, f)

≤ −m
(
r,

1

G

)
+ S(r, f)
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which shows that

N1)(r, f) +m
(
r,

1

G

)
= S(r, f). (59)

Notaing that

f =
1

G

[(f ′/β)′

f ′ − β
− 2

(f/β)′

f − β

]
,

by (57). This imply,

m(r, f) ≤ m
(
r,

1

G

)
+ S(r, f).

From this, (59) and (54), we can see that T (r, f) = S(r, f) a contradiction.
Case 2. G ≡ 0. Integrating of (57) we have

β(f ′ − β) = c(f − β)2, (60)

where c is a nonzero constant. This yields

2m(r, f) = m(r, f ′) + S(r, f)

≤ m
(
r,
f ′

f

)
+m(r, f) + S(r, f)

= m(r, f) + S(r, f)

which means m(r, f) + S(r, f). Together with (47) and (54) gives the contra-
diction T (r, f) = S(r, f).

Case II. β−β′ ≡ 0. Then N1)(r,
1

f−β ) ≡ 0 and if z0 is a zero of f −β with
multiplicity n, then z0 is a zero of f ′ − β with multiplicity n − 1. Using an
argument similar to that in the Case I, we can deduce from (8) and (33) that
Ω 6≡ 0, H 6≡ 0 and

N(2(r, f)− N̄(2(r, f) ≤ N
(
r,

1

Ω

)
+ S(r, f)

≤ −m
(
r,

1

Ω

)
+N(r,Ω) + S(r, f)

≤ −m
(
r,

1

Ω

)
+ N̄(2

(
r,

1

f − β

)
+ S(r, f) (61)

and

N(2

(
r,

1

f − β

)
− N̄(2

(
r,

1

f − β

)
≤ N

(
r,

1

H

)
+ S(r, f)

≤ −m
(
r,

1

H

)
+m(r,H) + S(r, f)

≤ −m
(
r,

1

H

)
+m(r, f) + S(r, f). (62)
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Combining (61), (12), (62) and (53) we conclude

N(2(r, f) +N(3

(
r,

1

f − β

)
+m

(
r,

1

f − β

)
= S(r, f) (63)

and

m(r, f) = N̄(2

(
r,

1

f − β

)
+ S(r, f). (64)

Since N̄(r, 1
f ′

) = S(r, f), it follows from (63) and Lemma 2.1 that

m
(
r,

1

f ′ − β

)
= S(r, f). (65)

Set

∆ =
f − β
f ′ − β

.

It is easy to see that ∆ 6≡ 0, N(r,∆) = S(r, f) and

N̄(r, f) + N̄(2

(
r,

1

f − β

)
≤ N

(
r,

1

∆

)
≤ T (r,∆) +O(1)

≤ m(r,∆) +O(1)

≤ m(r, f) +m
(
r,

1

f ′ − β

)
+ S(r, f).

Together with (64) and (65) we have N̄(r, f) = S(r, f). Finlly, from this, (63)
and (64) we find that

T (r, f) = m(r, f) + S(r, f) = N̄(2

(
r,

1

f − β

)
≤ 1

2
N(2

(
r,

1

f − β

)
+ S(r, f) ≤ 1

2
T (r, f) + S(r, f),

which gives the contradiction T (r, f) = S(r, f). This completes the proof of
Theorem 2.4. �

From Theorem 2.3 and Theorem 2.4 we immediately deduce the following
corollary:

Corollary 2.5 Let f be a non-constant meromorphic function, and let β
be a small meromorphic function of f such that β 6≡ 0,∞. If f and f ′ share 0
and β CM, then f ≡ f ′.

Corollary 2.6 Let f be a non-constant meromorphic function, and let β
be a small meromorphic function of f such that β 6≡ 0,∞. If f and f ′ share
0 CM and β IM, then either f ≡ f ′ or β is a constant and f is given as (1)
when β = a.
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3 Open Problem

From Corollary 2.5 and Corollary 2.6 we establish the following:

Conjecture 3.1 Let f be a non-constant meromorphic function, β and α
two distinct small meromorphic functions of f with β 6≡ ∞ and α 6≡ ∞. If f
and f ′ share α and β CM, then f ≡ f ′.

Conjecture 3.2 Let f be a non-constant meromorphic function, and let β
be a small meromorphic function of f such that β 6≡ 0,∞. If f and f ′ share
0 and β IM, then either f ≡ f ′ or β is a constant and f is given as (1) when
β = a.

Corollary 2.5 shows that Conjecture 3.1 is valid when α ≡ 0 and Corollary
2.6 shows that Conjecture 3.2 is true if 0 IM replaced by 0 CM.
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