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Abstract

The object of the present paper is to investigate the majorization properties
of certain subclass of analytic and p-valent functions defined by linear operator.
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1 Introduction

Let f and g be analytic in the open unit disc U = {z € C : |z|] < 1}. We say
that f is majorized by ¢ in U (see [9]) and write

f(z) <<g(z) (z€U), (1.1)
if there exists a function ¢, analytic in U such that
[p(z)l <1 and  f(z) = ¢(2)g(2) (2 €U). (1.2)

It may be noted that (1.1) is closely related to the concept of quasi-subordination
between analytic functions.

For f(z) and ¢(z) are analytic in U, we say that f(z) is subordinate to ¢(z)
written symbolically as follows:

f=gor f(z) <g(2),

if there exists a Schwarz function w(z), which (by definition) is analytic in
U with w(0) = 0 and |w(z)| < 1 (2 € U), such that f(z) = g(w(z)) (2 €
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U). Further, if the function g(z) is univalent in U, then we have the following
equivalent (see [10, p. 4])

f(z) < g(z) & f(0) = g(0) and f(U) < g(U).

Let A(p)denote the class of functions of the form:

D)=+ Y a,? (peN={1,2,..}), (1.3)
which are analytic and p-valent in U.
Liu [8] defined the linear operator S; , : A(p) — A(p) as follows:
. (bl N,
Sp(2) = ZP+Z <n+b+ 1) o
(b € (C\Z_—{—l,— ;s €CpeN;zel). (1.4)
Now, we define the operator N> ,(2) as follows:

p

350(2) xRy (2) =

(beC\Z ;s€C;peN;zel), (1.5)

then for f(z) given by (1.3) and (1.5), we have

b+1
_Zp_|_z<n;:+j; > anip?" P (b€ C\Z ;5€ C;peN;z eU).

(1.6)
We can easily verify from (1.6) that

2 (R, F(2)) = (b+ DN F(2) = (b+ 1= )RS, f(2) (1.7)
We note that
(1) Rppf(2) = f(2); "
() W) 1/(2) = 2 + 3 (52) ey = 222

Now, by making use of the operator N, f(2 ), we define a new subclass of
functions f € A(p) as follows.
Definition 1. Let -1 < B< A<1l,peN,jeNy=NU{0},v € C* and
feAlp). Then fe S’ 2 ss (13 A, B), the class of p-valent functions of complex
order v in U, if and only if

12 (R, f(2)V Y | 1+ Az
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Clearly, we have the following relationships:

(D) 8946 (111, =1) = 55, (7);

(11) S,b,O (/Yala_ ) Sf)( )7

(i) S7Yp0 (131, =1) = S (7) (v € C*) (see [11]);

(iif) SYpo (1 =31, =1) = S*(a) (0 < a < 1) (see [13]).

Also, we note that:

(i)Forj =s=0, S£7b7s () reduces to the class S, (7) (v € C*) of p—valently
starlike functions of order v (y € C*) in U (see Deniz et al. [4, with a =
0]), where

Sp(v) = {f(Z) € A(p) : Re (p+% (Zﬁz) —p)) >0,peN,v€ C*};

(ii) For j = 0,s = land b = p— 1(p € N), S;,b,s () we get the class
K, (v) (v € C*) of p—valently convex functions of order v (y € C*) in U (see
Aouf [3]), where,

K, (v) = {f(z) € A(p) : Re <p (1+ J{,,;()) p)) >0,p€N,7€C*}.

We shall need the following lemma.
Lemma 1 [1]. Let v € C* and f € KJ(7). Then f € Sj(37), that is,

Ki() € $i(37) (reT). (19)

An majorization problem for the class S(v)(y € C*) has been investi-
gated by Altintas et al. [2]. Also, majorization problem for the class S* =
S5*(0) has been investigated by MacGregor [9]. Recently Goswami and Wang
[5], Goyal and Goswami [6] and Goyal et al. [7] generalized these results for
classes of multivalent function defined by fractional derivatives operator and
Saitoh operator, respectively. In this paper we investigate majorization prob-
lem for the class S;g,b,s (v; A, B) and other related subclasses.

2 Main Results

Unless otherwise mentioned we shall assume throughout the paper that —1 <
B<A<1lyeC"beC\Z ,s€C,peNandjeN,.
Theorem 1. Let the function f € A(p) and suppose that g € S7

' ' D,b,s ( ;A’ B) ’
If (N;}bf(z))(]) is majorized by (N;}bg(z))(]) in U, then

()] <08t el <o), o)
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where 79 = ro(p, 7,0, A, B) is the smallest positive root of the equation

vp(A — B) + (b+ 1)B|r*—(2|B|+|b + 1))7*—~[2 + |yp(A — B) + (b + 1)B|] r+|b + 1| = 0.

(2.2)
Proof. Since g € S‘,Z,b’S (7; A, B), we find from (1.8) that
G+1)
1 {2z2(N,9(2) _ 1+ Aw(z
P+ = ( P )(J) —p+J :pl B ()7 (23)
T (R9(2) + Bulz)

where w is analytic in U with w(0) = 0 and |w(z)| < 1 (2 € U). From (2.3),
we have

2 UA00) M ) R 77 Sy ) R ) L2 L O N

(N;bg(z))(j) 1+ Bw(z)

Also from (1.7), we have

2 (8,9 = 0+ 1) ()Y — b+ 1+ —p) (N9()) . (25)

From (2.4) and (2.5), we have

. () b+ 1] (1 +|B||z])
0509)”| < o A B 2 64 BT

(N;Ilg(z)) (4)

. (26)

Next, since (N;bf(z))(j) is majorized by (N;bg(z))(j) in U, from (1.2), we have

(R, £(2)Y = (2) (R,9(2)) . (2.7)

Differentiating (2.7) with respect to z and multiplying by z, we have

2 (R, ()Y = 20 (2) (R,9()) Y+ 20(2) (R0 Y, (2.8)

using (2.5) in (2.8), we have

!

(831 £(2)" = zfj?) (%09())” + () (319(2)) 7. (29)

—~

Thus, by noting that ¢ € P satisfies the inequality (see [12]),

@l(z)‘ < % (z € U), (2.10)
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and making use of (2.6) and (2.10) in (2.9), we have

)(N;,le (Z))(j)

- ()P (1+ 1Bl 2D 10
('“”(Z)' I B helA— By + G+ DB |z|r) (53%0t2)

<

Y

(2.11)
which upon setting
[zl =7 and |o(z)] =p (0<p<1),
leads us to the inequality
)(N;,le (2))(1) <
Y (p) ()
Ns-i—l J
(=) [[b+1]— yp(A— B) + (b + 1)B|7] ‘( w927
where
U(p) = —r(L+[Blr)p*+ L =r*)[lb+1] = |yp(A = B) + (b+1)B|r]p
+r(1+|B|r), (2.12)

takes its maximum value at p = 1, with rg = ro(p, 7y, b, A, B), where ro(p, v, b, A, B)
is the smallest positive root of (2.2), then the function ®(p) defined by

®(p) = —o(1+|Blo)p’+(1—0")[Jb+1]—|yp(A—B)+ (b+1)Blo]p
+o(1+|B|o) (2.13)

is an increasing function on the interval 0 < p < 1, so that

d(p) < ®(1)=(1-0)[|b+1]—|yp(A—B)+ (b+1)B|o]
(0<p<1;0<0<rop,b A DB)). (2.14)

Hence upon setting p = 1 in (2.13), we conclude that (2.1) holds true for
|z| < 1o =r10(p,7,b, A, B), where ro(p,~,b, A, B) is the smallest positive root
of (2.2). This completes the proof of Theorem 1.

Putting A = 1 and B = —1 in Theorem 1, we obtain the following corollary.
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Corollary 1. Let the function f € A(p) and suppose that g € Si,b,s (7). If
(N;bf(z))(J) is majorized by (N;bg(z))(]) in U, then

(%5512 < | (%3t g=))

where 79 = ro(p,,b) is given by

(l2l <o),

k—/k2—429p— (b+1)[[b+1]
2[2yp — (b+1)] ’

where (k=24 b+ 1|+ |2yp — (b+ 1)]).

Putting s = 0 and b = p— 1(p € N) in Corollary 1, we obtain the following
corollary.
Corollary 2 [1, Theorem 1]. Let the function f € A(p) and suppose that
g € S3(7). If f9)(2) is majorized by ¢ (z) in U, then

To = TO(p7’77b) =

[fUD ()] < gV ()] (2l <o),

where g = ro(p, 7, j) is given by

k— /K —4p[2yp —p +J|
2[2vp —p+ J|

ro = 10(p,7,J) =

where (k=2+p—j+ |2vp — p + j|).

Putting 7 = 0 in Corollary 2, we obtain the following corollary.
Corollary 3. Let the function f € A(p) and suppose that g € S,(7). If f(2)
is majorized by g(z) in U, then

1F(2)] < g'(2)] (I2l <o),

where 7o = ro(p, ) is given by

k= /k* —4p[2yp — p|
2[2yp — pl

To = To(p,’Y) =

where (k =2+ p+ [2yp — pl).

Putting j =0,s =1 and b = p — 1(p € N), in Corollary 1, with the aid of
Lemma 1 (with j = 0), we obtain the following corollary.
Corollary 4. Let the function f € A(p) and suppose that g € K, (7). If f(2)
is majorized by g(z) in U, then

1F(2)] < 1g'(2)] (2] <o),

where ro = ro(p,y) is given by

k—/k*—4ply —pl
2|y —pl

To = TO(P;V) =
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where (k =2+ p+ |yp —pl).

Putting A=1,B=—-1,p=1and s =b= j =0, in Theorem 1, we obtain
the following corollary.
Corollary 5 [2, Theorem 1]. Let the function f € A and suppose that
g € S(7). If f(2) is majorized by ¢(z) in U, then

1F(2) < 1g'(2)] (I2l <o),

where ry = ro(7) is given by

k=R —4)2y -1
B 2(2y — 1 ’

o = 70(7)

where (k =3+ |2y — 1]).

Letting v — 1 in Corollary 5, we obtain the following corollary.
Corollary 6 [9]. Let the function f € A and suppose that g € S*. If f(z) is
majorized by g(z) in U, then

1F(2) < g'(2)] (2] <o),

where 1 is given by

TOZQ—\/g.

3 Open Problem

The class S;bﬁ (7; A, B) can be redefined by making use of a differential mul-
tiplier transformations to get new class. So, new results similar or parallel to

what obtained in this paper can be derived for the new class.
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