
Int. J. Open Problems Complex Analysis, Vol. 4, No. 3, November 2012
ISSN 2074-2827; Copyright c©ICSRS Publication, 2012
www.i-csrs.org

Extreme points and support points of a class of

analytic functions with fixed finitely many coefficients

Liangpeng Xiong and Xiaoli Liu

College of Engineering and Technical,
ChengDu University of Technology, 614007, Leshan, Sichuan, P.R. China.

email: xlpwxf@163.com and travel-lxl@163.com

Abstract

Let T ∗n(Ci, A,B, α) denote the family of analytic functions of the

form f(z) = z −
k∑
j=2

(B−A)Cj

(1+B)[αj2+(1−α)j]z
j −

∞∑
n=k+1

anz
n (an ≥ 0), which are

univalent in the open unit disk U and satisfy the following sub-
ordination condition:f ′(z) + αzf ′′(z) ≺ 1+Az

1+Bz
(0 < α ≤ 1,−1 ≤ A <

B ≤ 1, Cj ≥ 0, 0 ≤
k∑
j=2

Cj ≤ 1). In this paper, we obtain the extreme

points and support points of the class of functions T ∗n(Cj, A,B, α).
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1 Introduction

we denote the space of functions analytic in the unit disk U = {z : |z| < 1}
by A. The topology of A is defined to be the topology of uniform convergence
on compact subsets of the unit disk U . Let K be a subset of the space A,
the extreme points of K can be expressed as follows: xo ∈ EK if and only if
the condition x, y, x0 ∈ K, 0 < t < 1 and tx + (1 − t)y = x0 can make sure
x = y = x0, where EK denote the set of all extreme points of K. Furthermore,
Suppose that F is a compact subset of A. If there exists a continuous linear
functional J on A, which satisfies for a function f0 ∈ F such that ReJ(f) is



Extreme points and support points of a class of functions 35

non-constant on F , and ReJ(f0) = max{ReJ(f) : f ∈ F}, then f0 is called a
support point of F . The set of all support points of F is denoted by suppF .
Let Tn ⊂ A be the subclass of univalent analytic which are of the form

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U. (1)

We recall the definition of subordination between two functions, say f and
F , analytic in U . This means that there is an analytic function φ such that
φ(0) = 0, |φ(z)| < 1 and f(z) = F (φ(z)) for |z| < 1. This relation shall be
denoted by f ≺ F .

Indeed, some authors have given the extreme points and support points of
several subclass of Tn, see [2, 5, 6, 8, 10]. Here, we want to introduce and study
another subclasses Tn(A,B, α), T ∗n(Cj, A,B, α) of Tn. A function f(z) ∈ Tn is
said to be in the class Tn(A,B, α) if and only if

f ′(z) + αzf ′′(z) ≺ 1 + Az

1 +Bz
(0 < α ≤ 1,−1 ≤ A < B ≤ 1). (2)

Some related analytic function classes with Tn(A,B, α) were studied for dif-
ferent objects, see [1, 4, 9, 11]. Now we can fix the finitely many coefficients
of functions in Tn(A,B, α) and obtain the following class T ∗n(Cj, A,B, α):

T ∗n(Cj, A,B, α) =

{
f(z) : f(z) = z −

k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj−

∞∑
n=k+1

akz
k ∈ Tn(A,B, α), 0 ≤ Cj ≤ 1, 0 < α ≤ 1, an ≥ 0, 0 ≤

k∑
j=2

Cj ≤ 1

}
.

In this paper, we obtain the extreme points and support points of the
subclass T ∗n(Cj, A,B, α) of Tn. Two important Lemmas need to be given.

Lemma 1.1 If the function f(z) = z −
∞∑
n=2

anz
n ∈ Tn, then f(z) is in the

class Tn(A,B, α) if and only if

∞∑
n=2

[αn2 + (1− α)n]an <
B − A
1 +B

. (3)

Proof Firstly, suppose f(z) ∈ Tn(A,B, α), then we have

f ′(z) + αzf ′′(z) =
1 + Aw(z)

1 +Bw(z)
,−1 ≤ A < B ≤ 1, w(0) = 0, |w(z)| = 1, (4)
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it is equivalent to

|w(z)| =

∣∣∣∣∣ 1− f ′(z)− αzf ′′(z)

B[f ′(z) + αzf ′′(z)− A

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=2

[n+ αn(n− 1)]anz
n−1

B − A−B
∞∑
n=2

[n+ αn(n− 1)]anzn−1

∣∣∣∣∣ < 1.

(5)
We consider real values of z, then the denominator in (5) cannot vanish in U,
and is positive for z = 0. Therefore, it is positive on the line segment (0, 1) .
Putting z = r(0 < r < 1) in (5), we infer that

∞∑
n=2

[n+ αn(n− 1)]anr
n−1 < B − A−B

∞∑
n=2

[n+ αn(n− 1)]anr
n−1

or
∞∑
n=2

[αn2 + (1− α)n]anr
n−1 <

B − A
1 +B

.

Letting r → 1−, it yields the assertion (3).
Conversely, suppose f(z) ∈ Tn and satisfies (3). Then, in view of (5), it is

sufficient to prove that∣∣∣∣∣
∞∑
n=2

[n+ αn(n− 1)]anz
n−1

∣∣∣∣∣−
∣∣∣∣∣B − A−B

∞∑
n=2

[n+ αn(n− 1)]anz
n−1

∣∣∣∣∣ < 0

In fact,

∣∣∣∣∣
∞∑
n=2

[n + αn(n− 1)]anz
n−1

∣∣∣∣∣−
∣∣∣∣∣B − A−B

∞∑
n=2

[n+ αn(n− 1)]anz
n−1

∣∣∣∣∣
≤

∞∑
n=2

[n+ αn(n− 1)]an|z|n−1

−{(B − A)−B
∞∑
n=2

[n+ αn(n− 1)]an|z|n−1}

≤
∞∑
n=2

(1 +B)[αn2 + (1− α)n]an|z|n−1 − (B − A) < 0

≤
∞∑
n=2

(1 +B)[αn2 + (1− α)n]an − (B − A) < 0,

which complete the proof of Lemma 1.1.
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Lemma 1.2 If the function f(z) = z−
k∑
j=2

(B−A)Cj

(1+B)[αj2+(1−α)j]z
j−

∞∑
n=k+1

anz
n ∈

Tn, then f(z) is in the class T ∗n(Cj, A,B, α) if and only if

∞∑
n=k+1

[αn2 + (1− α)n]an <
B − A
1 +B

(1−
k∑
j=2

Cj), (6)

where an ≥ 0, 0 < α ≤ 1, 0 ≤ Cj ≤ 1, 0 ≤
k∑
j=2

Cj ≤ 1.

Proof Putting aj =
(B − A)Cj

(1 +B)[αj2 + (1− α)j]
(j = 1, 2, ..., k) in Lemma 1.1, we

have
k∑
j=2

B − A
1 +B

Cj +
∞∑

n=k+1

[αn2 + (1− α)n]an <
B − A
1 +B

,

which complete the proof of Lemma 1.2.

2 The extreme points of T ∗n (Cj, A,B, α)

Lemma 2.1 (See [3, 7])Suppose A is a topological vector space. If F is a
nonempty compact subset in A, then F ⊂ co(E(F)). In particular, if F is a
nonempty compact convex set in A, then F is the closed convex hull of the set
of its extreme points.

Lemma 2.2 Let fk(z) = z −
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj, (k ≥ 2) and

fn(z) = z −
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj −
(B − A)(1−

k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
zn, (n ≥

k + 1), then f(z) ∈ T ∗n(A,B, α) if and only if f(z) =
∞∑
n=k

λnfn(z), where λn ≥ 0

and
∞∑
n=k

λn = 1.

Proof Firstly, if f(z) =
∞∑
n=k

λnfn(z), then we have

f(z) = z−
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj−
∞∑

n=k+1

(B − A)(1−
k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
λnz

n.

(7)
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So

∞∑
n=k+1

[αn2 + (1− α)n]

(B − A)(1−
k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
λn

=
B − A
1 +B

(1−
k∑
j=2

Cj)
∞∑

n=k+1

λn

≤ B − A
1 +B

(1−
k∑
j=2

Cj),

from Lemma 1.2, we can know f(z) ∈ T ∗n(Cj, A,B, α).
Conversely, suppose f(z) ∈ T ∗n(Cj, A,B, α), then from Lemma 1.2, it is

easy to know that

an ≤
(B − A)(1−

k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
(n ≥ k + 1). (8)

Setting

λn =
(1 +B)[αn2 + (1− α)n]

(B − A)(1−
k∑
j=2

Cj)

an (n ≥ k + 1) , λk = 1−
∞∑

n=k+1

λn,

then f(z) =
∞∑
n=k

λnfn(z).

Theorem 2.3 The extreme points of the class T ∗n(Cj, A,B, α) are given by

ET ∗n(Cj, A,B, α) = V =

{
fk(z) = z −

k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj,

fn(z) = z−
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj−
(B − A)(1−

k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
zn (n ≥ k+1)

}

Proof Suppose z −
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj −
(B − A)(1−

k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
zn =

tg1(z) + (1− t)g2(z),
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where 0 < t < 1 , gi(z) = z −
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj −
∞∑

n=k+1

an, iz
n and

gi(z) ∈ T ∗n(Cj, A,B, α) (i = 1, 2), then we have

(B − A)(1−
k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
= tan ,1 + (1− t)an ,2. (9)

Since gi(z) ∈ T ∗n(Cj, A,B, α), (3.2) gives an, i ≤
(B − A)(1−

k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
(i = 1, 2).

This implies that an, 1 = an, 2 =

(B − A)(1−
k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
, so g1(z) = g2(z), this

gives us

fn(z) = z −
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj −
(B − A)(1−

k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
zn ∈

ET ∗n(Cj, A,B, α). Taking the same process, we can obtain:

fk(z) = z −
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj ∈ ET ∗n(Cj, A,B, α). (10)

So V ⊂ ET ∗n(Cj, A,B, α). From Lemma 2.2, we know T ∗n(Cj, A,B, α) = HV.
Since V is a compact set, using Lemma 2.1, it gives ET ∗n(Cj, A,B, α) =
EHV ⊂ V. So ET ∗n(Cj, A,B, α) = V.

3 The support points of T ∗n (Cj, A,B, α)

Lemma 3.1 (See [3]) J is a complex-valued continuous linear functional
on A if and only if there is a sequence {bn} of complex numbers satisfying
−

lim
n→∞

(|bn|)
1
n < 1 and such that J(f) =

∞∑
n=0

bnan, where f ∈ A and f(z) =

∞∑
n=0

anz
n (|z| < 1).

Lemma 3.2 (See [2]) Suppose f0 is a support point of F , and let J be a
corresponding continuous linear functional on F . Defining Gj by Gj = {f ∈
F : ReJ(f) = ReJ(f0)}, then Gj is convex, EGj ⊂ EF and Gj = {f ∈
F : f =

∞∑
i=1

δifi, δi ≥ 0,
∞∑
i=1

δi = 1, fi ∈ EGj, i = 1, 2, ...}.
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Lemma 3.3 (See [3]) Let F be a compact subset of A and let J be a
complex-valued continuous linear functional on A.Then max{ReJ(f) : f ∈
HF} = max{ReJ(f) : f ∈ F} = max{ReJ(f) : f ∈ E(HF)}.

Theorem 3.4 The support points of the class T ∗n(Cj, A,B, α) are given by

SuppT ∗n(Cj, A,B, α) =

{
f(z) ∈ Tn(A,B, α) : f(z) = z−

k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj−

∞∑
n=k+1

(B − A)(1−
k∑
j=2

cj)

(1 +B)[αn2 + (1− α)n]
ζnz

n, ζn ≥ 0,
∞∑

n=k+1

ζn ≤ 1, ζi = 0 for some i ≥ k+1

}
.

Proof Firstly, let a function f0(z) ∈ T ∗n(Cj, A,B, α), and put

f0(z) = z−
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj−
∞∑

n=k+1

(B − A)(1−
k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
ζnz

n,

(11)

where
∞∑

n=k+1

ζn ≤ 1, ζn ≥ 0, ζi = 0 for some i ≥ k + 1. Now, taking

{
bn = 0, n > 1, n 6= i,

bn = 1, n = 1, n = i.

Then we have
−

lim
n→∞

(|bn|)
1
n < 1. There we define a functional J on Tn by

J(f) =
∞∑
n=0

anbn, where f(z) = z −
∞∑
n=2

an ∈ Tn.

It is clearly that the J is a continuous linear functional on Tn by Lemma
3.1. Moreover, we note that J(f0) = 1, whenever, there are two cases for any
function

f(z) = z−
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zn−
∞∑

n=k+1

anz
n ∈ T ∗n(Cj, A,B, α), (12)

Case 1: For 2 ≤ i ≤ k, J(f) = a1b1 + aibi = 1− ai = 1− (B−A)Ci

(1+B)[αj2+(1−α)j] ≤ 1.

Case 2: For i ≥ k + 1,J(f) = a1b1 + aibi = 1− ai ≤ 1(ai ≥ 0).
So we have ReJ(f0) = max{ReJ(f) : f ∈ T ∗n(Cj, A,B, α)} and ReJ(f) are
not constant on T ∗n(Cj, A,B, α), hence f0 is a support point of T ∗n(Cj, A,B, α).
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Conversely, suppose that f0 is a support point of T ∗n(Cj, A,B, α), and J
is a continuous linear functional on T ∗n(Cj, A,B, α) given by Lemma 3.1 with
sequence {bn}. Note that ReJ is also a continuous linear on T ∗n(Cj, A,B, α),
consequently, by the Lemma 3.3, we have

ReJ(f0) = max{ReJ(f) : f ∈ T ∗n(Cj, A,B, α)} = max{ReJ(f) : f ∈

ET ∗n(Cj, A,B, α)}. SetMi = {fn : ReJ(f0) = ReJ(fn), fn ∈ ET ∗n(Cj, A,B, α)},
if Mi = ET ∗n(Cj, A,B, α), then ReJ(f) must be constant on T ∗n(Cj, A,B, α),
this contradicts that f0(z) is a support point of T ∗n(Cj, A,B, α). Therefore,
there exists i such that ReJ(fi) < ReJ(f0). So we can obtain the relation
EMi ⊂ {fn : fn ∈ ET ∗n(Cj, A,B, α), n = 1, 2, ..., and n 6= i}. Hence, following
the Lemma 3.2 , we have

f0(z) =
∞∑
n=k

ζnfn(z)

where ζn ≥ 0,
∞∑

n=k+1

ζn ≤
∞∑
n=k

ζn = 1 and fn(z) ∈ ET ∗n(Cj, A,B, α). It follows

from this and Theorem 2.1 that

f0(z) = z−
k∑
j=2

(B − A)Cj
(1 +B)[αj2 + (1− α)j]

zj−
∞∑

n=k+1,n 6=i

(B − A)(1−
k∑
j=2

Cj)

(1 +B)[αn2 + (1− α)n]
ζnz

n

which complete the proof of Theorem 3.1.

4 Open Problem

The method here is employed from the work done by W.DEEB [2].It is inter-
esting to see similar results for different classes such as

G =

{
f(z) : f ′(z) + αzf ′′(z) ≺ 1 + Az

1 +Bz
, f(z) = z +

∞∑
n=2

anz
n

}
,

where 0 < α ≤ 1,−1 ≤ A < B ≤ 1, an ∈ R. We did try, but failed to get any
results and it is left for the readers to tackle this problem.
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