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Abstract

Let T¥(C;, A, B,a) denote the family of analytic functions of the

k ) 00 .
form f(z) =2z—- > (1+B()€l;;4-&)-%—a)j} 22— > a2 (a, > 0), which are
J=2 n=Fk+1

univalent in the open unit disk U and satisfy the following sub-

ordination condition:f'(z) + azf"(z) < }Igj(@ <a<1,-1 <A<
k

B <1,C; >0,0< > C; <1). In this paper, we obtain the extreme
j=2

points and support points of the class of functions T (C;, A, B, «a).
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1 Introduction

we denote the space of functions analytic in the unit disk U = {z : |2]| < 1}
by A. The topology of A is defined to be the topology of uniform convergence
on compact subsets of the unit disk U. Let K be a subset of the space A,
the extreme points of K can be expressed as follows: z, € EK if and only if
the condition z, y, xg € K, 0 <t < 1 and tz + (1 — t)y = x¢ can make sure
xr =1y = x9, where EK denote the set of all extreme points of K. Furthermore,
Suppose that F is a compact subset of A. If there exists a continuous linear
functional J on A, which satisfies for a function fo € F such that ReJ(f) is
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non-constant on F, and ReJ(fy) = max{ReJ(f) : f € F}, then f; is called a
support point of F. The set of all support points of F is denoted by suppF.
Let T,, C A be the subclass of univalent analytic which are of the form

f(z):z—Zanz", a, >0,z¢eU. (1)
n=2

We recall the definition of subordination between two functions, say f and
F, analytic in U. This means that there is an analytic function ¢ such that
#(0) =0, |p(z)] < 1 and f(z) = F(¢(z)) for |z| < 1. This relation shall be
denoted by f < F.

Indeed, some authors have given the extreme points and support points of
several subclass of T),, see [2, 5, 6, 8, 10]. Here, we want to introduce and study
another subclasses T,,(4, B, a), T(C;, A, B,«) of T,,. A function f(z) € T, is
said to be in the class T,,(A, B, «) if and only if

1+ Az
1+ Bz

f'(z)+azf"(z) < 0<a<1l,-1<A<B<I). (2)

Some related analytic function classes with T,,(A, B, o) were studied for dif-
ferent objects, see [1, 4, 9, 11]. Now we can fix the finitely many coefficients
of functions in 7},(A, B, o) and obtain the following class T (C;, A, B, a):

)

T;(Oj,A,B,Oé) = {f(z) : f(Z) = - — [B_ A)CJ

s (
— (14 B)[aj? + (1 - a)j]

n=k+1

o) k
Y ar €Ty(A,B,a), 0<C;<1,0<a<l,a,>0,0<) (< 1}.
j=2

In this paper, we obtain the extreme points and support points of the
subclass T (C;, A, B, a) of T,,. Two important Lemmas need to be given.

Lemma 1.1 If the function f(z) = z — > a,z™ € T, then f(z) is in the
n=2
class T, (A, B, «) if and only if

Z[om2 + (1 = a)n]a, < ?;; (3)

Proof Firstly, suppose f(z) € T,,(A, B, «), then we have

14 Aw(z)

f'(2) +azf"(z) = 15 Bu() —1<A<B<1Lw(0)=0,|wz)|=1, (4
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it is equivalent to

1 ()~ az"(2) 3o+ an(n = Djanz

B[f'(z) + azf"(z) — A <1

w(z)] =

B—A-B i [n+ an(n — 1)]a,z"!
‘ (5)

We consider real values of z, then the denominator in (5) cannot vanish in U,
and is positive for z = 0. Therefore, it is positive on the line segment (0, 1) .

Putting z = (0 <r < 1) in (5), we infer that

Z[n +an(n— e, '<B—-A-B Z[n + an(n — 1)]a,r"*
n=2 n=2
or
= B—A
2 n—1
;[an + (1 —a)nja,r" " < =B

Letting  — 17, it yields the assertion (3).
Conversely, suppose f(z) € T,, and satisfies (3). Then, in view of (5), it is
sufficient to prove that

<0

B—-—A-B Z[n +an(n — 1)]a,z"*

n=2

Z[n + an(n — 1)]a,z"*

In fact,

B—-A-B Z[n +an(n — 1)]a,z"*

Z[n + an(n — 1)]a,z"*

< é[n +an(n — 1)]a,|z|" !

—{(B-A)-B i[n + an(n — 1)]a,|z|" "}
< 2(1 + B)[an? + (1 — a)nla,|2" — (B — A) < 0
< f:(l + B)[an® + (1 — a)n]a, — (B — A) <0,

which complete the proof of Lemma 1.1.
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k )

Lemma 1.2 If the function f(z) = z—)_ ( (B-A)C; 7 Z— 3 a2t €
j=2

14+ B)[aj?+(1—a)j 1
T, then f(z) is in the class T}(C;, A, B, o) if and only if

> Jan’ + (1 - a)na, < Z C)), (6)

k
where a, > 0,0<a<1,0<C;<1,0< > C;<1
=2

(B —A)C;
(1+ B)[aj? + (1 = a)j]

Proof Putting a; = (j=1,2,...,k) in Lemma 1.1, we

have

B—A B—-A
1— Z -
;1—1—30 +n;1an + ( oz)n]an<1+B,

which complete the proof of Lemma 1.2.

2 The extreme points of T7(C;, A, B, a)

Lemma 2.1 (See [3, 7])Suppose A is a topological vector space. If F is a
nonempty compact subset in A, then F C co(E(F)). In particular, if F is a
nonempty compact convex set in A, then F is the closed convex hull of the set
of its extreme points.

2 (k> 2) and

k
_ (B —A)C;
Lemma 2.2 Let fy(z) =2z — ;2 05 B2+ (1—a)]

owe | (PoA0-30)
J 2" (n >

1+Bay+a—@ﬂz‘u+3mm2<f a2

|
M -

k+ 1), then (Z) € T)(A, B,«) if and only if f(2) = i A fn(2), where A, >0
n==k

and Y A\, = 1.

n=~k

Proof Firstly, if f(z) = > A\, fn(2), then we have

- A)C] J - Jj=2 n
- Z 1+B )avj? —l—(l—a)j]z_n_z: (14 B)[an?+ (1 — a)n]/\nz’

J:2
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So
. (B-A)(1-3C)
n;fo‘” T O e B T =
B—A k 00
REEY R PP
B-A i
< 1+B<1_ZCJ>7

from Lemma 1.2, we can know f(z) € T(C;, A, B, «).
Conversely, suppose f(z) € T(C;, A, B,a), then from Lemma 1.2, it is
easy to know that

" (1—|—B)[om2—|—(11:— a)n| (nzk+1) (8)
Setting
)\n:(l—i-B)[Oénz—i—(lk—Oé)n]an (nzk—i—l),)\k:l— i A,
(B—A)(1->C)) n=k+1

j=2
then f(z) = i_o:k Anfn(2).

Theorem 2.3 The extreme points of the class T))(C;, A, B, «) are given by

k
ET;(C;,A,B,a) =V = { Z A>CJ’ 2
Jj=

i A
=z— Z A)Cj . =2 2" (n > k—l—l)}

J:2

( . i j=
Proof Suppose z — ; A+ B)az+(1-a)j  (Q+B)anz+(1—am]

tg1(2) + (1 = t)ga(2),



Extreme points and support points of a class of functions 39

k
(B —A)C;
where 0 <t < 1,¢:(2) = Zl—l—B a2 +)(1—a Zamz and

J=2 n=k+1
gi(2) € T;;(C;, A, B,a) (i = 1,2), then we have
(B A)1- z )
G+ B+ (1=~ oot T Do ©)

(B-4)(1-20)
= (kl+B)[an2+ 1= am]
(B-4)(1- %)
(It B)lan® + (1—ajm]’

Since g;(z) € T (C;, A, B, a), (3.2) gives ay,;

This implies that a,, 1 = @, 2 = so g1(z) = go(2), this

gives us

(B—A)1-3C)

k
= Z —A)G; 2 — =2 2" e
J=2 1+B Mag? + (1 — a)j] (1+ B)[an? + (1 — a)n]
ET!(C;, A, B, o). Taking the same process, we can obtain:
k
B A)C i
- € ET*(C;, A, B, a). 10

SoV C ET;:(C’]-,A, B,a). From Lemma 2.2, we know T7(C;, A, B,a) = HV.
Since V is a compact set, using Lemma 2.1, it gives ET;(C;, A, B,a) =
EHV CV.So ET;(C;,A,B,a) = V.

3 The support points of 7,)(C}, A, B, «)

Lemma 3.1 (See [3]) J is a complex-valued continuous linear functional
on A if and only if there is a sequence {b,} of complex numbers satisfying

lim (|b,|)* < 1 and such that J(f) = 3. buan, where f € A and f(z) =
n—00 n=0

doanz" (|z| < 1).

n=0

Lemma 3.2 (See [2]) Suppose fo is a support point of F, and let J be a
corresponding continuous linear functional on F. Defining G; by G; = {f €
F : ReJ(f) = ReJ(fo)}, then G, is conver, EG; C EF and G; = {f €

Fif=30:f,6,>0>6=1f € EGj,i=1,2,..}.
1=1 i=1
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Lemma 3.3 (See [3]) Let F be a compact subset of A and let J be a
complex-valued continuous linear functional on A.Then max{ReJ(f) : [ €
HF} =max{ReJ(f): f € F} = max{ReJ(f): f € E(HF)}.

Theorem 3.4 The support points of the class T;(C;, A, B, ) are given by

k
— A)C; ;
SuppT;, (Cy, A, B, a) = {f(z) € Tu(A, B, a) ) =2 Z 1+B )evs? +)(1]—06)9]Z]_
Jj=

Y AT EEE a6 20 2 S LG =0 forsome i 2 k+l

n=k+1 n=k+1
Proof Firstly, let a function fy(2) € T,¥(C;, A, B, o), and put

. (B-AN-30) . }
1

. . B-A1-Y0)
- Z A)C] Zj_ Z Jj=2 Czn
F£1+Bay+ﬂ—®ﬂ 2 A Bant T (1= am ™
(1)

o0

where Y (, <1,(, >0, =0 for some i > k + 1. Now, taking
n=k+1

{bn:O, n>1n#1,

b,=1, n=1,n=1.

Then we have lim (|bn])* < 1. There we define a functional J on T}, by

n—oo
J(f) :Zanbn, where f(z):z—ZaneTn.
n=0 n=2

It is clearly that the J is a continuous linear functional on 7, by Lemma
3.1. Moreover, we note that J(fy) = 1, whenever, there are two cases for any
function

k 00
A)C;
" W2t eTHC: A B, a), (12
ZZl+Bozj+(1—oz)j]Z Zazen(] a), (12)
=2 n=k+1
Case 1: For 2<i <k, J(f)=aiby +aibj=1—a;=1— (B—A)C: <1

(1+B)|ej?+(1-a)j] —
Case 2: For i > k+ 1,J(f) = a1by + a;b; =1 —a; < 1(a; > 0).

So we have ReJ(fy) = max{ReJ(f) : f € T)(C;, A, B,a)} and ReJ(f) are
not constant on 75 (C;, A, B, ), hence fy is a support point of 7,/(C}, A, B, a).
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Conversely, suppose that fy is a support point of T7¥(C;, A, B, «v), and J
is a continuous linear functional on T7¥(C}, A, B, o) given by Lemma 3.1 with
sequence {b,}. Note that Re.J is also a continuous linear on 7,/(C;, A, B, o),
consequently, by the Lemma 3.3, we have

ReJ(fo) = max{ReJ(f): f € T,(C;, A, B,a)} =max{ReJ(f): f €

ET;(C;, A, B,a)}. SetM; = {f,, : ReJ(fo) = ReJ(fn), [n € ET}(C;, A, B,a)},
if M; = ET}(C;, A, B,a), then ReJ(f) must be constant on T(C;, A, B, a),
this contradicts that fy(z) is a support point of T%(C;, A, B, ). Therefore,
there exists ¢ such that ReJ(f;) < ReJ(fy). So we can obtain the relation
EM; C{f.: fn€ ET}(C;,A,B,a),n=1,2,..., and n # i}. Hence, following
the Lemma 3.2 , we have

fO(z) = Z Cnfn(z)

where ¢, >0, Y (¢ < > ¢, =1and f,(2) € ET,;;(C}, A, B,a). It follows
n=k+1 n=~k
from this and Theorem 2.1 that

SR (B-4)1 - 30
2 (14 B)loj” + (1 - a)j (1= Blar?+ (1= a)n]

J

k

fo(z) = 2—

which complete the proof of Theorem 3.1.

4 Open Problem

The method here is employed from the work done by W.DEEB [2].It is inter-
esting to see similar results for different classes such as

1+ Az >
. Lol " o n
6= {71+ £16) 4 a2f"(6) < 1o ) =2+ D0,
where 0 < a <1,—-1 < A< B<1,a, € R. We did try, but failed to get any
results and it is left for the readers to tackle this problem.
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