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1 Introduction

Let H (U) be the class of analytic functions in the open unit disk U = {z €
C: |z] < 1} and let H]a,p] be the subclass of H (U) consisting of functions of
the form:

f(2)=a+ap’ +apq2"" . (aeC; peN=1{1,2,..}).

For simplicity H[a| = H][a, 1]. Also, let A (p) be the subclass of H (U) consist-
ing of functions of the form:

f(z) =2F+ Z arz®  (p €N), (1.1)

k=p+1

which are p—valent in U. We write A (1) = A.

If f, g € H(U), we say that f is subordinate to g or g is superordinate
to f, written f(z) < g(z) if there exists a Schwarz function w, which (by
definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all z € U, such
that f(z) = g(w(z)), z € U. Furthermore, if the function g¢ is univalent in U,
then we have the following equivalence, (cf., e.g.,[9], [17] and [18]):

f(2) < g(2) & f(0) = g(0) and f(U) C g(U).

Let ¢ : C2 x U — C and h be univalent function in U. If 3 is analytic
function in U and satisfies the first order differential subordination:

0 (8().28'(:);2) < h(2), (1:2)

then [ is a solution of the differential subordination (1.2). The univalent func-
tion ¢ is called a dominant of the solutions of the differential subordination
(1.2) if B (2) < q () for all § satisfying (1.2). A univalent dominant ¢ that sat-
isfies ¢ < ¢ for all dominants of (1.2) is called the best dominant. If 5 and ¢ are
univalent functions in U and if satisfies first order differential superordination:

h(z) <6 (8(2).28 (2);2). (13)

then /3 is a solution of the differential superordination (1.3). An analytic func-
tion ¢ is called a subordinant of the solutions of the differential superordination
(1.3) if ¢ (2) < B (2) for all {3 satisfying (1.3). A univalent subordinant ¢ that
satisfies ¢ (z) < ¢ (z) for all subordinants of (1.3) is called the best subordinant.

Using the results of Miller and Mocanu [18], Bulboaca [8] considered certain
classes of first order differential superordinations as well as superordination-
preserving integral operators [9]. Ali et al. [1], have used the results of Bul-
boaca [8] to obtain sufficient conditions for normalized analytic functions f € A
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to satisty:
2f'(2)
<22 ,
where ¢; and ¢ are given univalent functions in U with ¢;(0) = ¢2(0) = 1.
Also, Tuneski [24] obtained a sufficient condition for starlikeness of f € A in

"
terms of the quantity % Recently, Shanmugam et al. [22] obtained
z
sufficient conditions for the normalized analytic function f € A to satisfy
f(z)
G(z) < P (2) < q2(2)
and 2 )
22 f'(z
Q1(2) R 75 = q20%).
&= grap et
For functions f € A (p) given by (1.1) and g € A (p) given by
glz)=2"+ ) b* (peN), (1.4)
k=p+1

the Hadamard product (or convolution) of f and g is given by

(f*9)(2)=2"+ Y abiz" = (9% f)(2). (1.5)

k=p+1

Upon differentiating both sides of (1.5) j—times with respect to z, we have

(f+ ) (2) =6 (p;4) 2”7+ Y 6 (ks j) w7, (1.6)
k=p+1
where |
5(p;j)=ﬁ (p>jipeN;jeNy=NU{0}). (1.7)

For functions f,g € A(p), we define the linear operator DY  (f * g)(j) :
A(p) — Alp) by: | |
DY, (9 () = (Fx9)" (=),

Dy, (fx9)? () = Dayp(Fx9)? (2)
j A Y
= (=N 97 @)+ 2= ((1+9)7) ()

— 5(p;j)zp—j_|_ Z (p_j+)\(k_p))5(/{},j)akbkzk_]

W p—1J
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D3, (f+9? (2) = D(Dy(f+9)" (2))

- A(k— ‘
SIERESY (p it p)) 8 (ks j) axbez"7,

k=p+1 ‘7

and ( in general )
Dy, (fx9)” (z) = DDy (f*g)(j)( )
= O(pj) 2"+ Z (p Ak p)) 0 (k; ) arby 2"~
kpt1 p—1J

A>0p>7peN;jneNy2zel). (1.8)

From (1.8), we can easily deduce that

A . ' ' |
pTZj (Df,p (f gV (z)) = Dy (f NV () —(1-=N) Dy, (f * )9 (2)
A>0p>jipeNin,jeNyzelU). (19)

We observe that the linear operator DY  (f * 9)¥ (2) reduces to several
interesting many other linear operators considered earlier for different choices
of 7,n, A and the function g: ‘

(i) For j = 0, DY, (f+g)(z) = Dy, (f * g) (2), where the operator
D}, (fxg) (A>0,peN,n e Ny was introduced and studied by Selvaraj et
al. [21] (see also [7]), and DY, (f * g) (2) = D} (f * g) (), where the operator
DY (f % g) was introduced by Aouf and Mostafa [6];

(ii) For

=P
1—-=2

we have D} (f « ) (2) = Dy f9(z), Dy fO(z) = D} _f(z), where the
operator DY is the p—valent Al-Oboudi operator which was introduced by
El-Ashwah and Aouf [12], D} f9(z) = D1 f)(z), where the operator D2 fU)
(p > j,p € N,n, j € Ny) was introduced and studied by Aouf [3,4], and D} f©(z) =
D} f(z) , where the operator D) is the p—valent Salagean operator which was
introduced and studied by Kamali and Orhan [13] (see also [5]);

(iii) For

g(z) = (peN;zelU) (1.10)

2) = 2P (1)k—p-(g)bp 2" )
9(2) +k§1 B1)ip- Bk Wy (z € ), (1.11)

(for complex parameters as, ..., and By, ..., 8, (8; ¢ Zy = {0,-1,-2,...},
j=1,..,9);q9<s+1;peN;q, s €Ny where (1), is the Pochhammer symbol
defined in terms to the Gamma function I'; by
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CTw+k) [ 1, (k=0),
(V) = Ty { viv+1)(v+2)..(v+k—-1), (keN).

we have D, (f )% (2) = DY, (H,qu(01) ) (2), and DY, (f + ) (2) =
H,,s(a1)f(z), where the operator H,, (a1) = Hp,q4s(0u, ..., 4 B4, ..., B) s
the Dziok-Srivastava operator which was introduced and studied by Dziok and
Srivastava [11] and which contains in turn many interesting operators;

(iv) For

g(z) = f+»§:(p+l+a%_p»m2k (1.12)

(a>0; >0, peN;, meNyzeU),

we have D}, (£ x.9) (2) = D3, (I,(m, a,1)) (=), and DY, (f + ) (=) =
I,(m,a,l)f(z), where the operator I,(m,c,l) was introduced and studied
by Céatas [10] which contains in turn many interesting operators such as,

I,(m,1,1) = I,(m,1), where I,(m,l) was investigated by Kumar et al. [14];
(v) For

(1.13)

a(2) +F@+a+6>§: L'(k+5) J
T

I'p+8) - ktath)
(a20;p€N;B>—1,z€U)

wehave D} (f +9)? (2) = D3, (Q5,1)" (2),and DY, (f 9)® () = Q3,/(2),
where the operator (3, was introduced and studied by Liu and Owa [15];

(vi) For j = 0 and g of the form (1.11) with p = 1, we have D} , (f * g) (2) =
DY (ay, ..., o5 B4, ..., B5)(2), where the operator DY (al, .. aq,ﬁl,. . B,) was in-
troduced and studied by Selvaraj and Karthikeyan [20];

(vii) For j =0, p=1 and

_ (F+1)T@2-—m)]" 4
() = +§:[ L'(k+1—m) :

meN;0< m<1l;2€eU)

we have DY, (f * g) (z) = DY f(2), where the operator D\"™ was introduced
and studied by Al-Oboudi and Al-Amoudi [2].

In this paper, we will derive several subordmatlon superordination and
sandwich results involving the operator DY  (f * g)
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2 Definitions and preliminarie

In order to prove our subordinations and superordinations, we need the fol-
lowing definition and lemmas.

Definition 2.1 [18]. Denote by @), the set of all functions f that are
analytic and injective on U\ E(f), where

B(f) = {geaUg;n}ﬂz) =oo},

and are such that f' (¢) # 0 for ¢ € OU\E (f).
Lemma 2.1 [18]. Let ¢ be univalent in U and 6 and ¢ be analytic in a

domain D containing ¢(U) with ¢ (w) # 0 when w € ¢(U). Set

/

¥(2) =2q (2)p(q(z)) and h(z)=0(q(2))+1(2). (2.1)

Suppose that
(i) 1 (2) is starlike univalent in U,

(i1) %{zz(g)} >0 for z € U.

If 3 is analytic with 3(0) = ¢(0), S(U) C D and

6(5(2) + 26 (2) ¢ (B(2) < 8(a(2)) + 24 (2) 0 (a(2)), (2.2)

then 5 (z) < ¢ (z) and ¢ is the best dominant.
Lemma 2.2 [8]. Let g be convex univalent in U and 6 and ¢ be analytic
in a domain D containing ¢(U). Suppose that

(i) %{i((j((;)))} >0 for z €U,
(i1) W (2) = 2q (2) ¢ (q(2)) is starlike univalent in U.
If 5(2) € H[q(0),1]NQ, with B(U) C D, and 0 (5 (2)) + 25" (2) ¢ (B8 (2)) is

univalent in U and

0(q(2) +24 ()9 (a(2)) <05 () + 20 (2) (5 (2)), (2.3)

then ¢ (z) < B (z) and ¢ is the best subordinant.

3 Subordination resuts

Unless otherwise mentioned, we assume throughout this paper that o, 3, v, €
C(i = 1,2), such that a+5 # 0, v5, u € C*(C\ {0}) , A > 0, § (p; 7) is given by
(1.7), p > j; p € N, n,j € Ny and the powers are understood as the principle
values.
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Theorem 3.1. Let ¢ be convex univalent in U with ¢(0) = 1 and assume
that

V2 2q (2)  zq (2)
%{73(1( )+ 1+ 7 a0 }>0 (z€U). (3.1)

If f, &, ¥ € A(p) satisfy the following subordination condition:

o (0D @) () 8D3, (1) () )"
e (a+5)6 (i) =
SN ULY) {aD"“ (f*®)Y (2) + 8D (F + 0 (2) _1}
T (f * @) (2) + 8D, (F x ) (2)
)

q (z

= )
71+72Q( )+73 Q(Z)

then

oDy, (F 07 (2) + BDR, (F )P N
(0 +5)3 (pr) = !

and ¢ is the best dominant.
Proof. Define a function p by

()= (D U+ B () + 503, (72 )7 (2)
’ (a4 B)6 (pij) 2

) (zeU). (3.2

Then the function g is analytic in U and ¢(0) = 1. Therefore, differentiating
(3.2) logarithmically with respect to z and using the identity (1.9) in the
resulting equation, we have

(aD;ap (f @)Y (2) + 8Dy, (f + ©)D (2) ) g
Y1+ 72

(0 8)5 (p; )
=) {aD”“ (299 ()+ D00 3) 1}

+Y3l b\

aDy (f = @)Y (2) + BDL, (f + ©)Y (2)
_ 0 (2)
— oy e(z) + 2 Q(z) ,
that is,
20 (2) 2q (2)
Y1+ 720 (2) + 73 2 (2) <71+ 724 (2) + 73 )
By setting

0 (w) =71 + 7w and  (w) = 12,
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it can be easily observed that 6 is analytic function in C, ¢ is analytic function
in C* and ¢ (w) # 0. Also we see that

_Z/Z zZ)) = =4 (Z)

and
h(z) = 0(q(2)) + 4 (=) = 11 + 720 (2) +%Z§(—S),

it is clear that v is starlike univalent in U and

%{Zf))} =n {20+ 1+ qq<(>) - qq<(>)} =Y

Therefore, Theorem 3.1 now follows by applying Lemma 2.1. W
Putting ¢(z) = }igj in Theorem 3.1, it easy to check that the assumption

(3.1) holds whenever —1 < B < A < 1, hence we obtain the following corollary.
Corollary 3.1. Let —1 < B < A <1 and assume that

{721+Az 1— Bz (A—B)z

ul+Bs 1+B: (1+Az)(1+Bz)} >0 (zel), (33

holds. If f, &, ¥ € A(p) satisfy the following subordination condition:

e (a+B)d(p;j)zri
ty M(p —J) O‘D;\l;l (f = @)(j) (z) + BDT; (f * \I/)(j) (2) »
3 A aDy, (f * <I>)(j) (z) + BDY, (f * \p)(j) (2)
1+ Az (A—B)z
+721+Bz +73(1—|—A2) (1+BZ)’

< M

then

aDy (f @)D (2) + DL (f+ 1) (2)\" JREZE
(a4 B)6(p;j) 2p—7 1+ Bz

1+ Az
1+Bz

Taking j = 0 in Theorem 3.1, we obtain the following corollary.
Corollary 3.2. Let ¢ be convex univalent in U with ¢(0) = 1 and as-
sume that (3.1) holds. If f, &, ¥ € A(p) satisfy the following subordination

is the best dominant.

and the function
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condition:
o (D8 (Fx2) (2) + A0, (f+0) (2) )"
e (a+5) 2
o [P () + 8D (F4 ) ()
SELSY aDy (f * ®) (2) 4+ 6Dy, (f * V) (2)
ot
then

aD} (f * @) (2) + DY, (f = V) (2)\"
= < q(2)
(a+j3)zr
and ¢ is the best dominant.
Taking p = A = 1 and n = 0 in Corollary 3.2, we obtain the following
corollary which improves the result of Magesh et al. [16, Theorem 3.1].

Corollary 3.3. Let ¢ be convex univalent in U with ¢(0) = 1 and assume
that (3.1) holds. If f, ®, U € A satisfy the following subordination condition:

a(f*®)(2)+ B8 (f = W) (2)\"
71_’_72( (a+6)z >

oz (f*®) (1) +B2(f*+0) (2)
”3“{ a(F* @) () + A1) () 1}

< 7+ 72q(2) + ”7323(—2?a

then

0 #®) (2) 46+ 0) (2) "

< q(2)
(a+p)z

and ¢ is the best dominant.

Taking ® (2) = %, and ¥ (2) = (1_ZZ)2 in Corollary 3.3, we obtain the
following corollary which improves the result of Magesh et al. [16, Corollary
3.2].

Corollary 3.4. Let ¢ be convex univalent in U with ¢(0) = 1 and assume
that (3.1) holds. If f € A satisfy the following subordination condition:

af(z) + Bzf'(2)\" azf'(2) + Bzf'(2) + B2 (2)
e 2( (a+5) > s { af(2) + B=F(2) 1}

2q (2)
= ;

then
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/ 14
(LLEITY
(a+p)z

and the function ¢ is the best dominant.

Taking @ = § = 1 in Corollary 3.4, we obtain the following corollary which
improves the result of Magesh et al. [16, Corollary 3.3]

Corollary 3.5. Let ¢ be convex univalent in U with ¢(0) = 1 and (3.1)
holds true. If f € A satisfy the following subordination condition:

o () (22
2q (2)

q(z)’

< Y1+ 720 (2) + 75

then

2z

and the function ¢ is the best dominant.

Remark 3.1. (i) Taking o =1 and § = 0 in Corollary 3.4, we obtain the
result obtained by Magesh et al. [16, Corollary 3.4];

(ii) Taking o = 0 and 8 = 1 in Corollary 3.4, we obtain the result obtained
by Magesh et al. [16, Corollary 3.5].

Taking v, = a =1, 7 = =0, q(2) = W (a,beC*), p = a
and v5 = ﬁ in Corollary 3.4, we obtain the following corollary obtained by
Obradovic et al. [19, Theorem 1].

Corollary 3.6. Let ¢ be convex univalent in U with ¢(0) = 1 and (3.1)
holds true. If f € A satisfy the following subordination condition:

L [(zf(2) 1+z2
1+B<ﬂ@'*)*1—/

(fy 2
2ab

z (1-=2)

and the function W is the best dominant.

(CESC) e

then

Takingy, =f=1,7,=a=0,q(2) = ;—m 0€C), p=Tand 3=
in Corollary 3.4, we obtain the following corollary obtained by Srivastava and
Lashin [23, Theorem 3].

Corollary 3.7. Let ¢ be convex univalent in U with ¢(0) = 1, and (3.1)
holds true. If f € A satisfy the following subordination condition:
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"

1zf (2) 14z

14 =
T3 f'(z) R

then

1

f(z) < m

and the function @ is the best dominant.

4 Superordination results

Now, by appealing to Lemma 2.2 it can be easily prove the following theorem.
Theorem 4.1. Let ¢ be convex univalent in U with ¢(0) = 1 and assume

v aDy (f+®)9 (2)48D7 (f+8)9) () \ "
that % (22 (2)) > 0.1f f, ®, ¥ € A(p) such that ( Al st T3 €
Hq(0),1]NnQ,
o (0P )Y () 1 8D8, (5 1) () )
o (a+5)6 (pij) 2

(p—j) [@DIEH(F+ &) (2) + BDIE (f 5 0)Y () }
+ : - : . —1 4.1
! {aDz,p<f*<1>><”<z>+5Dz,p<fw>“><z> @)

is univalent in U and the following superordination condition

2q (2)

Y1+ 724 (2) + 73
Mﬂ. |
oo (PR )V () + DL, ()Y (2))
T (a+B) 6 (p;j) 27
(p - J) {aD;{;l (f % @)9 (2) + BDYE (f % T)V) (2) }
T " ) . ) -1
aD} (f @)V (2) + 6Dy, (f * )Y (2)

holds, then

(< (@U@ 50, 7590 ()
1 (+5)6(p;j) 277

and ¢ is the best subordinant.
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Proof. Define a function o by

aDy, (f+ 8% () + 603, (75 0) ()
0(z) =
(a+8)06(p;j) 2"~
Then the function p is analytic in U and ¢(0) = 1. Therefore, differentiating

(4.2) logarithmically with respect to z and using the identity (1.9) in the
resulting equation, we have

o (0P ) () 8D3, (1) () )
LR (a+B)d (p;j) 2
ES) { aDY (7 + 97 () + D8 (£ D) (2) 1}
A p<f*q>> )(2) + 8Dy, (f x 1) (2)
o (2)

= 71+72Q( )+73 Q(z) )

) (zeU). (42

that is,
Y+ Y2 (2) + Y5 — ) <Y1 H 700 (2) F gl (Z)-
1 2 3(](2) 1 2 3 Q(Z)

By setting
y
0 (w) =71+ ypw and ¢ (w) = -2,
it can be easily observed that 6 is analytic function in C. Also, ¢ is analytic
function in C* and ¢ (w) # 0. Also we see that

Z:ZIZ Z)) = ZQ(Z)
V() =24 (e (e () ="

0 (q(2)) 72 .
§R{s@(q(Z))} _%{%f“ >} Zoforzel

it is clear that 1 is starlike univalent in U.

Therefore, Theorem 4.1 now follows by applying Lemma 2.2. ®

Taking ¢(z) = % (-1 < B<A<1) in Theorem 4.1, we have the fol-
lowing corollary.

Corollary 4.1. Let %(%H—AZ) > 0. If f, &, ¥ € A(p) such that

3 1+Bz
oD (f50)9) (5 n () (2)\
(%(f ©)0)(2) 1903, (%) “) € Hig(0).1NnQ.

and

(a+B)0(p;g)2P~7

o (0D = @)Y () 1 8D8, (5 1) () )"
o (a+B)3 (i)
=) [ D5 (f*@)” ()4 8D (F 0D ()
A L abg, (7 @) (o) + 8Dy, (F+ 0)) (2)
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is univalent in U, and the following superordination condition

1+ Az (A—B)z

71'”21+BzjL%‘(HBz)?
aDy, (f +®)9 (2) + 85, (f + ©)9 (2) |
B %+ﬁ2< . (a+ )6 (p;4) 27~

) (D ) )+ D 0 ()
PN aby, (F 2 @) (2) + 5Dy, (7 + )9 (2)

holds, then

1+4:  (oDg, (f ®)Y (2) + 803, (f * )P (2) )"
1+ Bz (a+B)6 (p; )Zp’

and % is the best subordinant.

Taking p = A =1 and j = n = 0 in Theorem 4.1, we obtain the following
corollary which improves the result obtained by Magesh et al. [16, Theorem
3.15] .

Corollary 4.2. Let g be convex univalent in U with ¢(0) = 1 and as-
sume that R (%q (z)) > 0.If f, ®, ¥ € A such that (a(f*@)gz):ﬁﬁ%(zf*\lf)(z))u c
Hlq(0),1]NQ,

a(f*®)(2)+B(f*¥)(2)
Y1+ 72 ( (@t B)2 )
(
(

0z (f ) ()4 B2 (f < W) (2)
*”3“{ o (%) () + B +9) (3) 1}

is univalent in U and the following superordination condition

2q ()
a(f*®)(2)+5
a+f)
D+ B(f*) (1)
z)+ B (fx¥)(2)

< JrneY

az (f @)
+73M{ o (f+®)

P N N

holds, then

a(f=®)(2)+L(f+T)(2)\"
WH( (a+B)2 )

and ¢ is the best subordinant.
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Taking @ (2) = %, and ¥ (2) = (1_'2)2 in Corollary 4.2, we obtain the

following corollary which improves the result obtained by Magesh et al. |16,
Corollary 3.16].

Corollary 4.3. Let ¢ be convex univalent in U with ¢(0) = 1 and assume

that R (3—§q (2)) > 0.1f f € A such that (%)“ e Hg(0),1]NQ,

af(z) + Bf'(2)\ " azf!(2) + Baf'(2) + B2F (2)
“”2( (@1 p)z ) ”3“{ of () 1 B21(2) ‘1}

is univalent in U and

z2q (2) af(z) + Bzf'(2)\"
%+72q(2)+vq(z) < 71+72( (@15 )
azf'(z) + B2f'(2) + B2 (2)
Tkt { af(2) + BoF () 1}

then

/ 14
o0y« (SLLEI )
(a+pB)z
and ¢ is the best subordinant.
Taking @ = = 1 in Corollary 4.3, we obtain the following corollary which
improves the result obtained by Magesh et al. [16, Corollary 3.17].
Corollary 4.4. Let ¢ be convex univalent in U with ¢(0) = 1 and assume

that (3—2(] (z)) > 0. If f € A such that (%)” e Hg(0),1]nQ,

(LY £

is univalent in U and

zq (2) f(2)+zf'(2)\" 22 (2) +22f'(2)
Y1+724q (2)+y 102 < 71+ <—2z ) +73u{ )+ 27 (2) —1},
then F) + 20 ()
q(z2) < <—22 )

and ¢ is the best subordinant.

5 Sandwich resuts

Combining Theorem 3.1 and Theorem 4.1, we get the following sandwich the-
orem for the linear operator D} (f * g)(j ),
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Theorem 5.1. Let ¢ (z) be convex univalent in U with ¢ (0) = 1,
R (%ql (z)) > 0, ¢2 (#) be univalent in U with ¢, (0) = 1 and satisfies (3.1) . If

aD" (#5)9) (» n (e () \ H
fy @, ¥ € A(p) such that ( 22 q()iﬂg);(;if;ﬁgf o )> € H[q(0),1]NnQ,

. aD} (f * @)Y (2) + DY, (f * 09 (2) )"
LR (a+B)3 (p; j) 2

=) [eDSH (2 @) () + SO ) (2)
PN Cany, (F20)9 (2) 4 603, (f+ 1) (2)

is univalent in U and

ZQ1( )
71+72q1( )+73 (Z)

o (0P 2P ) + DY, ()P (2) '
e (a+B)3(pj) 7
=) {OéDTpl (f*q))@j () + 555 (f*\ll).(j) &) _ 1}
A aby, (F @)Y (2) + 8D, (f + 0)Y (2)

=< 71t 72q2 (2 ( ) + V3 ZQ2((Z))

holds, then

aDy, (f+ @)D (2) + DL, (f * 1)9 (2)\"
ql(z)_<( (OH'B) ( )Zp] '<CJ2(Z)

and ¢, and ¢ are, respectively, the best subordinant and the best dominant.

Taking ¢i(z) = 1752 (i = 1,2, -1 < B, < By < A; < Ay < 1) in Theorem
5.1, we obtain the following corollary.

Corollary 5.1. Let R (%%> > 0 and ¢ (2) satisfies (3.3). If f, @,

aD™ (fx0)9) (5 n ) Do)\ P
¥ € A(p) such that ( L ‘Z+;>§2;i§;,;zgf il <>) € Hig(0),1]1nQ,

(oD (f @)V (2) + DY, (f + 1) (
L CEOCY >zm
(p— ) aDQI)l(f*q))(j) (2) + n+1 )(] _1}
T { oDy (f2 @) (2 >+6D < )7 (2)
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is univalent in U and
N 14+ Az (A1 — By) =
T B T (14 Bre)?
< o, (OB XD () £ DR, ()P ()
b (a4 B)6(p;j) 2p~d
) {aDzy (f * @)D (2) + SO (f = 1) (2) 1}
3 . . -
A aDy (f* @)Y (2) + 8Dy, (f * )V (2)

1+ AQZ (A2 — Bg) z
ij21—1—Bz s (14 Byz)”

< M

holds, then
L+ Az (aD;zp (f * @)V (2) + 8Dy, (f + T)V (z)>“ L1t A

1+ Bz (a+ )6 (p;g) 2P~ 1+ Byz

and ﬂglz and }ig” are, respectively, the best subordinant and the best dom-
inant.

Taking p = A =1 and j = n = 0 in Theorem 5.1, we obtain the following
corollary which improves the result obtained by Magesh et al. [16, Theorem
4.1] .

Corollary 5.2. Let ¢ (2) be convex univalent in U with ¢, (0) = 1,

R (%ql (z)) > 0, ¢2 (2) be univalent in U with ¢ (0) = 1, and satisfies (3.1).

m
If f, ®, U € A such that (‘“f D)l *WZ)) € Hg(0),11NQ,

a(f*®)(2)+6(f*P)(2)\"
’Y1+’Y2< ot Bz )

(
0z (F+®) (2) 4+ B2 (F+0) (2)
*ﬁ“{ a(F+®) () + 8+ ) (2) 1}

is univalent in U and

Y1+ Y2q1 (2) + 3 ZQQ1((ZZ))
< e (2422 %>+ﬁ0*><w“
S ®) () 4B 0) (2)
+%“{ o (5 ®) () + B+ ) (2) 1}
2y (2)

=<
Y1+ V22 (2 )+73q B
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holds, then

0 (f+8) () + A1) ()"
(o) < (LRI )

and ¢; and ¢ are, respectively, the best subordinant and the best dominant.

6 Open Problem

Counsidere the function

( (a+B) 3w )
oDy, (f )Y (2) + BDR, (F + ¥)Y (2)

(a, B € C(i = 1,2),such that a+5 # 0;u € C5A > 0;p > j;p € Nin, j € Np).

So, derive the subordination, superordination and sandwich results.
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