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Abstract

In this paper, we study inextensible flows of B—-M, developable
surfaces of biharmonic B-slant helices in the s, (R). We obtain
partial differential equations about B—M, developable surfaces of
biharmonic B —slant helices in terms of their curvature and torsion.
Finally, we find explicit equations of one-parameter family of the

B —M, developable surface associated with unit speed non-geodesic
biharmonic B -slant helix in sL,(R).
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1 Introduction

A smooth map ¢: N — M s said to be biharmonic if it is a critical point
of the bienergy functional:

1
E(¢)= [, 5 T@) dv,,
where T(¢) := trv?de¢ is the tension field of ¢ .

The Euler--Lagrange equation of the bienergy is given by T,(¢#) =0. Here
the section T,(¢) is defined by

T,(#) =—A,T() + tR(T(¢), dg)d g, (1.1)
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and called the bitension field of ¢. Non-harmonic biharmonic maps are called

proper biharmonic maps.
This study is organised as follows: Firstly, we study inextensible flows of

B—M, developable of biharmonic B —slant helices in the SL,(R). Secondly, we
obtain partial differential equations about B—M, developable of biharmonic

B —slant helices in terms of their curvature and torsion. Finally, we find explicit
equations of one-parameter family of the B—M, developable surface associated

with unit speed non-geodesic biharmonic B -slant helix in SL,(R).

2 SL,R)

We identify SL,(R) with
R? ={(x,y,z)eR®:z>0}
endowed with the metric
2 2
g =ds? = (dx+ D2 DAL
z z

The following set of left-invariant vector fields forms an orthonormal basis

for SL,(R)

elzg,e2=zg—g,e3:zg. (2.1)
OX oy oX oz

The characterising properties of g defined by
g(e11el): g(e21ez) = g(eg’es): 1,
g(e11ez): g(ezaeg): 9(81,83): 0.

The Riemannian connection V of the metric g is given by
29(V,Y,Z)=Xg(Y,Z)+Yg(z,X)-Zg(X,Y)
~g(X.[v.z])-gl(v.[X,Z)+g(z.[X.Y))

which is known as Koszul's formula.
Using the Koszul's formula, we obtain

1 1
Ve = 0, Ve, = §e3, Ve = —Eez,
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\V4 e, =—e,, \Y% e2:e3,V e, =——€, —¢6,, (2-2)

€2 2 € €

ve3e1 =-
Moreover we put
Ri« = R(e;.e))e, Ry =R(e;.e;.e,.8),
where the indices i, j,k and | take the values 1,2 and 3
1 7

Rip12= Rigis= Zf Ry323= _Z- (2.3)

3 Biharmonic B-Slant Helices in sL,(R)

Assume that {T,N,B} be the Frenet frame field along y . Then, the Frenet
frame satisfies the following Frenet--Serret equations:

V. T=xN,

VN =—«T + 1B, (3.2)

V.B=—N,

where « is the curvature of y and z its torsion and

g (T.T)=1,9 _ (N,N)=1,g _ (B,B)=1, (3.2)
SL,(R) SL,(R) SL,(R)

g (T.N)=g (T,B)=g _ (N,B)=0.
SL,(R) SL,y(R) SL,(R)

The Bishop frame or parallel transport frame is an alternative approach to
defining a moving frame that is well defined even when the curve has vanishing
second derivative. The Bishop frame is expressed as

V. T=kM, +k,M,,
VM, =k T, (3.3)
VM, =-k,T,
where
g (TT)=19 (M, M)=1g

SL,y(R) SL,(R) SL,(R)

g (T’Ml): g (T’Mz): g (Ml’MZ):O'

SL,(R) SL,(R) SL,(R)

(M,,M,)=1, (3.4)
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Here, we shall call the set {T,M,,M,} as Bishop trihedra, k; and k, as
Bishop curvatures and Y(s)= arctan% , 7(s) = Y'(s) and x(s) = /k? +Kk2.

1
Bishop curvatures are defined by

. = x(s)cos Y(s),
k, = x(s)sin Y(s).

The relation matrix may be expressed as
T=T,
N = cos Y(s)M, +sin Y(s)M,,
B = —sin Y(s)M, +cos Y(s)M,.

On the other hand, using above equation we have
T=T,
M, = cos Y(s)N —sin Y(s)B
M, =sin Y(s)N +cos Y(s)B.

With respect to the orthonormal basis {e,,e,,e,} we can write
T=Tle +T%,+T%,,
M, = M/e, +M/e, + MJe,, (3.5)
M, =Mse, +MZe, + MJe,.

Theorem 3.1. ([9]) 7:1 = SL,(R) is a biharmonic curve according to
Bishop frame if and only if
k” +k? = constant = 0,

K —[k2 +k2k, :—kl{?l\/lé—ﬂ—ZkszMi’ (3.6)

< —[k2 + k2, = 2 MM _kZEM;_ﬂ_

To separate a slant helix according to Bishop frame from that of Frenet-
Serret frame, in the rest of the paper, we shall use notation for the curve defined
above as B -slant helix.
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Theorem 3.2. ([9]) Let y:1 - SL,(R) be a unit speed non-geodesic
biharmonic curve. Then the position vector of y is
7(5):[QicosWsin[le+Q2]+Qicochos[le+Q2]+Q4

1 1

oW cos W(Q, cos[Q,s +Q, ]

+sin Wsin[le+Q2])+%es“"’vs]el (3.7)

3

[ cos W(Q, cos[Q;s+Q, ]

Q? +sin’W

+sinWsin[Q,5+Q,)) jt%es"‘ws]e2 +e,,
3
where Q,,Q,,Q,,Q,,Q, are constants of integration.

4 Inextensible Flows of B-m, Developable Surfaces

—_—

of Biharmonic B-Slant Helices in sL,(R)

To separate a M, developable according to Bishop frame from that of
Frenet- Serret frame, in the rest of the paper, we shall use notation for this surface
as B—M, developable.

The purpose of this section is to study B—M, developable surfaces of

B —slant helices in SL,(R).
The B—M, developable of y isa ruled surface
A(s,u)= y(s)+uM,. (4.1)

Definition 4.1. A surface evolution A(s,u,t) and its flow % are said to
be inextensible if its first fundamental form {E, F, G} satisfies

_____ 0. (4.2)
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Definition 4.2. We can define the following one-parameter family of
B —M, developable ruled surface

A(s,u,t)= y(s,t)+uM,(s,t) (4.3)

Hence, we have the following theorem.

Theorem 4.3. Let A is one-parameter family of the B—M, developable
surface associated with unit speed non-geodesic biharmonic B -slant helix in

SL,(R). Then % is inextensible if and only if
£ 11 uk, (1)) cos Wit)eos[Q. (ts+ Q (O]
2 1Ltk ())cos W(t)sin[Q, )5+ Q, (4.4

- —%[(1—uk2(t))sinw(t)]2.

Proof. Assume that A(s, u,t) be a one-parameter family of ruled surface.
From our assumption, we get the following equation
M, = sin W(t)cos[Q, (t)s + Q, (t e, +sin W(t)sin[Q, (t)s + Q, (t e,
+cos W(te,, (4.5)
where Q,(t),Q,(t) are smooth functions of time.
On the other hand, using Bishop formulas (3.3) and (2.1), we have

M, =sin[Q,(t)s+Q,(t)f, —cos[Q; (t)s +Q,(t),.  (4.6)

Using above equation and (4.5), we get
T = cos W(t)cos[Q, (t)s + Q, (t )le, + cos W(t)sin[Q, (t)s + Q, (t )k,
—sinW(t)e,. (4.7)

Furthermore, we have the natural frame {R_,R,} given by
H, = (1—uk,(t))cos W(t)cos[Q, (t)s + Q. (t),
+(1—uk, (t))cos W(t)sin[Q, (t)s + Q, (t)e, — (1 —uk, (t))sin W(t e,
and

A, =sin[Q, (t)s+Q, (t)le, —cos[Q, (t)s + Q, (t)fe,.

The components of the first fundamental form are
E=g(A;,A,) =[(L-uk, (t))cos W(t)cos[Q, (t)s + Q, (LI (4.8)
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+[(1—uk, (t))cos W(t)sin[Q, (t)s + Q, (tI* + [(1—uk,(t))sin W(t)]?,

F=9H,,H,)=0, (4.9)
G=g(H, H,)=1

Using second and third equation of above system, we have
oF _
ER
oG

)
ot

Hence, % is inextensible if and only if (4.4) is satisfied. This concludes

the proof of theorem.

Theorem 4.4. Let A is one-parameter family of the B—M, developable
surface associated with unit speed non-geodesic biharmonic B -slant helix in

SLZ(R). Then, the parametric equations of B —tangent developable of y are

s,u ()sin L i S +
Als. )= TS WI) & sinlQ )+ Q0]

it wi) 2 cosfo s+ Q.01+ 0
1

7]+ simwie) Qe tyooslQ:(t)s + Q0]

K, (t

(t)
k(1)

+—2sin W(t)

+sinW(H)sin[Q,(t)s-+ 0, (1)) + 828 e 1 usin[Q, (t)s + Q, (t)]e,

K, (t) . 1
[kl(t)smw(t) ()(Ql(t)cos[ (t)s+Q,(t)]

Qf(t)—i—sinZW t

+sinW(t)sin[Q, (t)s +Q, (1)) + 828@'”"" —ucos[Q,(t)s+Q,(t)]e,

+€,,
where Q,,Q,,Q,,Q,,Q. are smooth functions of time.

Proof. By the Bishop formula, we have above system. This concludes the
proof of Theorem.
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We can use Mathematica in above theorem, yields

Fig.2.

Fig. 1,2: The equation (4.10) is illustrated colour Red, Blue, Purple,
Orange, Magenta, Cyan, Yellow, Green at the time t =1, t=1.2, t=1.4, t=1.6,
t=18, t=2, t=22, t=2.4, respectively.

5 Open Problem

The authors can be resarch inextensible flows of B—M, developable

surfaces of biharmonic B —slant helices in the SL,(R).
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