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Abstract 

     In this paper, we study inextensible flows of 2MB  developable 
surfaces of biharmonic B slant helices in the  


RSL 2

. We obtain 
partial differential equations about 2MB  developable surfaces of 
biharmonic B slant helices in terms of their curvature and torsion. 
Finally, we find explicit equations of one-parameter family of the 

2MB  developable surface associated with unit speed non-geodesic 
biharmonic B -slant helix in  


RSL2

.  
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1  Introduction 

 

 

A smooth map MN :  is said to be biharmonic if it is a critical point 

of the bienergy functional: 
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where  dtr:=)(T  is the tension field of  .  

The Euler--Lagrange equation of the bienergy is given by 0=)(2 T . Here 

the section )(2 T  is defined by 

   ,),(tr)(=)(2   ddR TTT   (1.1) 
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and called the bitension field of  . Non-harmonic biharmonic maps are called 

proper biharmonic maps. 

 This study is organised as follows: Firstly, we study inextensible flows of 

2MB  developable of biharmonic B slant helices in the  


RSL2 . Secondly, we 

obtain partial differential equations about 2MB  developable of biharmonic 

B slant helices in terms of their curvature and torsion. Finally, we find explicit 

equations of one-parameter family of the 2MB  developable surface associated 

with unit speed non-geodesic biharmonic B -slant helix in  


RSL2 . 

 

 

2   


RSL2  

 

We identify  


RSL2  with 

   0>:,,= 33 zzyx RR   

endowed with the metric 
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The following set of left-invariant vector fields forms an orthonormal basis 

for  


RSL2   
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The characterising properties of g  defined by 

       1,=,=,=, 332211 eeeeee ggg  

       0.=,=,=, 313221 eeeeee ggg  

 

The Riemannian connection   of the metric g  is given by 

        YXZgXZYgZYXgZYg X ,,,=,2   

         ,,,,,,, YXZgZXYgZYXg   

which is known as Koszul's formula. 

Using the Koszul's formula, we obtain 
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Moreover we put 

 ),(=,),(= lkjiijklkjiijk RRRR e,e,e,eeee  

where the indices kji ,,  and l  take the values 1,2  and 3  
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3  Biharmonic B Slant Helices in  


RSL2  

 

 

Assume that  BN,T,  be the Frenet frame field along  . Then, the Frenet 

frame satisfies the following Frenet--Serret equations: 

 ,= NTT   

 ,= BTNT    (3.1) 

 ,= NBT   

where   is the curvature of   and   its torsion and 
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The Bishop frame or parallel transport frame is an alternative approach to 

defining a moving frame that is well defined even when the curve has vanishing 

second derivative. The Bishop frame is expressed as  

 ,= 2211 MMTT kk   

 ,= 11 TMT k  (3.3) 

 ,= 22 TMT k  

where 
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Here, we shall call the set }{ 11 M,MT,  as Bishop trihedra, 1k  and 2k  as 

Bishop curvatures and  
1

2arctan=
k

k
sY ,  ss 'Y=)(  and .=)( 2

2

2

1 kks   

Bishop curvatures are defined by 

  ,cos)(=1 ssk Y  

  .sin)(=2 ssk Y  

 

The relation matrix may be expressed as 

 T,=T  

     ,sincos= 21 MMN ss YY   

     .cossin= 21 MMB ss YY   

 

On the other hand, using above equation we have  

 T,=T  

    BNM ss YY sincos=1   

    B.NM ss YY cossin=2   

 

 

With respect to the orthonormal basis }{ 321 e,e,e  we can write 
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Theorem 3.1. ([9])  


RSL2: I  is a biharmonic curve according to 

Bishop frame if and only if 
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To separate a slant helix according to Bishop frame from that of Frenet- 

Serret frame, in the rest of the paper, we shall use notation for the curve defined 

above as B -slant helix. 
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Theorem 3.2. ([9]) Let  


RSL2: I   be a unit speed non-geodesic 

biharmonic curve. Then the position vector of   is 
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where 54321 ,,,, QQQQQ  are constants of integration. 

 

 

4  Inextensible Flows of 2MB  Developable Surfaces 

of Biharmonic B Slant Helices in  


RSL2  

 

 

To separate a 2M developable according to Bishop frame from that of 

Frenet- Serret frame, in the rest of the paper, we shall use notation for this surface 

as 2MB  developable. 

 

The purpose of this section is to study 2MB  developable surfaces of 

B slant helices in  .2


RSL  

The 2MB  developable of   is a ruled surface 

     .=, 2Musus A  (4.1) 

 

Definition 4.1. A surface evolution ),,( tusA  and its flow 
t

A
 are said to 

be inextensible if its first fundamental form }{ GF,E,  satisfies 

 0.===
ttt 









 GFE
 (4.2) 
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Definition 4.2. We can define the following one-parameter family of 

2MB  developable ruled surface 

      .,,=,, 2 tsutstus MA  (4.3) 

 

 

Hence, we have the following theorem. 

 

Theorem 4.3. Let A  is one-parameter family of the 2MB  developable 

surface associated with unit speed non-geodesic biharmonic B -slant helix in 

 .2


RSL  Then 

t

A
 is inextensible if and only if 
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Proof. Assume that  tus ,,A  be a one-parameter family of ruled surface. 

From our assumption, we get the following equation 

               2211211 sinsincossin= eeM tstttstt QQWQQW   

   ,cos 3etW  (4.5) 

where    tt 21 ,QQ  are smooth functions of time. 

On the other hand, using Bishop formulas (3.3) and (2.1), we have 

           .cossin= 2211212 eeM tsttst QQQQ   (4.6) 

 

Using above equation and (4.5), we get 

               221121 sincoscoscos= eeT tstttstt QQWQQW   

   .sin 3etW  (4.7) 

 

Furthermore, we have the natural frame  us RR ,  given by 

           1211 coscos1= etstttuks QQWH   

                ,sin1sincos1 312211 ee ttuktstttuk WQQW   

and 

           .cossin= 221121 ee tsttstu QQQQA   

 

The components of the first fundamental form are 
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 0,=),(= usg HHF  (4.9) 

 1.=),(= uug HHG  

 

Using second and third equation of above system ,  we have  

 0,=
t
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 0.=
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Hence, 
t

A
 is inextensible if and only if (4.4) is satisfied. This concludes 

the proof of theorem. 

 

Theorem 4.4. Let A  is one-parameter family of the 2MB  developable 

surface associated with unit speed non-geodesic biharmonic B -slant helix in 

 .2


RSL  Then, the parametric equations of  B tangent developable of   are 
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where 54321 ,,,, QQQQQ  are smooth functions of time. 

  

Proof. By the Bishop formula, we have above system. This concludes the 

proof of Theorem. 
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We can use Mathematica in above theorem, yields 

 

 
Fig.1.  

 

 

 
Fig.2.  

 

Fig. 1,2: The equation (4.10) is illustrated colour Red, Blue, Purple, 

Orange, Magenta, Cyan, Yellow, Green at the time 1,=t  1.2,=t  1.4,=t  1.6,=t  

1.8,=t  2,=t  2.2,=t  2.4,=t  respectively. 

 

5  Open Problem 

 

The authors can be resarch inextensible flows of 1MB  developable 

surfaces of biharmonic B slant helices in the  


RSL2 . 
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