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Abstract

In this paper, using Hadmard product, we introduce certain
new classes of analytic functions in the open unit disk. Such re-
sults as inclusion and subordination relationships, characterization
and coefficient estimates, growth and distortion theorems, extreme
points, closure theorems and radius of starlikeness and convexity
belonging to the class TS(f, g;λ, α, β, A,B) are obtained. Further sub-
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1 Introduction

Let H denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k (1.1)

which are analytic and univalent in the open unit disk U = {z ∈ C : |z| < 1}.
Also, we denote by T , the class of functions f(z) ∈ H of the form (1.1) for

which there exists a real number η such that

arg(ak) = π + (1− k)η (k = 2, 3, · · ·), (1.2)

which was introduced by Silverman [1](see also [2]) and called the class of
functions with varying argument of coefficients.

For functions f ∈ H given by (1.1) and g ∈ H given by

g(z) = z +
∞∑
k=2

bkz
k (bk ≥ 0; z ∈ U), (1.3)

we define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +
∞∑
k=2

akbkz
k = (g ∗ f)(z) (z ∈ U). (1.4)

For two functions f and g, analytic in U , we say that the function f is
subordinate to g in U , and write f(z) ≺ g(z), if there exists a Schwarz function
ω, which is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U , such that
f(z) = g(ω(z)) (z ∈ U). In particular, if the function g is univalent in U , then
we have the following equivalence

f(z) ≺ g(z) (z ∈ U)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Following Goodman [3,4], Rønning [5] and Kanas and Wisniowska [6] (see
also [7],[8]), Hams et al. [9] define two subclasses of H as follows.

For −1 < γ ≤ 1 and β ≥ 0, a function f ∈ H is said to be in the class
(i) β-uniformly starlike functions of order γ is denoted by US(β, γ), if it

satisfies the condition

Re

(
zf ′(z)

f(z)
− γ
)
> β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ U), (1.5)

and (ii) β-uniformly convex functions of order γ is denoted by UK(β, γ), if it
satisfies the condition

Re

(
1 +

zf ′′(z)

f ′(z)
− γ
)
> β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U). (1.6)
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Indeed, it follows from (1.5) and (1.6) that

f ∈ UK(β, γ)⇔ zf ′ ∈ US(β, γ).

Motivated by above definitions, we define a new class of analytic functions
related to Hadmard products.

Definition 1.1. For α ≥ 1, β ≥ 0, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1 and for all
z ∈ U , let S(f, g;λ, α, β, A,B) denote the subclass of H consisting of functions
f(z) of the form (1.1) and g(z) of the form (1.3) and satisfying the following
subordination: [

α
z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
− (α− 1)

]
−β
∣∣∣∣α z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
− α

∣∣∣∣ ≺ 1 + Az

1 +Bz
. (1.7)

We also let TS(f, g;λ, α, β, A,B) = T ∩ S(f, g;λ, α, β, A,B).
For suitable choices of the function g and by specializing the parameters

λ, α, β, A,B involved in the class S(f, g;λ, α, β, A,B), we obtain the following
subclasses.

(1) If g(z) = z+
∑∞

k=2 z
k (or bk = 1), then S(f, z+

∑∞
k=2 z

k;λ, α, β, A,B) =
S(λ, α, β, A,B)

=
{
f ∈ H :

[
α

zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)
− (α− 1)

]

−β
∣∣∣∣α zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)
− α

∣∣∣∣ ≺ 1 + Az

1 +Bz
,

α ≥ 1, β ≥ 0, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1, z ∈ U
}
.

In particular, S(0, 1, β, 1 − 2γ,−1) = US(β, γ) and S(1, 1, β, 1 − 2γ,−1) =
UK(β, γ) (see [9]);

(2) If g(z) = z +
∑∞

k=2[1 + (µδk + µ− δ)(k − 1)]mzk (or bk = [1 + (µδk +
µ− δ)(k − 1)]m, m ∈ N0 = N ∪ {0}, 0 ≤ δ ≤ µ ≤ 1), then S(f, z +

∑∞
k=2[1 +

(µδk + µ− δ)(k − 1)]mzk;λ, α, β, A,B) = S(µ, δ,m;λ, α, β, A,B)

=
{
f ∈ H :

[
α

z
(
Dm
µ,δf(z)

)′
+ λz2

(
Dm
µ,δf(z)

)′′
(1− λ)

(
Dm
µ,δf(z)

)
+ λz

(
Dm
µ,δf(z)

)′ − (α− 1)

]

−β

∣∣∣∣∣α z
(
Dm
µ,δf(z)

)′
+ λz2

(
Dm
µ,δf(z)

)′′
(1− λ)

(
Dm
µ,δf(z)

)
+ λz

(
Dm
µ,δf(z)

)′ − α
∣∣∣∣∣ ≺ 1 + Az

1 +Bz
,

α ≥ 1, β ≥ 0, 0 ≤ λ ≤ 1,m ∈ N0, 0 ≤ δ ≤ µ ≤ 1,−1 ≤ B < A ≤ 1, z ∈ U
}
.
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In particular, S(µ, δ,m;λ, α, β, 1 − 2γ,−1) = Gm(µ, δ;λ, α, β, γ) (see [10]),
where the operator Dm

µ,δ was introduced and studied by Raducanu and Orhan
[10], for δ = 0, the operator Dm

µ,0 = Dm
µ was introduced and studied by Al-

Oboudi [11] and for µ = 1 and δ = 0, the operator Dm
1,0 = Dm was defined by

Salagean [12].
(3) If g(z) = z +

∑∞
k=2 Ψkz

k (or bk = Ψk), where

Ψk =
(α1)k−1, · · · , (αq)k−1

(β1)k−1, · · · , (βs)k−1(k − 1)!
(1.8)

(αi > 0, i = 1, 2, · · · , q; βj > 0, j = 1, 2, · · · , s; q ≤ s+ 1; q, s ∈ N0),

then S(f, z +
∑∞

k=2 Ψkz
k;λ, α, β, A,B) = Sq,s([α1];λ, α, β, A,B)

=
{
f ∈ H :

[
α

z (Hq,s(α1)f(z))′ + λz2 (Hq,s(α1)f(z))′′

(1− λ) (Hq,s(α1)f(z)) + λz (Hq,s(α1)f(z))′
− (α− 1)

]

−β
∣∣∣∣α z (Hq,s(α1)f(z))′ + λz2 (Hq,s(α1)f(z))′′

(1− λ) (Hq,s(α1)f(z)) + λz (Hq,s(α1)f(z))′
− α

∣∣∣∣ ≺ 1 + Az

1 +Bz
,

α ≥ 1, β ≥ 0, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1, z ∈ U
}
,

where Hq,s(α1) is the Dziok-Srivastava operator [13] (see also [14]), which
contains well known operators such as Carlson-Shaffer linear operator [15],
the Bernardi-Libera-Livingston operator [16], the Srivastava-Owa fractional
derivative operator [17], the Choi-Saigo-Srivastava operator [18], the Cho-
Kwon-Srivastava operator [19], the Ruscheweyh derivative operator [20], the
Noor integral operator [21], and other operators.

(4) If g(z) = z +
∑∞

k=2 I
m(ρ, l)zk (or bk = Im(ρ, l)), where

Im(ρ, l) =

[
1 + l + ρ(k − 1)

1 + l

]m
(ρ ≥ 0, l ≥ 0,m ∈ N0), (1.9)

then S(f, z +
∑∞

k=2 I
m(ρ, l)zk;λ, α, β, A,B) = S(ρ, l,m;λ, α, β, A,B)

=
{
f ∈ H :

[
α

z (Im(ρ, l)f(z))′ + λz2 (Im(ρ, l)f(z))′′

(1− λ) (Im(ρ, l)f(z)) + λz (Im(ρ, l)f(z))′
− (α− 1)

]

−β
∣∣∣∣α z (Im(ρ, l))′ + λz2 (Im(ρ, l)f(z))′′

(1− λ) (Im(ρ, l)f(z)) + λz (Im(ρ, l)f(z))′
− α

∣∣∣∣ ≺ 1 + Az

1 +Bz
,

α ≥ 1, β ≥ 0, 0 ≤ λ ≤ 1, ρ ≥ 0, l ≥ 0,m ∈ N0,−1 ≤ B < A ≤ 1, z ∈ U
}
,

where the operator Im(ρ, l) was introduced and studied by Catas [22], which
contains (as its special cases) the Cho-Srivastava operator [23], the Al-Oboudi
operator [11] and the Salagean operator [12].
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In this paper, we obtain a sufficient coefficient condition for functions f
given by (1.1) to be in the class S(f, g;λ, α, β, A,B) and a necessary and
sufficient coefficient condition for functions in the class TS(f, g;λ, α, β, A,B).
Growth and distortion theorems, extreme points, closure theorems and radius
of starlikeness and convexity for functions in TS(f, g;λ, α, β, A,B) are given.
Finally, we investigate subordination results for the class S(f, g;λ, α, β, A,B).

2 Inclusion and subordination relationships

To prove our main result, we need the following lemma.
Lemma 2.1 ([24]). Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1. Then

1 + A1z

1 +B1z
≺ 1 + A2z

1 +B2z
. (2.1)

Theorem 2.1. Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1. Then

S(f, g;λ, α, β, A1, B1) ⊂ S(f, g;λ, α, β, A2, B2). (2.2)

Proof. Suppose that f ∈ S(f, g;λ, α, β, A1, B1), in view of Definition 1.1,
we have [

α
z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
− (α− 1)

]
−β
∣∣∣∣α z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
− α

∣∣∣∣ ≺ 1 + A1z

1 +B1z
.

Thus, by Lemma 2.1, we obtain that[
α

z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
− (α− 1)

]

−β
∣∣∣∣α z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
− α

∣∣∣∣ ≺ 1 + A1z

1 +B1z
≺ 1 + A2z

1 +B2z
,

which implies that f ∈ S(f, g;λ, α, β, A2, B2). Hence we complete the proof.

3 Characterization and coefficient estimates

First we obtain a sufficient condition for functions in the class S(f, g;λ, α, β, A,B).
Theorem 3.1. Let f ∈ H given by (1.1). If

∞∑
k=2

[1+λ(k−1)][α(k−1)(1+(1+ |B|)β)+ |A−αBk+B(α−1)|]bk|ak| ≤ A−B,

(3.1)
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then f ∈ S(f, g;λ, α, β, A,B).
Proof. Assume that the inequality (3.1) holds true for α ≥ 1, β ≥ 0, 0 ≤

λ ≤ 1,−1 ≤ B < A ≤ 1, z ∈ U. For f ∈ H, let

p(z) =

[
α
zG′(z)

G(z)
− (α− 1)

]
− β

∣∣∣∣αzG′(z)

G(z)
− α

∣∣∣∣ , (3.2)

where

G(z) = (1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z). (3.3)

It is sufficient to show that∣∣∣∣ p(z)− 1

A−Bp(z)

∣∣∣∣ < 1 (z ∈ U). (3.4)

We note that∣∣∣∣ p(z)− 1

A−Bp(z)

∣∣∣∣ =

∣∣∣∣ α(zG′(z)−G(z))− αβeiθ |zG′(z)−G(z)|
AG(z)−B[α(zG′(z)−G(z)) +G− αβeiθ |zG′(z)−G(z)|]

∣∣∣∣

=

∣∣∣∣∣
∑∞

k=2 αMakbkz
k−1 − αβeiθ

∣∣Makbkz
k−1
∣∣

(A−B) +
∑∞

k=2[1 + λ(k − 1)][A− αBk +B(α− 1)]akbkzk−1 + αβBeiθ |Makbkzk−1|

∣∣∣∣∣
≤

∑∞
k=2 αMbk|ak||z|k−1 + αβ

∑∞
k=2Mbk|ak||z|k−1

(A−B)−
∑∞

k=2[1 + λ(k − 1)][A− αBk +B(α− 1)]bk|ak||z|k−1 − αβ|B|
∑∞

k=2Mbk|ak||z|k−1

≤
∑∞

k=2 αMbk|ak|+ αβ
∑∞

k=2 Mbk|ak|
(A−B)−

∑∞
k=2[1 + λ(k − 1)][A− αBk +B(α− 1)]bk|ak| − αβ|B|

∑∞
k=2Mbk|ak|

,

where M = (k − 1)[1 + λ(k − 1)].
The last expression is bounded above by 1, if

∞∑
k=2

[1+λ(k−1)][α(k−1)(1+(1+ |B|)β)+ |A−αBk+B(α−1)|]bk|ak| ≤ A−B,

and hence the proof is completed.
Next, we obtain a necessary and sufficient condition for the functions in

the class TS(f, g;λ, α, β, A,B).
Theorem 3.2. Let f ∈ H given by (1.1) and satisfy (1.2). Then f ∈

TS(f, g;λ, α, β, A,B) if and only if the inequality (3.1) holds true.
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Proof. In view of Theorem 3.1, we need only to prove the necessary part.
If f ∈ TS(f, g;λ, α, β, A,B), then from (1.1), (1.7) and (3.4), we find that

=

∣∣∣∣∣
∑∞

k=2 αMakbkz
k−1 − αβeiθ

∣∣∑∞
k=2 Makbkz

k−1
∣∣

(A−B) +
∑∞

k=2[1 + λ(k − 1)][A− αBk +B(α− 1)]akbkzk−1 + αβBeiθ |
∑∞

k=2Makbkzk−1|

∣∣∣∣∣
< 1 (M = (k − 1)[1 + λ(k − 1)]; z ∈ U).

Setting z = reiη (0 ≤ r < 1) in the above inequality and applying (1.2), we
have ∑∞

k=2 αMbk|ak|rk−1 + αβ
∑∞

k=2Mbk|ak|rk−1

(A−B)−
∑∞

k=2[1 + λ(k − 1)][A− αBk +B(α− 1)]bk|ak|rk−1 − αβ|B|
∑∞

k=2 Mbk|ak|rk−1

< 1 (M = (k − 1)[1 + λ(k − 1)]).

Thus, by a simple computation, we obtain

∞∑
k=2

[1+λ(k−1)][α(k−1)(1+(1+|B|)β)+|A−αBk+B(α−1)|]bk|ak|rk−1 < A−B,

which, upon letting r → 1−, readily yields the desired inequality (3.1).
Corollary 3.1. If f ∈ TS(f, g;λ, α, β, A,B), then

|ak| ≤
A−B

[1 + λ(k − 1)][α(k − 1)(1 + (1 + |B|)β) + |A− αBk +B(α− 1)|]bk
(k ≥ 2).

(3.5)
The equality in (3.5) holds true for the function given by

fk,η(z) = z− (A−B)ei(1−k)η

[1 + λ(k − 1)][α(k − 1)(1 + (1 + |B|)β) + |A− αBk +B(α− 1)|]bk
zk (z ∈ U).

(3.6)

4 Growth and distortion theorems

Theorem 4.1. Let f ∈ TS(f, g;λ, α, β, A,B) and |z| = r < 1. If the sequence
{Mk(λ, α, β, A,B)}∞k=2 is nondecreasing, then

r − A−B
M2(λ, α, β, A,B)

r2 ≤ |f(z)| ≤ r +
A−B

M2(λ, α, β, A,B)
r2. (4.1)

Moreover, if the sequence
{
Mk(λ,α,β,A,B)

k

}∞
k=2

is nondecreasing, then

1− 2(A−B)

M2(λ, α, β, A,B)
r ≤ |f ′(z)| ≤ 1 +

2(A−B)

M2(λ, α, β, A,B)
r, (4.2)
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where

Mk(λ, α, β, A,B) = [1+λ(k−1)][α(k−1)(1+(1+|B|)β)+|A−αBk+B(α−1)|]bk (k ≥ 2).
(4.3)

The result is sharp. The extremal functions are the functions f2,η(z) of the
form (3.6).

Proof. Since f ∈ TS(f, g;λ, α, β, A,B), from Theorem 3.2 it follows that

M2(λ, α, β, A,B)
∞∑
k=2

|ak| ≤
∞∑
k=2

Mk(λ, α, β, A,B)|ak| ≤ A−B,

which is equivalent to

∞∑
k=2

|ak| ≤
A−B

M2(λ, α, β, A,B)
. (4.4)

Using (1.1) and (4.4), we have

|f(z)| ≤ |z|+ |z|2
∞∑
k=2

|ak| ≤ r +
A−B

M2(λ, α, β, A,B)
r2

and

|f(z)| ≥ |z| − |z|2
∞∑
k=2

|ak| ≥ r − A−B
M2(λ, α, β, A,B)

r2.

Similarly, we also have

M2(λ, α, β, A,B)

2

∞∑
k=2

k|ak| ≤
∞∑
k=2

Mk(λ, α, β, A,B)|ak| ≤ A−B,

which yields
∞∑
k=2

k|ak| ≤
2(A−B)

M2(λ, α, β, A,B)
.

Thus,

|f ′(z)| ≤ 1 +
∞∑
k=2

k|ak||z|k−1 ≤ 1 + |z|
∞∑
k=2

k|ak| ≤ 1 +
2(A−B)

M2(λ, α, β, A,B)
r

and

|f ′(z)| ≥ 1−
∞∑
k=2

k|ak||z|k−1 ≥ 1− |z|
∞∑
k=2

k|ak| ≥ 1− 2(A−B)

M2(λ, α, β, A,B)
r.

This completes the proof of Theorem 4.1.
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5 Extreme points

Now, we determine extreme points for the class TS(f, g;λ, α, β, A,B).
Theorem 5.1. Let the functions

f1(z) = z and fk,η(z) = z − (A−B)ei(1−k)η

Mk(λ, α, β, A,B)
zk (k ≥ 2) (5.1)

with Mk(λ, α, β, A,B) defined as in (4.3). Then f ∈ TS(f, g;λ, α, β, A,B) if
and only if it can be expressed in the form

f(z) =
∞∑
k=1

µkfk,η(z), µk ≥ 0 and
∞∑
k=1

µk = 1. (5.2)

Proof. Assume that f(z) can be written as in (5.2). Then

f(z) = µ1z+
∞∑
k=2

µk

[
z − (A−B)ei(1−k)η

Mk(λ, α, β, A,B)
zk
]

= z−
∞∑
k=2

(A−B)ei(1−k)η

Mk(λ, α, β, A,B)
µkz

k (z ∈ U).

Since

∞∑
k=2

Mk(λ, α, β, A,B)

∣∣∣∣ (A−B)ei(1−k)η

Mk(λ, α, β, A,B)
µk

∣∣∣∣ =
∞∑
k=2

(A−B)µk = (A−B)(1−µ1) ≤ A−B,

it follows, from Theorem 3.2, that f(z) ∈ TS(f, g;λ, α, β, A,B).
Conversely, if f(z) ∈ TS(f, g;λ, α, β, A,B), then, by using (3.5), we may

set

µk =
Mk(λ, α, β, A,B)

A−B
ak and µ1 = 1−

∞∑
k=2

µk (k ≥ 2).

Then f(z) =
∑∞

k=1 µkfk,η(z) and this completes the proof.
Corollary 5.1. The extreme points of the class TS(f, g;λ, α, β, A,B) are

the functions given by (5.1).

6 Closure throrems

Let the functions fj ∈ H (j = 1, 2, · · · , p) with (1.2) defined by

fj(z) = z +
∞∑
k=2

ak,jz
k (z ∈ U). (6.1)

Then we obtain the closure theorems of the class TS(f, g;λ, α, β, A,B).
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Theorem 6.1. Let the functions fj (j = 1, 2, · · · , p) given by (6.1) be in the
class TS(f, g;λ, α, β, A,B) and cj ≥ 0 (j = 1, 2, · · · , p) such that

∑p
j=1 cj = 1.

Then the function h(z) defined by

h(z) =

p∑
j=1

cjfj (6.2)

is also in the class TS(f, g;λ, α, β, A,B).
Proof. In view of (6.1) and (6.2), we can write

h(z) =

p∑
j=1

cj

[
z +

∞∑
k=2

ak,jz
k

]
= z +

∞∑
k=2

(
p∑
j=1

cjak,j

)
zk.

Since the functions fj ∈ TS(f, g;λ, α, β, A,B), for every j = 1, 2, · · · , p, we
have

∞∑
k=2

Mk(λ, α, β, A,B)|ak,j| ≤ A−B.

Hence, we get

∞∑
k=2

Mk(λ, α, β, A,B)

∣∣∣∣∣
p∑
j=1

cjak,j

∣∣∣∣∣ ≤
p∑
j=1

cj(A−B) ≤ A−B,

which implies that h(z) ∈ TS(f, g;λ, α, β, A,B).
Corollary 6.1. The class TS(f, g;λ, α, β, A,B) is closed under convex

linear combination.
Proof. Suppose that the functions fj (j = 1, 2) given by (6.1) be in the

class TS(f, g;λ, α, β, A,B). It is sufficient to show that the function h(z)
defined by

h(z) = cf1(z) + (1− c)f2(z) (0 ≤ c ≤ 1)

is also in the class TS(f, g;λ, α, β, A,B). In fact, by taking p = 2, c1 = c and
c2 = 1− c in Theorem 6.1, we immediately get the required result.

7 Radius of starlikeness and convexity

We begin this section with the following theorem.
Theorem 7.1. Let the function f(z) given by (1.1) with (1.2) be in the

class TS(f, g;λ, α, β, A,B). Then f(z) is starlike of order σ (0 ≤ σ < 1) in
|z| < r1(λ, α, β, A,B), where

r1(λ, α, β, A,B) = inf
k≥2

{
(1− σ)Mk(λ, α, β, A,B)

(k − σ)(A−B)

} 1
k−1

(7.1)
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with Mk(λ, α, β, A,B) defined as in (4.3). The result is sharp for the function
fk,η(z) given by (3.6).

Proof. It suffices to show that∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1− σ (0 ≤ σ < 1; |z| < r1(λ, α, β, A,B)), (7.2)

or, equivalently
∞∑
k=2

(
k − σ
1− σ

)
|ak||z|k−1 ≤ 1. (7.3)

By Theorem 3.2, the ineauality (7.3) would hold true if(
k − σ
1− σ

)
|z|k−1 ≤ Mk(λ, α, β, A,B)

A−B
,

or if

|z| ≤
{

(1− σ)Mk(λ, α, β, A,B)

(k − σ)(A−B)

} 1
k−1

(k ≥ 2).

Thus, we complete the proof.
Similary, we can prove the following theorem.
Theorem 7.2. Let the function f(z) given by (1.1) with (1.2) be in the

class TS(f, g;λ, α, β, A,B). Then f(z) is convex of order ξ (0 ≤ ξ < 1) in
|z| < r2(λ, α, β, A,B), where

r2(λ, α, β, A,B) = inf
k≥2

{
(1− ξ)Mk(λ, α, β, A,B)

k(k − ξ)(A−B)

} 1
k−1

(7.4)

with Mk(λ, α, β, A,B) defined as in (4.3). The result is sharp for the function
fk,η(z) given by (3.6).

8 Subordination results

In order to prove our main result, we recall here the following definition and
lemma.

Definition 8.1 (Subordinating Factor Sequence [25]). A sequence {dk}∞k=1

of complex numbers is said to be a subordinating factor sequence if, when-
ever f of the form (1.1) is analytic, univalent and convex in U , we have the
subordination given by

∞∑
k=1

dkakz
k ≺ f(z) (z ∈ U ; a1 = 1). (8.1)
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Lemma 8.1 (Wilf [25]). The sequence {dk}∞k=1 is a subordinating factor
sequence if and only if

Re

{
1 + 2

∞∑
k=1

dkz
k

}
> 0 (z ∈ U). (8.2)

Let S∗(f, g;λ, α, β, A,B) denote the class of functions f(z) ∈ H whose
coefficients satisfy the condition (3.1). We note that S∗(f, g;λ, α, β, A,B) ⊆
S(f, g;λ, α, β, A,B).

Employing the technique used earlier by Attiya [26], Srivastava and Attiya
[27] and Aouf [28], we prove

Theorem 8.1. Let f(z) ∈ S∗(f, g;λ, α, β, A,B), bk ≥ b2 > 0 (k ≥ 2) and
−1 ≤ B < A ≤ 1. Suppose that K denote the class of functions f(z) ∈ H
which are convex in U . Then for every function φ(z) ∈ K, we have

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)b2]
(f ∗ φ)(z) ≺ φ(z),

(8.3)
and

Re{f(z)} > −(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(z ∈ U).

(8.4)

The constant (1+λ)[α(1+(1+|B|)β)+|A−B−αB|]b2
2[(A−B)+(1+λ)(α(1+(1+|B|)β)+|A−B−αB|)b2]

is the best estimate.

Proof. Let f(z) ∈ S∗(f, g;λ, α, β, A,B) and suppose that

φ(z) = z +
∞∑
k=2

dkz
k ∈ K.

Then, for f ∈ H given by (1.1), we have

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)b2]
(f ∗ φ)(z)

=
(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)b2]

(
z +

∞∑
k=2

akdkz
k

)
.

(8.5)
Thus, by Definition 8.1, the subordination result (8.3) will be true if the se-
quence{

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)b2]
ak

}∞
k=1
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is a subordinating factor sequence, with a1 = 1. In view of Lemma 8.1, this is
equivalent to the following inequality

Re

{
1 +

∞∑
k=1

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

akz
k

}
> 0.

(8.6)
Now, since the equality (4.3) is an increasing function of k (k ≥ 2), we have

Re

{
1 +

∞∑
k=1

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

akz
k

}

= Re
{

1 +
(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

z

+
1

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

·

∞∑
k=2

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2akz
k
}

≥ 1− (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

r

− 1

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

∞∑
k=2

Mk(λ, α, β, A,B)|ak|rk

≥ 1− (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

r−

A−B
(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

r = 1−r > 0 (|z| = r < 1),

where we have used the assertion (3.1) of Theorem 3.1. Thus (8.6) holds true
in U . This prove the inequality (8.3). The inequality (8.4) follows by taking
the convex function φ(z) = z

1−z = z +
∑∞

k=2 z
k ∈ K. To prove the sharpness

of the constant (1+λ)[α(1+(1+|B|)β)+|A−B−αB|]b2
2[(A−B)+(1+λ)(α(1+(1+|B|)β)+|A−B−αB|)b2]

, we consider the function

f0(z) ∈ S∗(f, g;λ, α, β, A,B) given by

f0(z) = z − A−B
(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

z2

(−1 ≤ B < A ≤ 1; z ∈ U). (8.7)

Thus, from (8.3), we have

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)b2]
f0(z) ≺ z

1− z
.

(8.8)
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Moreover, it can be verified for the function f0(z) given by (8.7) that

min
|z|≤r

{
Re

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]b2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)b2]
f0(z)

}
= −1

2
.

(8.9)

This shows that the constant (1+λ)[α(1+(1+|B|)β)+|A−B−αB|]b2
2[(A−B)+(1+λ)(α(1+(1+|B|)β)+|A−B−αB|)b2]

is the best
possible. This completes the proof of Theorem 8.1.

Putting g(z) = z +
∑∞

k=2 Ψkz
k (or bk = Ψk), where Ψk is defined by (1.8),

in Theorems 3.1 and 8.1, we obtain the following corollary:
Corollary 8.1. Let f defined by (1.1) be in the class S∗q,s([α1];λ, α, β, A,B)

and satisfy the condition

∞∑
k=2

[1+λ(k−1)][α(k−1)(1+(1+|B|)β)+|A−αBk+B(α−1)|]Ψk|ak| ≤ A−B.

Then for every function φ(z) ∈ K, we have

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]Ψ2

2[(A−B) + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)Ψ2]
(f ∗ φ)(z) ≺ φ(z),

and

Re{f(z)} > −(A−B) + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]Ψ2

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|]Ψ2

(z ∈ U).

The constant (1+λ)[α(1+(1+|B|)β)+|A−B−αB|]Ψ2

2[(A−B)+(1+λ)(α(1+(1+|B|)β)+|A−B−αB|)Ψ2]
is the best estimate.

Putting g(z) = z +
∑∞

k=2 I
m(ρ, l)zk (or bk = Im(ρ, l)), where Im(ρ, l) is

defined by (1.9), in Theorems 3.1 and 8.1, we obtain the following corollary:
Corollary 8.2. Let f defined by (1.1) be in the class S∗(ρ, l,m;λ, α, β, A,B)

and satisfy the condition

∞∑
k=2

[1+λ(k−1)][α(k−1)(1+(1+|B|)β)+|A−αBk+B(α−1)|]
[

1 + l + ρ(k − 1)

1 + l

]m
|ak|

≤ A−B.
Then for every function φ(z) ∈ K, we have

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|](1 + l + ρ)m

2[(A−B)(1 + l)m + (1 + λ)(α(1 + (1 + |B|)β) + |A−B − αB|)(1 + l + ρ)m]

·(f ∗ φ)(z) ≺ φ(z),

and

Re{f(z)} > −(A−B)(1 + l)m + (1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|](1 + l + ρ)m

(1 + λ)[α(1 + (1 + |B|)β) + |A−B − αB|](1 + l + ρ)m
.
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The constant (1+λ)[α(1+(1+|B|)β)+|A−B−αB|](1+l+ρ)m

2[(A−B)(1+l)m+(1+λ)(α(1+(1+|B|)β)+|A−B−αB|)(1+l+ρ)m]
is the best esti-

mate.

Remarks. Specializing the function g and the parameters λ, α, β, A,B
involved in the results presented in this paper, we can obtain the correspond-
ing results for the corresponding operators and classes (1)-(4) defined in the
introduction.
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9 Open Problem

The authors suggest to study the properties of partial sum and Hadmard
product for the function classes TS(f, g;λ, α, β, A,B) and S(f, g;λ, α, β, A,B).
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