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Abstract

We use the notion of weighted sharing of values to study the
uniqueness of meromorphic functions when certain non-linear dif-
ferential polynomials share the same 1-points. Our results improve
and supplement and at the same time generalised the results of
Lahiri-Sarkar [14], Meng [18] and Zhang-Lin [23]. At the last
section we pose some open problems which are still unsolved in
connection to the context of the paper. .
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1 Introduction Definitions and Background

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that f − a
and g − a have the same zeros with the same multiplicities. Similarly, we say
that f and g share a IM, provided that f − a and g − a have the same zeros
ignoring multiplicities. In addition we say that f and g share ∞ CM, if 1/f
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and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g
share 0 IM.

We adopt the standard notations of value distribution theory (see [7]).
We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside of a
possible exceptional set of finite linear measure.

In 1999 at the time of studying the problem of uniqueness of meromor-
phic functions when two linear differential polynomials share the same 1-points
Lahiri [8] raised the following question regarding the nonlinear differential poly-
nomials.

What can be said if two nonlinear differential polynomials generated by two
meromorphic functions share 1 CM?

During the last couple of years a large number of research papers investi-
gating the shared value problems of different nonlinear differential polynomials
and the uniqueness of their corresponding generating meromorphic functions
were published {see [2]-[6], [12]-[19]}.

In 2001 Fang and Hong [6] proved the following result.
Theorem A. Let f and g be two transcendental entire functions and n(≥ 11)
be an integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM, then f ≡ g.

So far to the knowledge of the authors the above is the first result related to
the value sharing of nonlinear differential polynomials. Naturally it generates
an increasing interest among the researchers to explore the value sharing of
more generalised polynomials under weaker hypothesis.

Improving Theorem A Fang and Fang [5] obtained the following theorem.
Theorem B. Let f and g be two non-constant entire functions and n(≥ 8) be
an integer . If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM, then f ≡ g.

In 2004 Lin and Yi [17] further improved and supplement Theorem B as
follows.
Theorem C. Let f and g be two transcendental entire functions and n(≥ 7)
be an integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM, then f ≡ g.

Theorem D. Let f and g be two non-constant meromorphic functions and
n(≥ 13) be an integer. If fn(f − 1)2f

′
and gn(g − 1)2g

′
share 1 CM, then

f ≡ g.
In 2001 an idea of gradation of sharing of values was introduced in {[6],

[7]} which measures how close a shared value is to being share CM or to being
shared IM. This notion is known as weighted sharing and is defined as follows.

Definition 1.1 [6, 7] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g
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with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k)
if and only if it is an a-point of g with multiplicity n (> k), where m is not
necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

In the mean time to investigate the uniqueness of meromorphic functions,
Lahiri and Sarkar [14] considered two different types of nonlinear differential
polynomials than those discussed earlier and proved the following.
Theorem E. Let f and g be two non-constant meromorphic functions such
that fn(f 2 − 1)f

′
and gn(g2 − 1)g

′
share (1, 2), where n(≥ 13) is an integer

then either f ≡ g or f ≡ −g. If n is an even integer then the possibility of
f ≡ −g does not arise.

In 2009 C. Meng [18], also considered the value sharing of a nonlinear
differential polynomial whose form is analogous to those considered by Lahiri-
Sarkar. C. Meng obtained the following results.
Theorem F. Let f and g be two non-constant meromorphic functions such
that fn(f 3 − 1)f

′
and gn(g3 − 1)g

′
share (1, l), where n be a positive integer

such that n+ 1 is not divisible by 3. If

(i) l = 2 and n > 14;

(ii) l = 1 and n ≥ 17;

(iii) l = 0 and n ≥ 35.

then f ≡ g.
Recently Zhang and Lin [23] considered the sharing value problem of more

generalised differential polynomials namely the kth derivative of a linear ex-
pression but confined their investigation for entire functions only. Zhang and
Lin [23] obtained the following result.
Theorem G. Let f and g be two non-constant entire functions and n, m and
k be three positive integers with n > 2k + m + 4. Suppose for two non zero
constants a and b [fn (afm + b)](k) and [gn (agm + b)](k) share (1,∞). Then
f ≡ g.

Remark 1.2 The conclusion of the Theorem G is partially correct. Since
in the proof of the theorem the possibilities other than f ≡ g has not been
considered.

From the context of the above discussions the following questions are in-
evitable.

Question 1. When n+ 1 is divisible by 3 in Theorem F what can be the
possible relationships between f and g ?
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Question 2. In Theorems E-F if the sharing value problems of differential
polynomials are replaced by more general one as considered in Theorem G then
can the same theorems be obtained as a corollary of the main results so that
Theorem G will also be rectified ?

2 Main Results

In the paper we are taking this aspect as background and improve extend and
generalize all results stated above.

Following theorem is the main result of the paper.

Theorem 2.1 Let f and g be two transcendental meromorphic functions
and n, k(≥ 1), m(≥ 2) be three positive integers. Suppose for two non zero

constants a and b [fn (afm + b)](k) and [gn (agm + b)](k) share (1, l). Then
f ≡ tg for some constant t, satisfying td ≡ 1, where d = (n + m,n) or
[fn(afm + b)](k)[gn(agm + b)](k) ≡ 1 provided one of the following holds.

(i) l ≥ 2 and n > 3k +m+ 8− 2{Θ(∞; f) + Θ(∞; g)}
− kmin{Θ(∞; f),Θ(∞; g)};

(ii) l = 1 and n > 4k + 3m
2

+ 9−
(
k
2

+ 5
2

)
{Θ(∞; f) + Θ(∞; g)};

(iii) l = 0 and n > 9k + 4m+ 14− (2k + 3){Θ(∞; f) + Θ(∞; g)}
−min{Θ(∞; f),Θ(∞; g)}.

When k = 1 the possibility [fn(afm + b)](k)[gn(agm + b)](k) ≡ 1 does not occur.

Putting n = s + 1, m = 2 a = 1
s+3

b = − 1
s+1

and k = 1 in the above theorem
and noting that here d = (s+3, s+1) we can immediately deduce the following
corollary.

Corollary 2.2 Let f and g be two non-constant meromorphic functions
and s be a positive integer. Suppose f s(f 2 − 1)f

′
and gs(g2 − 1)g

′
share (1, l).

Then f ≡ g or f ≡ − g provided one of the following holds.

(i) l ≥ 2 and s > 12− 2{Θ(∞; f) + Θ(∞; g)} −min{Θ(∞; f),Θ(∞; g)};

(ii) l = 1 and s > 15− 3 {Θ(∞; f) + Θ(∞; g)};

(iii) l = 0 and s > 30− 5{Θ(∞; f) + Θ(∞; g)} −min{Θ(∞; f),Θ(∞; g)}.

If s is an even integer then the possibility of f ≡ −g does not arise.

Putting n = s + 1, m = 3 a = 1
s+3

b = − 1
s+1

and k = 1 in the above
theorem and noting that here d = (s + 4, s + 1) we can immediately deduce
the following corollary.
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Corollary 2.3 Let f and g be two non-constant meromorphic functions and
s be a positive integer such that s+1 is not divisible by 3. Suppose f s(f 3−1)f

′

and gs(g3 − 1)g
′

share (1, l). Then f ≡ g provided one of the following holds.

(i) l ≥ 2 and s > 13− 2{Θ(∞; f) + Θ(∞; g)} −min{Θ(∞; f),Θ(∞; g)};

(ii) l = 1 and s > 16.5− 3 {Θ(∞; f) + Θ(∞; g)};

(iii) l = 0 and s > 34− 5{Θ(∞; f) + Θ(∞; g)} −min{Θ(∞; f),Θ(∞; g)}.

Remark 2.4 Since Theorems E-F can be obtained as a special case of The-
orem 2.1, clearly Theorem 2.1 improves and supplements Theorems E-F.

Theorem 2.5 Let f and g be two non-constant entire functions and n,
k(≥ 1), m(≥ 2) be three positive integers. Suppose for two non zero constants

a and b [fn (afm + b)](k) and [gn (agm + b)](k) share (1, l). Then f ≡ tg for
some constant t, satisfying td ≡ 1, where d = (n + m,n) provided one of the
following holds.

(i) l ≥ 2 and n > 2k +m+ 4;

(ii) l = 1 and n > 3k + 3m
2

+ 4;

(iii) l = 0 and n > 5k + 4m+ 7.

Also the possibility f ≡ −g does not arise if n and m are both odd or if n is
odd and m is even or if n is even and m is odd.

3 More Definitions

We now explain some definitions and notations which are used in the paper.

Definition 3.1 [14] Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 3.2 {11, cf.[21]} For a ∈ C ∪ {∞} and a positive integer p we
denote by Np(r, a; f) the sum N(r, a; f) +N(r, a; f |≥ 2) + . . . N(r, a; f |≥ p).
Clearly N1(r, a; f) = N(r, a; f).
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Definition 3.3 Let a, b ∈ C ∪{∞}. Let p be a positive integer. We denote
by N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting
function of those a-points of f with multiplicities ≥ p, which are the b-points
(not the b-points) of g.

Definition 3.4 {cf.[1], 2} Let f and g be two non-constant meromorphic
functions such that f and g share the value 1 IM. Let z0 be a 1-point of f with
multiplicity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the

counting function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f)

the counting function of those 1-points of f and g where p = q = 1 and by

N
(2

E (r, 1; f) the counting function of those 1-points of f and g where p = q ≥ 2,
each point in these counting functions is counted only once. In the same way

we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 3.5 {cf.[1], 2} Let k be a positive integer. Let f and g be two
non-constant meromorphic functions such that f and g share the value 1 IM.
Let z0 be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q.
We denote by N f>k (r, 1; g) the reduced counting function of those 1-points of
f and g such that p > q = k. N g>k (r, 1; f) is defined analogously.

Definition 3.6 [9, 10] Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).

4 Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F , G be two non-constant meromorphic functions. Henceforth we shall
denote by H the following function.

H =

(
F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1

)
−
(

G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1

)
. (1)

Lemma 4.1 [7]Let f be a non-constant meromorphic function, k a positive
integer and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N
(
r, c; f (k)

)
−N

(
r, 0; f (k+1)

)
+ S(r, f)

≤ N(r,∞; f) +Nk+1(r, 0; f) +N
(
r, c; f (k)

)
−N0

(
r, 0; f (k+1)

)
+ S(r, f),

where N0

(
r, 0; f (k+1)

)
is the counting function of the zeros of f (k+1) which are

not the zeros of f(f (k) − c)



26 A. Banerjee, S. Majumder

Lemma 4.2 [22] Let f be a non-constant meromorphic function and p, k
be positive integers, then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 4.3 [1] If f, g be two non-constant meromorphic functions such
that they share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−N f>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 4.4 [2] Let f , g share (1, 1). Then

N f>2(r, 1; g) ≤ 1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N�(r, 0; f

′
) + S(r, f),

where N�(r, 0; f
′
) is the counting function of those zeros of f

′
which are not

the zeros of f(f − 1).

Lemma 4.5 [2] Let f and g be two non-constant meromorphic functions
sharing (1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−N f>1(r, 1; g)−N g>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 4.6 [2] Let f , g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

Lemma 4.7 [2] Let f , g share (1, 0). Then

(i) N f>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N�(r, 0; f
′
) + S(r, f)

(ii) N g>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N�(r, 0; g
′
) + S(r, g).

Lemma 4.8 [20] Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + . . .+ anf
n, where a0, a1, a2 . . . , an are constants and an 6= 0.

Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 4.9 Let f and g be two non-constant meromorphic functions and
a, b be two non zero constants. Then

[fn(afm + b)](k)[gn(agm + b)](k) 6≡ 1,

where n, m ≥ 2, k = 1 be three positive integers and n(≥ m+ 3).
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Proof. We note that when k = 1, according to the statement of the lemma
we have to prove

[fn−1 (a(n+m)fm + bn) f
′
] [gn−1 (a(n+m)gm + bn) g

′
] 6≡ 1.

If possible let us suppose that

[fn−1 (a(n+m)fm + bn) f
′
] [gn−1 (a(n+m)gm + bn) g

′
] ≡ 1. (2)

Let z0 be a zero of f with multiplicity p(≥ 1). So from (2) we get z0 be a pole
of g with multiplicity q(≥ 1) such that

np− 1 = (n+m)q + 1, (3)

i.e.
mq = n(p− q)− 2 ≥ n− 2.

Again from (3) we get

np = (n+m)q + 2

≥ (n+m)
n− 2

m
+ 2,

i.e.,

p ≥ n+m− 2

m
.

Therefore
Θ(0; f) ≥ 1− m

n+m− 2
.

Suppose a(n + m)fm + bn = a(n + m) (f − α1)(f − α2) . . . (f − αm). Let
z1 be a zero of (f − αi) i = 1, 2, . . . ,m with multiplicity p. Then from (2) we
have z1 be a pole of g with multiplicity q(≥ 1) such that

2p− 1 = (n+m)q + 1

i.e.,

p ≥ n+m+ 2

2
.

Hence

Θ(αi; f) ≥ 1− 2

n+m+ 2
.

Since

Θ(0; f) +
m∑
i=1

Θ(αi; f) ≤ 2,

it follows that
2m

n+m+ 2
+

m

n+m− 2
≥ m− 1,

which is a contradiction.
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Lemma 4.10 Let f and g be two non-constant entire functions. Then

[fn(afm + b)](k)[gn(agm + b)](k) 6≡ 1,

where a and b are nonzero complex numbers; n, m, k be three positive integers
and n(> 2k +m+ 4).

Proof. We omit the proof since the proof can be found in the proof of Theorem
1 in [23].

Lemma 4.11 Let f and g be two nonconstant meromorphic functions and
n(≥ 2), m(≥ 2) be two distinct integers satisfying n + m ≥ d + 7. Then for
two nonzero constants a, b,

fn (afm + b) ≡ gn (agm + b)

implies f ≡ tg, for some constant t, satisfying td ≡ 1, where d = (n+m,n).

Proof. Suppose F = fn (afm + b) and G = gn (agm + b). Let f 6≡ tg for a
constant t satisfying td = 1. We put h = f

g
. Then hd 6≡ 1. First suppose that

h is constant. Also F ≡ G implies

gm = − b

a

hn − 1

hn+m − 1
.

We note that the numerator and the denominator has d common factors namely
h − vk, k = 0, 1, 2, . . . , d − 1, where vk = exp

(
2kπi
d

)
. Since (h − v1)(h −

v2) . . . (h − vk) 6= 0, it follows that g is a constant, which is impossible. So h
is nonconstant. We observe that since a nonconstant meromorphic function
can not have more than two Picard exceptional values h can take at least
n+m− d− 2 values among uj = exp

(
2jπi
n+m

)
, where j = 0, 1, 2, . . . , n+m− 1.

Since fm has no simple pole h−uj has no simple zero for at least n+m−d−2
values of uj, for j = 0, 1, 2, . . . , n + m − 1 and for these values of j we have
Θ(uj;h) ≥ 1

2
, which leads to a contradiction. This proves the lemma.

5 Proofs of the theorems

Proof of Theorem 2.1 Let F = fn(afm+ b) and G = gn(agm+ b). It follows
that F (k) and G(k) share (1, l).
Case 1 Let H 6≡ 0.
Subcase 1.1 l ≥ 1
From (1) we get

N(r,∞;H) ≤ N(r,∞;F ) +N(r,∞;G) +N∗
(
r, 1;F (k), G(k)

)
(4)

+N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
,
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where N⊗
(
r, 0;F (k+1)

)
is the reduced counting function of those zeros of F (k+1)

which are not the zeros of F (k)
(
F (k) − 1

)
and N⊗

(
r, 0;G(k+1)

)
is similarly

defined.
Let z0 be a simple zero of F (k) − 1. Then z0 is a simple zero of G(k) − 1

and a zero of H. So

N
(
r, 1;F (k) |= 1

)
≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G) (5)

While l ≥ 2, using (4) and (5) we get

N
(
r, 1;F (k)

)
(6)

≤ N
(
r, 1;F (k) |= 1

)
+N

(
r, 1;F (k) |≥ 2

)
≤ N(r,∞;F ) +N(r,∞;G) +N(r.0;F (k) |≥ 2) +N

(
r.0;G(k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
+N

(
r, 1;F (k) |≥ 2

)
+N⊗(r, 0;F (k+1))

+N⊗
(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

So from Lemmas 4.1 and 4.8 we have

T (r, F ) + T (r,G) (7)

≤ 2N(r,∞;F ) + 2N(r,∞;G) +Nk+1(r, 0;F ) +Nk+1(r, 0;G)

+N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+N

(
r, 1;G(k)

)
+N

(
r, 1;F (k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
−N0

(
r, 0;F (k+1)

)
−N0

(
r, 0;G(k+1)

)
+S(r, F ) + S(r,G).

We note that

Nk+1(r, 0;F ) +N
(
r, 0;F (k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
(8)

≤ Nk+1(r, 0;F ) +N
(
r, 0;F (k) |≥ 2 | F = 0

)
+N

(
r, 0;F (k) |≥ 2 | F 6= 0

)
+N⊗

(
r, 0;F (k+1)

)
≤ Nk+1(r, 0;F ) +N (r, 0;F |≥ k + 2) +N0

(
r, 0;F (k+1)

)
≤ Nk+2(r, 0;F ) +N0

(
r, 0;F (k+1)

)
.

Clearly similar expression holds for G. Also

N
(
r, 1;F (k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
+N

(
r, 1;G(k)

)
(9)

≤ N
(
r, 1;G(k) |= 2

)
+ 2NL

(
r, 1;F (k)

)
+ 2NL

(
r, 1;G(k)

)
+N

(3

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;G(k)

)
≤ T

(
r,G(k)

)
+O(1)

≤ T (r,G) + kN(r,∞;G) + S(r,G).
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Using Lemma 4.8, (8) and (9) in (7) we obtain for ε > 0

(n+m)T (r, f) (10)

= T (r, F ) +O(1)

≤ Nk+2(r, 0;F ) +Nk+2(r, 0;G) + 2N(r,∞;F )

+(k + 2)N(r,∞;G) + S(r, F ) + S(r,G)

≤ Nk+2 (r, 0; fn) +Nk+2(r, 0; afm + b) +Nk+2 (r, 0; gn)

+Nk+2(r, 0; agm + b) + 2N(r,∞; f) + (k + 2)N(r,∞; g)

+S(r, f) + S(r, g)

≤ (4 +m+ k − 2Θ(∞; f) + ε)T (r, f) + (4 +m+ 2k − (2 + k)Θ(∞; g)

+ε)T (r, g) + S(r, f) + S(r, g)

≤ (8 + 2m+ 3k − 2Θ(∞; f)− 2Θ(∞; g)− kmin{Θ(∞; f),Θ(∞; g)}
+2ε)T (r) + S(r, f) + S(r, g).

In a similar way we can obtain

(n+m)T (r, g) (11)

≤ (8 + 2m+ 3k − 2Θ(∞; f)− 2Θ(∞; g)− kmin{Θ(∞; f),Θ(∞; g)}
+2ε)T (r) + S(r, f) + S(r, g).

So from (10) and (11) we get

(n−m− 3k − 8 + 2Θ(∞; f) + 2Θ(∞; g) + kmin{Θ(∞; f),Θ(∞; g)}(12)

−2ε)T (r) ≤ S(r).

Since ε > 0 be arbitrary, (12) gives a contradiction.
While l = 1, using Lemmas 4.2, 4.3 and 4.4, (4) and (5) we get

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
(13)

≤ N
(
r, 1;F (k) |= 1

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(2

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;F (k) |= 1

)
+N

(
r, 1;G(k)

)
−NL

(
r, 1;F (k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>2

(
r, 1;G(k)

)
≤ N(r,∞;F ) +N(r,∞;G) +N

(
r.0;F (k) |≥ 2

)
+N

(
r.0;G(k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
−NL

(
r, 1;F (k)

)
−NL

(
r, 1;G(k)

)
+

1

2
N
(
r, 0;F (k)

)
+

1

2
N
(
r,∞;F (k)

)
+ T

(
r,G(k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G)

≤
(
k

2
+

3

2

)
N(r,∞;F ) + (k + 1)N(r,∞;G) +N

(
r.0;F (k) |≥ 2

)
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+N
(
r.0;G(k) |≥ 2

)
+

1

2
Nk+1(r, 0;F ) + T (r,G) +N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

So in view of Lemmas 4.1, 4.8, (8) and (13) we get for ε > 0

(n+m)T (r, f) (14)

= T (r, F ) +O(1)

≤
(
k

2
+

5

2

)
N(r,∞;F ) + (k + 2)N(r,∞;G) +

1

2
Nk+1(r, 0;F )

+Nk+2(r, 0;F ) +Nk+2(r, 0;G) + S(r, F ) + S(r,G)

≤
(

2k + 5 +
3m

2
−
(
k

2
+ 2

)
Θ(∞; f)− 1

2
Θ(∞; f) + ε

)
T (r, f)

+

(
2k + 4 +m−

(
k

2
+ 2

)
Θ(∞; g)− k

2
Θ(∞; g) + ε

)
T (r, g)

+S(r, f) + S(r, g)

≤
(

4k + 9 +
5m

2
−
(
k

2
+

5

2

)
(Θ(∞; f) + Θ(∞; g)) + 2ε

)
T (r)

+S(r).

In a similar manner we can get

(n+m)T (r, g) (15)

≤
(

4k + 9 +
5m

2
−
(
k

2
+

5

2

)
(Θ(∞; f) + Θ(∞; g)) + 2ε

)
T (r) + S(r).

Combining (14) and (15) we get(
n− 4k − 9− 3m

2
+

(
k

2
+

5

2

)
(Θ(∞; f) + Θ(∞; g))− 2ε

)
T (r) (16)

≤ S(r).

Since ε > 0 be arbitrary, (16) implies a contradiction.
Subcase 1.2 l = 0. Here (5) changes to

N
1)
E

(
r, 1;F (k) |= 1

)
≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G) (17)

Using Lemmas 4.2, 4.5, 4.6, 4.7 and (4) and (17) we get

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
(18)

≤ N
1)
E

(
r, 1;F (k)

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(2

E

(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
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≤ N
1)
E

(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>1

(
r, 1;G(k)

)
+NG(k)>1

(
r, 1;F (k)

)
≤ N(r,∞;F ) +N(r,∞;G) +N

(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
+ T

(
r,G(k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>1

(
r, 1;G(k)

)
+NG(k)>1

(
r, 1;F (k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G)

≤ (2k + 3)N(r,∞;F ) + (2k + 2)N(r,∞;G) +N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+ 2Nk+1(r, 0;F ) +Nk+1(r, 0;G) + T (r,G)

+N⊗
(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

So in view of Lemmas 4.1, 4.8, (8) and (18) we get for ε > 0

(n+m)T (r, f) (19)

= T (r, F ) +O(1)

≤ (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + 2Nk+1(r, 0;F )

+Nk+1(r, 0;G) +Nk+2(r, 0;F ) +Nk+2(r, 0;G) + S(r, f) + S(r, g)

≤ (9k + 14 + 5m− (2k + 3)Θ(∞; f)− (2k + 3)Θ(∞; g)

−min{Θ(∞; f),Θ(∞; g)}+ 2ε)T (r) + S(r).

Similarly we can obtain

(n+m)T (r, g) (20)

= T (r,G) +O(1)

≤ (9k + 14 + 5m− (2k + 3)Θ(∞; f)− (2k + 3)Θ(∞; g)

−min{Θ(∞; f),Θ(∞; g)}+ 2ε)T (r) + S(r).

Combining (19) and (20) we get

(n− 9k − 14 + 4m+ (2k + 3)Θ(∞; f) + (2k + 3)Θ(∞; g) (21)

+ min{Θ(∞; f),Θ(∞; g)} − 2ε)T (r) ≤ S(r).

(21) implies a contradiction for ε > 0.
Case 2 Next we suppose that H ≡ 0. Then by integration we get from (1)

1

F (k) − 1
≡ bG(k) + a− b

G(k) − 1
, (22)

where a, b are constants and a 6= 0. From (22) it is clear that F (k) and
G(k) share (1,∞) and hence they share (1, 2). So in this case always n >
3k + m + 8 − 2{Θ(∞; f) + Θ(∞; g)} − kmin{Θ(∞; f),Θ(∞; g)}. We now
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consider the following subcases.
Subcase 2.1 Let b 6= 0 and a 6= b.
If b = −1, then from (22) we have

F (k) =
−a

G(k) − a− 1
.

Therefore
N
(
r, a+ 1;G(k)

)
= N

(
r,∞;F (k)

)
= N(r,∞; f).

Since a 6= b = −1, from Lemma 4.1 we have

(n+m)T (r, g)

= T (r,G) +O(1)

≤ N(r,∞;G) +Nk+1(r, 0;G) +N(r, a+ 1;G(k)) + S(r,G)

≤ N(r,∞; f) +N(r,∞; g) +Nk+1(r, 0;G) + S(r,G)

≤ (1−Θ(∞; f) + ε)T (r, f) + (k + 2 +m−Θ(∞; g) + ε)T (r, g) + S(r, g)

Without loss of generality, we suppose that there exists a set I with infinite
measure such that T (r, f) ≤ T (r, g) for r ∈ I.
So for r ∈ I we have

(n− k − 3 + Θ(∞; f) + Θ(∞; g)− 2ε)T (r, g) ≤ S(r, g),

which is a contradiction for arbitrary ε > 0.
If b 6= −1, from (22) we obtain that

F (k) −
(

1 +
1

b

)
=

−a
b2[G(k) + (a− b)/b]

.

Therefore

N
(
r, (b− a)/b;G(k)

)
= N

(
r,∞;F (k) − (1 + 1/b)

)
= N(r,∞; f)

Using Lemma 4.1 and the same argument as used in the case when b = −1 we
can get a contradiction.
Subcase 2.2 Let b 6= 0 and a = b.
If b = −1, then from (22) we have

F (k)G(k) ≡ 1,

that is
[fn(afm + b)](k)[gn(agm + b)](k) ≡ 1,

which is impossible by Lemma 4.9 when k = 1.
If b 6= −1, from (22) we have

1

F (k)
=

bG(k)

(1 + b)G(k) − 1
.
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Hence from Lemma 4.2 we have

N
(
r, 1/(1 + b);G(k)

)
= N

(
r, 0;F (k)

)
≤ Nk+1(r, 0;F ) + kN(r,∞; f).

From Lemma 4.1 we have

(n+m)T (r, g) +O(1)

= T (r,G)

≤ N(r,∞;G) +Nk+1(r, 0;G) +N

(
r,

1

b+ 1
;G(k)

)
+ S(r,G)

≤ kN(r,∞; f) +N(r,∞; g) +Nk+1(r, 0;F ) +Nk+1(r, 0;G) + S(r,G)

≤ (2k + 1 +m− kΘ(∞; f) + ε)T (r, f)

+(k + 2 +m−Θ(∞; g) + ε)T (r, g) + S(r, g)

For r ∈ I we have

(n− 3k − 3−m+ kΘ(∞; f) + Θ(∞; g)− 2ε)T (r, g) ≤ S(r, g),

which is a contradiction for n ≥ 3k + 9.
Subcase 2.3 Let b = 0. From (22) we obtain

F (k) =
G(k) + a− 1

a
. (23)

If a− 1 6= 0 then From (23) we obtain

N
(
r, 1− a;G(k)

)
= N

(
r, 0;F (k)

)
.

We can similarly deduce a contradiction as in Subcase 2.2. Therefore a = 1
and from (23) we obtain

F = G+ p(z), (24)

where p(z) is a polynomial of degree at most k − 1. We claim that p(z) ≡ 0.
Otherwise noting that f is transcendental when k ≥ 2, in view of Lemma 4.8
we have

(n+m)T (r, f) = T (r, F ) +O(1) (25)

≤ N(r, 0;F ) +N(r,∞; f) +N(r, p;F ) + S(r, F )

≤ N(r, 0;F ) +N(r,∞; f) +N(r, 0;G) + S(r, F )

≤ 3T (r, f) + 2T (r, g) + S(r, f)

Also from (24) we get

T (r, f) = T (r, g) + S(r, f),
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which together with (25) implies a contradiction. So

F ≡ G.

So from Lemma 4.11 we get the conclusion of the theorem.
Proof of Theorem 2.5 We omit the proof since instead of Lemma 4.9 using
Lemma 4.10 and proceeding in the same way the proof of the theorem can be
carried out in the line of proof of Theorem 2.1 and Theorem 1 of [23].

6 Open Problem

Theorems 2.1 and 2.5 are proved for transcendental meromorphic functions.
Are both the theorems also true for non-constant meromorphic functions ?
Keeping all other conditins intact can the second conclusion in Theorem 2.1
be removed when k ≥ 2 ?

References

[1] T.C.Alzahary and H.X.Yi, Weighted value sharing and a question of
I.Lahiri, Complex Var. Theory Appl. 49(15) (2004), 1063-1078.

[2] A.Banerjee, Meromorphic functions sharing one value, Int. J. Math.
Math. Sci. 22 (2005), 3587-3598.

[3] A.Banerjee, On uniqueness for non-linear differential polynomials sharing
the same 1-points, Ann. Polon. Math. 89(3) (2006), 259-272.

[4] A.Banerjee, A uniqueness result on some differential polynomials sharing
1 points, Hiroshima Math. J. 37(3) 2007, 397-408.

[5] C.Y.Fang and M.L.Fang, Uniqueness of meromorphic functions and dif-
ferential polynomials, Comput. Math. Appl. 44(2002), 607-617.

[6] M.L.Fang and W. Hong, A unicity theorem for entire functions con-
cerning differential polynomials, Indian J. Pure Appl. Math. 32(9) (2001),
1343-1348.

[7] W.K.Hayman, Meromorphic Functions, The Clarendon Press, Oxford
(1964).

[8] I.Lahiri, Uniqueness of meromorphic functions when two linear differen-
tial polynomials share the same 1-points, Ann. Polon. Math. 71(2)(1999),
113-128.



36 A. Banerjee, S. Majumder

[9] I.Lahiri, Weighted sharing and uniqueness of meromorphic functions,
Nagoya Math. J., 161 (2001), 193-206.

[10] I.Lahiri, Weighted value sharing and uniqueness of meromorphic func-
tions, Complex Var. Theory Appl., 46 (2001), 241-253.

[11] I.Lahiri, On a question of Hong Xun Yi, Arch. Math. (Brno), 38(2002),
119-128.

[12] I.Lahiri and N.Mandal, Uniqueness of nonlinear differential polynomials
sharing simple and double 1-points, Int. J. Math. Math. Sci. 12 (2005),
1933-1942.

[13] I.Lahiri and R.Pal, Nonlinear differential polynomials sharing 1-points,
Bull. Korean Math. Soc., 43(1) (2006), 161-168.

[14] I.Lahiri and A.Sarkar, Nonlinear differential polynomials sharing 1-points
with weight two, Chinese J. Contemp. Math., 25(3) (2004), 325-334.

[15] I.Lahiri and P.Sahoo, Uniqueness of non-linear differential polynomials
sharing 1-points, Georgian Math. J., 12(1) (2005), 131-138.

[16] W.C.Lin, Uniqueness of differential polynomials and a problem of Lahiri,
Pure Appl. Math., 17(2)(2001), 104-110 (in Chinese).

[17] I.Lahiri and H.X.Yi, Uniqueness theorems for meromorphic function,
Indian J. Pure Appl. Math., 35(2)(2004), 121-132.

[18] C.Meng, On unicity of meromorphic functions when two differential poly-
nomials share one value, Hiroshima Math. J., 39(2009), 163-169.

[19] H.Qiu and M. Fang, On the uniqueness of entire functions, Bull. Korean
Math. Soc., 41(1) (2004), 109-116.

[20] C.C.Yang, On deficiencies of differential polynomials II, Math. Z. Vol.
125(1972), 107-112.

[21] H.X.Yi, On characteristic function of a meromorphic function and its
derivative, Indian J. Math. 33(2)(1991), 119-133.

[22] Q.C.Zhang, Meromorphic function that shares one small function with
its derivative, J.Inequal.Pure Appl. Math., 6(4)(2005), Art.116 [ ONLINE
http://jipam.vu.edu.au/].

[23] X.Y.Zhang and W.C.Lin, Uniqueness and value sharing of entire func-
tions, J.Math. Anal. Appl., 343(2008), 938-950.


