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Abstract

In this paper for analytic functions we introduce a new integral op-
erator and we prove the univalence condition for this operator.
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1 Introduction and definitions

Let U = {z : |z| < 1} the open unit disk and A the class of all functions of the
form:

f(z) = z +
∞∑
n=2

anz
n

which are analytic in U. By S we denote the class of all functions in A which
are univalent in U.
To prove our main result we need Becker univalence criterion and Schwarz
Lemma.

Theorem 1.1. [1] If the function f is regular in the unit disk U, f(z) =
z + a2z

2 + . . . and

(1− |z|2)
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1

for all z ∈ U, then the function f is univalent in U.

Lemma 1.2. [2] (Schwarz lemma) Let the function g be regular in the unit
disk U and g(0) = 0. If |g(z)| ≤ 1,∀z ∈ U, then

|g(z)| ≤ |z|,∀z ∈ U

and equality can hold only if g(z) = εz, where |ε| = 1.
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We introduce a new integral operator defined by

I(f, g)(z) =

z∫
0

f(t)αg(t)βdt (1)

for all z ∈ U and for the analytical functions f and g.

2 The univalence condition

Theorem 2.1. Let f, g ∈ A and α, β positive real numbers. If |f(z)| ≤
1, |g(z)| ≤ 1 and ∣∣∣∣f ′(z)

f(z)

∣∣∣∣ ≤M,

∣∣∣∣g′(z)

g(z)

∣∣∣∣ ≤ N (2)

and

αMα−1 + βNβ−1 ≤ 1

4
(3)

for M,N(M,N > 0) positive real numbers, then the operator I(f, g)(z) defined
by (1) is in the univalent function class S.

Proof. From (1) we obtain that

zI ′′(f, g)(z)

I ′(f, g)(z)
=
zαf ′(z)α−1

f(z)α
+
zβg′(z)β−1

g(z)β

From Becker univalence criterion we have

(1− |z|2)
∣∣∣∣zI ′′(f, g)(z)

I ′(f, g)(z)

∣∣∣∣ = (1− |z|2)
∣∣∣∣zαf ′(z)α−1

f(z)α
+
zβg′(z)β−1

g(z)β

∣∣∣∣
≤ (1− |z|2)|z|

(
α

∣∣∣∣f ′(z)

f(z)

∣∣∣∣α−1 · |f(z)|+ β

∣∣∣∣∣g′(z)

g(z)

β−1
∣∣∣∣∣ · |g(z)|

)
From hypothesis we have that |f(z)| ≤ 1 and |g(z)| ≤ 1. Using Schwarz lemma
we obtain that |f(z)| ≤ |z| and |g(z)| ≤ |z|. Hence and using (2) we obtain

(1− |z|2)
∣∣∣∣zI ′′(f, g)(z)

I ′(f, g)(z)

∣∣∣∣ ≤ (1− |z|2)|z|(αMα−1|z|+ βNβ−1|z|)

≤ (1− |z|2)|z|2(αMα−1 + βNβ−1).

(4)

We define the function F : [0, 1]→ R, F (x) = (1−x2)x2, x = |z|. This function

has a maximum at a point x =
√
2
2

and hence results that F (x) ≤ 1
4
.

Hence, from (4) using (3) we obtain that

(1− |z|2)
∣∣∣∣zI ′′(f, g)(z)

I ′(f, g)(z)

∣∣∣∣ ≤ 1,

so the operator is univalent.
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For M,N = 1 we obtain

Corollary 2.2. Let f, g ∈ A and α, β positive real numbers. If |f(z)| ≤
1, |g(z)| ≤ 1 and ∣∣∣∣f ′(z)

f(z)

∣∣∣∣ ≤ 1,

∣∣∣∣g′(z)

g(z)

∣∣∣∣ ≤ 1

and

α + β ≤ 1

4
,

then the operator I(f, g)(z) defined by (1) is in the univalent function class S.

3 Open Problem

The open problem is to study the convexity order and the starlikeness for the
integral operator I(f, g)(z) defined by (1) in the first part of this paper.
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