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Abstract
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1 Introduction

Let A be the class of functions f , analytic in the open unit disk E = {z ∈ C :
|z| < 1} and normalized by the conditions f(0) = f ′(0)−1 = 0. Therefore, the
Taylor’s series expansion of any member f of the class A takes the following
form

f(z) = z +
∞∑

k=2

akz
k.

For all z in E, if f ∈ A satisfies the condition < f ′(z) > α, 0 ≤ α < 1 in
E, then f is called a function of bounded turning. Let B(α) denote the class
of functions of bounded turning. It is well-known that every close-to-convex
function is univalent. In 1934/35, Noshiro [4] and Warchawski [8] obtained
a simple but interesting criterion for close-to-convexity of analytic functions.
They proved that if an analytic function f satisfies the condition < f ′(z) > 0
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for all z in E, then f is close-to-convex and hence univalent in E. It is clear
that the functions in the class B(α) are univalent close-to-convex in E.

For all z in E, f ∈ A and N = {1, 2, 3, · · ·}. Let σ1
n(z, f), σ2

n(z, f), σ3
n(z, f)

and Vn(z, f) denote, respectively, the nth Cesáro means of first, second and
third order and De La Vallée Poussin Mean of f ∈ A and define as under:

σ1
n(z, f) = z +

n∑

k=2

n + 1− k

n
akz

k,

σ2
n(z, f) = z +

n∑

k=2

(n + 1− k)(n + 2− k)

n(n + 1)
akz

k,

σ3
n(z, f) = z +

n∑

k=2

(n + 1− k)(n + 2− k)(n + 3− k)

n(n + 1)(n + 2)
akz

k,

and

Vn(z, f) =
n

n + 1
z +

n∑

k=2

n(n− 1) · · · (n + 1− k)

(n + 1)(n + 2) · · · (n + k)
akz

k.

If f and g are two analytic functions having power series expansions

f(z) =
∞∑

k=1

akz
k and g(z) =

∞∑

k=1

bkz
k.

Then their convolution is denoted as (f ∗ g)(z) and defined by

(f ∗ g)(z) =
∞∑

k=1

akbkz
k.

For f ∈ A, the integral operator F defined as

F (z) =
2

z

∫ z

0

f(ζ) dζ = z +
∞∑

k=2

2

k + 1
akz

k, z ∈ E,

is known as Libera integral operator and its nth partial sums Fn are given by

Fn(z) = z +
n∑

k=2

2

k + 1
akz

k.

Jahangiri and Farahmand [2], proved that the nth partial sums of the Libera
integral operator of functions of bounded turning are also of bounded turning.
In fact they proved that if f ∈ B(α), then Fn ∈ B((4α−1)/3) for 1/4 ≤ α < 1.
Notice that the partial sums Fn do not remain with bounded turning for α <
1/4. It is worthwhile to replace the Libera integral operator by the operators
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where the result holds for 0 ≤ α < 1. In the present paper, we show that the
Libera integral operator when replaced by the Alexander integral operator, the
result holds for 0 ≤ α < 1. We also show that the nth Cesáro means of first,
second and third order and the nth De La Vallée Poussin mean of functions of
bounded turning are also of bounded turning.

2 Preliminaries

To prove our results, we shall make use of the following lemmas.

Lemma 2.1 If p is analytic in E with p(0) = 1 and < p(z) > 1/2 in E.
Then for a function q analytic in E, the convolution function p∗ q takes values
in the convex hull of the image of E under q.

Lemma 2.2 (Rogosinski and Szegö [6]). For all θ, 0 ≤ θ ≤ π,

1

2
+

n∑

k=1

cos kθ

k + 1
≥ 0.

Lemma 2.3 For all z in E, we have

<
(

1 +
n∑

k=2

1

k
zk−1

)
>

1

2
.

Proof. In view of the minimum principle for harmonic functions and
Lemma 2.2, by writing z = reiθ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, we get:

<
(

1 +
n∑

k=2

1

k
zk−1

)
= <

(
1 +

n−1∑

k=1

1

k + 1
zk

)

= 1 +
n−1∑

k=1

rk cos kθ

k + 1

> min
0≤θ≤π

(
1 +

n−1∑

k=1

cos kθ

k + 1

)
≥ 1

2
.

Hence the result follows.
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Lemma 2.4 (Dhaliwal [1]). If f is a starlike function of order 1/2 in E,
then for n ∈ N,

<σi
n(z, f)

z
>

1

2
, z ∈ E, for i = 1, 2, 3.

Lemma 2.5 For a convex function f in E, we have

<Vn(z, f)

z
>

1

2
, z ∈ E.

Proof. Pólya and Schoenberg [5], proved that if f is convex in E, then
Vn(z, f) is convex in E and Marx [3] and Strohhäcker [7] proved that if f is

convex in E, then <f(z)

z
>

1

2
, z ∈ E. Hence <Vn(z, f)

z
>

1

2
, z ∈ E.

3 Main Results

Theorem 3.1 If f ∈ B(α) where 0 ≤ α < 1, then σi
n(z, f) ∈ B(α) for

i = 1, 2, 3.

Proof. Since f ∈ B(α), therefore

<
(

1 +
∞∑

k=2

kakz
k−1

)
> α. (1)

By definition of nth Cesáro mean of first order of f ∈ A, we have

σ1
n(z, f) = z +

n∑

k=2

n + 1− k

n
akz

k, z ∈ E. (2)

Differentiate (2) w.r.t. z, we get

σ1′
n (z, f) = 1 +

n∑

k=2

k(n + 1− k)

n
akz

k−1

=

(
1 +

n∑

k=2

n + 1− k

n
zk−1

)
∗

(
1 +

∞∑

k=2

kakz
k−1

)

=
σ1

n(z, z
1−z

)

z
∗

(
1 +

∞∑

k=2

kakz
k−1

)
(3)
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Using Lemma 2.1, Lemma 2.4 and the condition (1), from (3), we obtain:

< σ1′
n (z, f) > α and hence σ1

n(z, f) ∈ B(α).

A little calculation yields

σ2′
n (z, f) =

σ2
n(z, z

1−z
)

z
∗

(
1 +

∞∑

k=2

kakz
k−1

)

and

σ3′
n (z, f) =

σ3
n(z, z

1−z
)

z
∗

(
1 +

∞∑

k=2

kakz
k−1

)

Similar to the above case, the result in case of nth Cesáro means of second and
third order follows from the use of Lemma 2.1, Lemma 2.4 and the condition
(1).

Theorem 3.2 If f ∈ B(α) where 0 ≤ α < 1, then < V ′
n(z, f) > α.

Proof. By definition of De La Vallée Poussin mean of f ∈ A, we have

Vn(z, f) =
n

n + 1
z +

n∑

k=2

n(n− 1) · · · (n + 1− k)

(n + 1)(n + 2) · · · (n + k)
akz

k. (4)

Differentiate (4) w.r.t. z, we get

V ′
n(z, f) =

n

n + 1
+

n∑

k=2

n(n− 1) · · · (n + 1− k)

(n + 1)(n + 2) · · · (n + k)
kakz

k−1

=

(
n

n + 1
+

n∑

k=2

n(n− 1) · · · (n + 1− k)

(n + 1)(n + 2) · · · (n + k)
zk−1

)

∗
(

1 +
∞∑

k=2

kakz
k−1

)

=
Vn(z, z

1−z
)

z
∗

(
1 +

∞∑

k=2

kakz
k−1

)
(5)

Using Lemma 2.1, Lemma 2.5 and the condition (1), from (5), we get:

< V ′
n(z, f) > α. This completes the proof.

For all z in E and f ∈ A, the integral operator G defined as

G(z) =

∫ z

0

f(ζ)

ζ
dζ = z +

∞∑

k=2

1

k
akz

k,
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is called the Alexander integral operator and its nth partial sums Gn are given
by

Gn(z) = z +
n∑

k=2

1

k
akz

k. (6)

Theorem 3.3 If f ∈ B(α), then Gn(z) ∈ B(α) where 0 ≤ α < 1.

Proof. Differentiate (6) w.r.t. z, we get

G′
n(z) = 1 +

n∑

k=2

akz
k−1

=

(
1 +

1

2(1− α)

∞∑

k=2

kakz
k−1

)
∗

(
1 + 2(1− α)

n∑

k=2

1

k
zk−1

)
(7)

Since the condition (1) can be rewritten as

<
(

1 +
1

2(1− α)

∞∑

k=2

kakz
k−1

)
>

1

2
. (8)

In view of Lemma 2.3, we obtain

<
(

1 + 2(1− α)
n∑

k=2

1

k
zk−1

)
> α. (9)

Using the conditions (8) and (9) in the light of Lemma 2.1, from (7), we get:

< G′
n(z) > α and hence Gn(z) ∈ B(α).

4 Open Problem

We, here, prove that the partial sums of the Alexander integral operator of
functions of bounded turning are also of bounded turning. It is worthwhile to
prove this result for more general integral operators.
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