
Int. J. Open Problems Complex Analysis, Vol. 3, No. 2, July 2011
ISSN 2074-2827; Copyright c©ICSRS Publication, 2011
www.i-csrs.org

Characterization Bertrand Curve in the Heisenberg Group Heis3

Talat Körpınar2 and Essin Turhan3,

Fırat University, Department of Mathematics
23119, Elazığ, TURKEY
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1 Introduction

Bertrand curves are well-studied classical curves and may be defined by their prop-
erty that any Bertrand curve shares its principal normals with another Bertrand
curve, sometimes referred to as Bertrand mate [21]. Accordingly, Bertrand mates
represent particular examples of offset curves [14] which are used in computer-aided
design (CAD) and computer-aided manufacture (CAM). The distance between a
Bertrand curve and its mate measured along the principal normal is known to be
constant.

The aim of this paper is to study biharmonic curves in the Heisenberg group
Heis3.

Firstly, harmonic maps are given as follows:
Harmonic maps f : (M, g) −→ (N,h) between Riemannian manifolds are the

critical points of the energy

E (f) =
1
2

∫
M
|df |2 vg, (1.1)
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and they are therefore the solutions of the corresponding Euler–Lagrange equation.
This equation is given by the vanishing of the tension field

τ (f) = trace∇df. (1.2)

Secondly, biharmonic maps are given as follows:
As suggested by Eells and Sampson in [8], we can define the bienergy of a map

f by

E2 (f) =
1
2

∫
M
|τ (f)|2 vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in [10],

showing that the Euler–Lagrange equation associated to E2 is

τ2 (f) = −J f (τ (f)) = −∆τ (f)− traceRN (df, τ (f)) df1.4 (1)
= 0,

where J f is the Jacobi operator of f . The equation τ2 (f) = 0 is called the bihar-
monic equation. Since J f is linear, any harmonic map is biharmonic. Therefore, we
are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

Clearly, any harmonic map is biharmonic. However, the converse is not true.
Nonharmonic biharmonic maps are said to be proper. It is well known that proper
biharmonic maps, that is, biharmonic functions, play an important role in elasticity
and hydrodynamics.

In this paper, we study non-geodesic biharmonic curves in the Heisenberg group
Heis3. We characterize Bertrand mate of biharmonic curve in terms of curvature
and torsion of biharmonic curve in the Heisenberg group Heis3. Finally, we construct
parametric equations of Bertrand mate of biharmonic curve.

2 Heisenberg Group Heis3

Heisenberg group Heis3 can be seen as the space R3 endowed with the following
multipilcation:

(x, y, z)(x, y, z) = (x + x, y + y, z + z − 1
2
xy +

1
2
xy) (2.1)

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie
group.

The Riemannian metric g is given by

g = dx2 + dy2 + (dz +
y

2
dx− x

2
dy)2.

The Lie algebra of Heis3 has an orthonormal basis

e1 =
∂

∂x
− y

2
∂

∂z
, e2 =

∂

∂y
+

x

2
∂

∂z
, e3 =

∂

∂z
, (2.2)
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for which we have the Lie products

[e1, e2] = e3, [e2, e3] = [e3, e1] = 0

with
g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

We obtain

∇e1e1 = ∇e2e2 = ∇e3e3 = 0,

∇e1e2 = −∇e2e1 =
1
2
e3,

∇e1e3 = ∇e3e1 = −1
2
e2,

∇e2e3 = ∇e3e2 =
1
2
e1.

We adopt the following notation and sign convention for Riemannian curvature
operator on Heis3 defined by

R(X, Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z,

while the Riemannian curvature tensor is given by

R(X, Y, Z,W ) = g(R(X, Y )Z,W ),

where X, Y, Z,W are smooth vector fields on Heis3.
The components {Rijkl} of R relative to {e1, e2, e3} are defined by

g (R(ei, ej)ek, el) = Rijkl.

The non-vanishing components of the above tensor fields are

R121 = −3
4e2, R131 = 1

4e3, R122 = 3
4e1,

R232 = 1
4e3, R133 = −1

4e1, R233 = −1
4e2,

and
R1212 = −3

4 , R1313 = R2323 = 1
4 . (2.3)

3 Biharmonic Curves in the Heisenberg Group Heis3

Let I ⊂ R be an open interval and γ : I −→ (N,h) be a curve parametrized by arc
length on a Riemannian manifold. Putting T = γ′, we can write the tension field of
γ as τ(γ) = ∇γ′γ′ and the biharmonic map equation (1.1) reduces to

∇3
TT + R(T,∇TT)T = 0. (3.1)
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A successful key to study the geometry of a curve is to use the Frenet frames
along the curve, which is recalled in the following.

Let γ : I −→ Heis3 be a curve on Heis3 parametrized by arc length. Let
{T,N,B} be the Frenet frame fields tangent to Heis3 along γ defined as follows: T
is the unit vector field γ′ tangent to γ, N is the unit vector field in the direction
of ∇TT (normal to γ), and B is chosen so that {T,N,B} is a positively oriented
orthonormal basis. Then, we have the following Frenet formulas:

∇TT = κN,

∇TN = −κT− τB, 3.2 (2)
∇TB = τN,

where κ = |∇TT| is the curvature of γ and τ is its torsion. With respect to the
orthonormal basis {e1, e2, e3}, we can write

T = T1e1 + T2e2 + T3e3,

N = N1e1 + N2e2 + N3e3,

B = T×N = B1e1 + B2e2 + B3e3.

Theorem 3.1.(see [11]) Let γ : I −→ Heis3 be a non-geodesic curve on Heis3

parametrized by arc length. Then γ is a non-geodesic biharmonic curve if and only
if

κ = constant 6= 0,

κ2 + τ2 =
1
4
−B2

3 , 3.3 (3)

τ ′ = N3B3.

Theorem 3.2.(see [11]) Let γ : I −→ Heis3 be a non-geodesic curve on the
Heisenberg group Heis3 parametrized by arc length. If κ is constant and N1B1 6= 0,
then γ is not biharmonic.

4 Bertrand Mate of Biharmonic Curve in Heisenberg
Group Heis3

Definition 4.1. A curve γ : I −→ Heis3 with κ 6= 0 is called a Bertrand curve if
there exist a curve β : I −→ Heis3 such that the principal normal lines of γ and
β at s ∈ I are equal. In this case β is called a Bertrand mate of γ [14].

Theorem 4.2. Let γ : I −→ Heis3 be a Bertrand curve parametrized by arc
length . A Bertrand mate of γ is as follows:

β (s) = γ (s) + λN (s) , ∀s ∈ I,
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where λ is constant [14].

Theorem 4.3. Let γ : I −→ Heis3 be a biharmonic curve parametrized by arc
length. If β is a Bertrand mate of γ, then the parametric equations of β are

xβ (s) =
λ

κ
sinϕ (cos ϕ−<) sin[<s + ρ]

+
1
<

sinϕ sin[<s + ρ],

yβ (s) = −λ

κ
sinϕ (cos ϕ−<) cos[<s + ρ]4.1 (4)

− 1
<

sinϕ cos[<s + ρ],

zβ (s) = (cos ϕ +
1

4<
sin2 ϕ)s,

where ρ is constant of integration and < = cos ϕ±
√

5(cos ϕ)2−4
2 .

Proof. The covariant derivative of the vector field T is:

∇TT = (T ′
1 + T2T3)e1 + (T ′

2 − T1T3)e2 + T ′
3e3. (4.2)

Thus using Theorem 3.2, we have

T = sinϕ cos[<s + ρ]e1 + sin ϕ sin[<s + ρ]e2 + cos ϕe3, (4.3)

where < = cos ϕ±
√

5(cos ϕ)2−4
2 .

Using (2.2) in (4.3), we obtain

T = (sinϕ cos[<s + ρ], sinϕ sin[<s + ρ],

cos ϕ− 1
2
y (s) sinϕ cos[<s + ρ] +

1
2
x (s) sinϕ sin[<s + ρ]).

From (2.2), we get

T = (sinϕ cos[<s + ρ], sinϕ sin[<s + ρ],

cos ϕ +
1

2<
sin2 ϕ cos2[<s + ρ] +

1
2<

sin2 ϕ sin2[<s + ρ]).

On the other hand, suppose that β (s) is a Bertrand mate of γ. Then by the
definition we can assume that

β (s) = γ (s) + λN (s) . (4.4)

From (4.2) and (4.3), we get

∇TT = sinϕ (cos ϕ−<) (sin[<s + ρ]e1 − cos[<s + ρ]e2) .
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By the use of Frenet formulas, we get

N =
1
κ
∇TT

=
1
κ

[sinϕ (cos ϕ−<) (sin[<s + ρ]e1 − cos[<s + ρ]e2)].

Substituting (2.2) in (4.5), we have

N =
1
κ

sinϕ (cos ϕ−<) (sin[<s + ρ],− cos[<s + ρ], 0). (4.5)

Finally, we substitute (4.3) and (4.5) into (4.4), we get (4.1). The proof is
completed.

Corollary 4.4. Let γ : I −→ Heis3 be a unit speed non-geodesic biharmonic
curve . Then, the parametric equations of γ are

x (s) =
1
<

sinϕ sin[<s + ρ],

y (s) = − 1
<

sinϕ cos[<s + ρ],

z (s) = (cos ϕ +
1

4<
sin2 ϕ)s,

where < = cos ϕ±
√

5(cos ϕ)2−4
2 .
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