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Abstract

The main object of this paper is to study a new subclass
of analytic functions in the open unit disk which is de-
fined by Al-Oboudi fractional differential operator. Results
of coefficients estimates, extreme points, radii of close-to
convexity, starlikeness and convexity and integral means
inequalities for functions belonging to this subclass are es-
tablished.
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1. Introduction

Let A be the class of functions of the form

f(z) = z+
∞X
k=2

akz
k (1.1)

that are analytic in the open unit disk U = {z : z ∈ C, | z |< 1} .

The fractional derivative is defined as follows (e.g.,[9,14])
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Definition 1.1: The Riemann-Liouville fractional derivative of order α(0 ≤
α < 1) is defined for the function f by

Dα
z f(z) =

1

Γ(1− α)

d

dz

zZ
0

(z− t)−αf(t)dt (1.2)

where the function f(z) is analytic in a simply connected region of the z-plane
containing the origin, and the multiplicity of (z− t)−α is removed by requiring
log(z − t) to be real when z − t > 0.

Owa and Srivastava [10] introduced the operator Ωα : A→ A which is known
as an extension of the fractional derivative and fractional integral , as follows:

Ωαf(z) = Γ(2− α)zαDα
z f(z)

= z +
∞X
k=2

Γ(k + 1)Γ(2− α)

Γ(k + 1− α)
akz

k (1.3)

Note that Ω0f(z) = f(z).

Now we recall the linear fractional differential operator Dn,α
λ : A → A in-

troduced and studied by Al-Oboudi and Al-Amoudi [ 2,3 ]as follows

D0,0
λ f(z) = f(z)

D1,α
λ f(z) = λz(Ωαf(z))

0
+ (1− λ)Ωαf(z) ≡ Dα

λf(z)

D2,α
λ f(z) = Dα

λ(D
1,α
λ f(z))

... (1.4)

Dn,α
λ f(z) = Dα

λ(D
n−1,α
λ f(z))

for n ∈ N, λ ≥ 0 and 0 ≤ α < 1.

If f is given by (1.1), then making use of (1.3) and (1.4) we conclude that

Dn,α
λ f(z) = z+

∞X
k=2

[ψk(α, λ)]
nakz

k, n ∈ N0 = N∪{0} (1.5)

where

ψk(α, λ) =
Γ(k + 1)Γ(2− α)

Γ(k + 1− α)
(1+λ(k−1)) , (k = 2, 3, ...) (1.6)

when α = 0 we get Al-Oboudi differential operator [1], when α = 0 and λ = 1
the Sǎlǎgean operator is obtained [12], and on setting λ = 0 and n = 1 we
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obtain the Owa-Srivastava fractional differential operator [10].

Definition 1.2: A function f ∈ A is said to be in the class Nα
m,n(b, δ, β, λ) if

Re
½
1 +

1

b

∙
Dm,α

λ f(z)

Dn,α
λ f(z)

− 1
¸¾

> β

¯̄̄̄
1

b

∙
Dm,α

λ f(z)

Dn,α
λ f(z)

− 1
¸¯̄̄̄
+ δ (1.7)

for some δ (0 ≤ δ < 1) , β ≥ 0, m ∈ N, n ∈ N0, b ∈ C\{0}, λ ≥ 0 and z ∈ U .

The following are the special cases of the class N α
m,n(b, δ, β, λ) :

i. N 0
m,n(b, δ, β, λ) ≡ Nm,n(b, δ, β, λ), the class introduced by Mahzoon and

Latha [8].
ii. N 0

m,n(1, δ, β, 1) ≡ Nm,n(δ, β), the class introduced by Eker and Owa [6].
iii. N 0

1,0(1, δ, β, 1) ≡ SD(δ, β) andN 0
2,1(1, δ, β, 1) ≡ KD(δ, β), the classes stud-

ied by Shams, Kulkarni and Jahangiri [13].
iv. N 0

m,n(1, δ, 0, 1) ≡ Km,n(δ), the class studied by Eker and Owa [5].
v. N 0

1,0(1, δ, 0, 1) ≡ S(δ) and N 0
2,1(1, δ, 0, 1) ≡ K(δ), the classes introduced by

Robertson [11].

The object of the present paper is to investigate the coefficient bounds, ex-
treme points, radii of close-to-convexity, starlikeness and convexity and integral
means inequalities for functions belonging to a subclass of N α

m,n(b, δ, β, λ).

2. Coefficient Inequalities

The following theorem gives a sufficient condition for functions f ∈ A to
belong to the class N α

m,n(b, δ, β, λ).

Theorem 2.1: Let f(z) ∈ A satisfy

∞X
k=2

Φk(m,n, α, λ, δ, β, b) | ak |≤ 2 |b| (1−δ) (2.1)

where

Φk(m,n, α, λ, δ, β, b) = | (1 + bδ)(ψk(α, λ))
n − (ψk(α, λ))

m |
+ [b(2− δ)− 1] ((ψk(α, λ))

n − (ψk(α, λ))
m)

+2β |(ψk(α, λ))
n − (ψk(α, λ))

m| (2.2)

for some δ(0 ≤ δ < 1), λ ≥ 0, β ≥ 0, m ∈ N, n ∈ N0, b ∈ C\{0} and
0 ≤ α < 1. Then f(z) ∈ N α

m,n(b, δ, β, λ).

Proof: It is sufficient to show that
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| [b(2− δ)− 1]Dn,α
λ f(z) +Dm,α

λ f(z)− βeiθ |Dm,α
λ f(z)−Dn,α

λ f(z)| |
− | (1 + bδ)Dn,α

λ f(z)−Dm,α
λ f(z) + βeiθ |Dm,α

λ f(z)−Dn,α
λ f(z)| |> 0

So, we have

| [b(2− δ)− 1]Dn,α
λ f(z) +Dm,α

λ f(z)− βeiθ |Dm,α
λ f(z)−Dn,α

λ f(z)| |
− | (1 + bδ)Dn,α

λ f(z)−Dm,α
λ f(z) + βeiθ |Dm,α

λ f(z)−Dn,α
λ f(z)| |

=| b(2− δ)z +
∞P
k=2

{[b(2− δ)− 1] (ψk(α, λ))
n + (ψk(α, λ))

m}akzk

−βeiθ |
∞P
k=2

{(ψk(α, λ))
m − (ψk(α, λ))

n}akzk | |

− | bδz +
∞P
k=2

{[1 + bδ] (ψk(α, λ))
n − (ψk(α, λ))

m}akzk

+βeiθ |
∞P
k=2

{(ψk(α, λ))
m − (ψk(α, λ))

n}akzk | |

≥| b | (2− δ) | z | −
∞P
k=2

| [b(2− δ)− 1] (ψk(α, λ))
n + (ψk(α, λ))

m | | ak || zk |

−β | eiθ |
∞P
k=2

| (ψk(α, λ))
m − (ψk(α, λ))

n | | ak | | zk |

− | b | δ | z | −
∞P
k=2

| (1 + bδ)(ψk(α, λ))
n − (ψk(α, λ))

m | | ak | | zk |

−β | eiθ |
∞P
k=2

| (ψk(α, λ))
m − (ψk(α, λ))

n | | ak | | zk |

≥ 2 | b | (1− δ)−
∞P
k=2

{| (1 + bδ)(ψk(α, λ))
n − (ψk(α, λ))

m |

+[(b(2− δ)− 1)(ψk(α, λ))
n + (ψk(α, λ))

m]

+2β | (ψk(α, λ))
n − (ψk(α, λ))

m |} | ak |≥ 0

which directly yields the inequality (2.1). ¤

Example: The function f(z) given by

f(z) = z +
∞X
k=2

2(2 + σ) |b| (1− δ)εk
(k + σ)(k + 1 + σ)Φk(m,n, α, λ, δ, β, b)

zk = z +
∞X
k=2

Akz
k

with

Ak =
2(2 + σ) |b| (1− δ)εj

(k + σ)(k + 1 + σ)Φk(m,n, α, λ, δ, β, b)

belongs to the class N α
m,n(b, δ, β, λ) for σ > −2, εk ∈ C with |εk| = 1 and the
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other parameters are as constrained in Theorem 2.1. Because we have

∞X
k=2

Φk(m,n, α, λ, δ, β, b) |Ak| ≤
∞X
k=2

2(2 + σ) |b| (1− δ)

(k + σ)(k + 1 + σ)

= 2(2 + σ) |b| (1− δ)
∞X
k=2

µ
1

(k + σ)
− 1

(k + 1 + σ)

¶
= 2 |b| (1− δ).

The coefficient inequality (2.1) has several known results as special cases.
For example, setting α = 0 in Theorem 2.1, we get the result recently obtained
by Mahzoon and Latha [8, Thm. 2.1, p.194]. Also on setting α = 0, b = 1 and
λ = 1 in Theorem 2.1, the result of coefficient inequality obtained by Eker and
Owa [6, Thm. 2.1, p.2] is established. Moreover, if we set m = 1 and n = 0,
we get the result obtained by Shams et al. [13, Thm. 2.1, p.2959].

3. The Subclass eN α
m,n(b, δ, β, λ)

In view of Theorem 2.1, we now introduce the subclass

eN α
m,n(b, δ, β, λ) ⊂ N α

m,n(b, δ, β, λ)

which consists of functions

f(z) = z+
∞X
k=2

akz
k (ak ≥ 0 ) (3.1)

whose Taylor-Maclaurin coefficients satisfy the inequality (2.1). Thus an im-
mediate corollary of Theorem 2.1 is written as

Corollary 3.1: Let f(z) ∈ eN α
m,n(b, δ, β, λ). Then

ak ≤
2 |b| (1− δ)

Φk(m,n, α, λ, δ, β, b)
, (k = 2, 3, 4, ...) (3.2)

for some δ(0 ≤ δ < 1), λ ≥ 0, β ≥ 0, m ∈ N, n ∈ N0 ,b ∈ C\{0} and
0 ≤ α < 1.

Theorem 3.2: If f ∈ A, then

eNα
m,n(b, δ, β2, λ) ⊂ eN α

m,n(b, δ, β1, λ)
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for some β1 and β2 such that 0 ≤ β1 ≤ β2.

Proof: Easily verified since (2.2) implies
∞X
k=2

Φk(m,n, α, λ, δ, β1, b) | ak |≤
∞X
k=2

Φk(m,n, α, λ, δ, β2, b) | ak |

Therefore, if f(z) ∈ eN α
m,n(b, δ, β2, λ), then f(z) ∈ eN α

m,n(b, δ, β1, λ). Hence the
proof is complete. ¤

Next we state the following theorem on extreme points for the class eN α
m,n(b, δ, β1, λ)

without proof .

Theorem 3.3: Let f1(z) = z and

fj(z) = z+
2 |b| (1− δ)εj

Φj(m,n, α, λ, δ, β, b)
zj, (j = 2, 3, 4, ...; |εj| = 1) (3.3)

where Φj(m,n, α, λ, δ, β, b) is given by (2.2). Then f ∈ eN α
m,n(b, δ, β, λ) if

and only if it can be expressed in the form f(z) =
∞P
j=1

ηjfj(z) where ηj ≥ 0

(j = 1, 2, 3, ...) and
∞P
j=1

ηj = 1.

Corollary 3.4: The extreme points of eN α
m,n(b, δ, β, λ) are the functions f1(z) =

z and fj(z) = z +
2 |b| (1− δ)εj

Φj(m,n, α, λ, δ, β, b)
zj, (j = 2, 3, 4, ...; |εj| = 1) where

Φj(m,n, α, λ, δ, β, b) is given by (2.2).

The results of extreme points of the subclass eN α
m,n(b, δ, β, λ) obtained in

Theorem 3.3 and Corollary 3.4 contain some known special cases. For ex-
ample, when α = 0, we get the results of extreme points recently obtained
by Mahzoon and Latha [8, Thm. 4.1 and Cor. 4.2, pp. 196-197], and when
α = 0, b = 1 and λ = 1, we get the results obtained by Eker and Owa [6, Thm.
5.1 and Cor. 5.3, pp.7-8].

4. Close-to-Convexity, Starlikeness and Convexity

We determine the radii of close-to-convexity, starlikeness and convexity
results for functions in the class eN α

m,n(b, δ, β, λ) in the following theorems.

Theorem 4.1: Let f ∈ eN α
m,n(b, δ, β, λ). Then f is close-to-convex of order

γ(0 ≤ γ < 1) in the disk |z| = r1; where

r1 = inf
k≥2

½
(1− γ)Φk(m,n, α, λ, δ, β, b)

2k |b| (1− δ)

¾ 1
k−1

(4.1)
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Proof: Let f belongs to A. It is known that f is close-to-convex of order γ if
it satisfies the condition

Re {f 0(z)} > γ

or equivalently

|f 0(z)− 1| < 1− γ (4.2)

For the left hand side of (4.2), we have

|f 0(z)− 1| =
¯̄̄̄
¯
∞X
k=2

kakz
k−1

¯̄̄̄
¯ ≤

∞X
k=2

k |ak| |z|k−1

The last expression is bounded by (1− γ) if

∞X
k=2

k

1− γ
|ak| |z|k−1 < 1

By Theorem 2.1 and Corollary 3.1, f ∈ eNα
m,n(b, δ, β, λ) if and only if

∞X
k=2

Φk(m,n, α, λ, δ, β, b)

2 |b| (1− δ)
ak ≤ 1, ak ≥ 0 (4.3)

Hence, (4.2) holds true if

k

1− γ
|z|k−1 < Φk(m,n, α, λ, δ, β, b)

2 |b| (1− δ)

or equivalently

|z|k−1 < (1− γ)Φk(m,n, α, λ, δ, β, b)

2k |b| (1− δ)
, k ≥ 2

which completes the proof. ¤

Theorem 4.2: Let f ∈ eN α
m,n(b, δ, β, λ). Then f is starlike of order γ(0 ≤

γ < 1) in the disk |z| = r2; where

r2 = inf
k≥2

½
(1− γ)Φk(m,n, α, λ, δ, β, b)

2 (k − γ) |b| (1− δ)

¾ 1
k−1

(4.4)

Proof: Let f belongs to A. It is known that f is starlike of order γ if it satisfies
the condition

Re
½
zf 0(z)

f(z)

¾
> γ
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or equivalently ¯̄̄̄
zf 0(z)

f(z)
− 1
¯̄̄̄
< 1− γ (4.5)

Thus, we have ¯̄̄̄
zf 0(z)

f(z)
− 1
¯̄̄̄
≤

∞P
k=2

(k − 1) |ak| |z|k−1

1−
∞P
k=2

|ak| |z|k−1

The last expression is bounded by (1− γ) if

∞X
k=2

k − γ

1− γ
|ak| |z|k−1 < 1

By Theorem 2.1 and Corollary 3.1, f ∈ eNα
m,n(b, δ, β, λ) if and only if

∞X
k=2

Φk(m,n, α, λ, δ, β, b)

2 |b| (1− δ)
ak ≤ 1, ak ≥ 0

Hence, (4.2) holds true if

k − γ

1− γ
|z|k−1 < Φk(m,n, α, λ, δ, β, b)

2 |b| (1− δ)

or equivalently

|z|k−1 < (1− γ)Φk(m,n, α, λ, δ, β, b)

2 (k − γ) |b| (1− δ)
, k ≥ 2

which yields the assertion (4.4). ¤

Now, f ∈ A is convex of order γ(0 ≤ γ < 1) if and only if zf 0(z) is starlike
of order γ, that f satisfies the condition

Re
½
1 +

zf 00(z)

f 0(z)

¾
> γ

or equivalently ¯̄̄̄
zf 00(z)

f 0(z)

¯̄̄̄
< 1− γ

So, following similar steps to that in the proof of Theorem 4.2, we get the
theorem:
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Theorem 4.3: Let f ∈ eN α
m,n(b, δ, β, λ). Then f is convex of order γ(0 ≤ γ <

1) in the disk |z| = r3; where

r3 = inf
k≥2

½
(1− γ)Φk(m,n, α, λ, δ, β, b)

2k (k − γ) |b| (1− δ)

¾ 1
k−1

. (4.6)

By setting specified values of the parameters involved in the subclass eNα
m,n(b, δ, β, λ),

we can get results for radii of starlikeness, convexity and close-to-convexity for
a wide range of more specified subclasses of analytic functions found in the
literature.

5. Integral Means Inequalities

Definition 5.1: For two functions f and g analytic in U , we say that f(z)
is subordinate to g(z) in U written as f(z) ≺ g(z) if there exists a Schwarz
function ω(z), analytic in U with ω(0) = 0 and |ω(z)| < 1 such that f(z) =
g(ω(z)), z ∈ U .
In particular, if the function g is univalent in U , the above subordination is
equivalent to f(0) = g(0) and f(U) ⊂ g(U).

Now we write down the following lemma of Littlewood [7] (see,e.g. Duren [4])

Lemma 5.2: If the functions f(z) and g(z) are analytic in U with g(z) ≺
f(z), then for γ > 0 and z = reiθ (0 < r < 1)

2πZ
0

| g(reiθ) |γ dθ ≤
2πZ
0

| f(reiθ) |γ dθ. (5.1)

Theorem 5.3: Let f(z) ∈ eN α
m,n(b, δ, β, λ) and suppose that

fj(z) = z+
2 |b| (1− δ)εj

Φj(m,n, α, λ, δ, β, b)
zj, (j = 2, 3, 4, ...; |εj| = 1) (5.2)

If there exists an analytic function ω(z) given by

{ ω(z)}j−1 = Φj(m,n, α, λ, δ, β, b)

2 |b| (1− δ)εj

∞X
j=2

ajz
j−1 (5.3)

then for z = reiθ (0 < r < 1),

2πZ
0

| f(reiθ) |γ dθ ≤
2πZ
0

| fj(reiθ) |γ dθ (5.4)
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Proof: By Lemma 5.2, it would suffice to show that

1 +
∞X
j=2

ajz
j−1 ≺ z +

2 |b| (1− δ)εj
Φj(m,n, α, λ, δ, β, b)

zj−1, (j = 2, 3, 4, ...; |εj| = 1)

By setting

z +
∞X
j=2

ajz
j−1 = z +

2 |b| (1− δ)εj
Φj(m,n, α, λ, δ, β, b)

{ω(z)}j−1,

we find that

{ω(z)}j−1 = Φj(m,n, α, λ, δ, β, b)

2 |b| (1− δ)εj

∞X
j=2

ajz
j−1

which implies ω(0) = 0. Furthermore

|ω(z)|j−1 =

¯̄̄̄
¯Φj(m,n, α, λ, δ, β, b)

2 |b| (1− δ) | εj |

∞X
j=2

ajz
j−1

¯̄̄̄
¯

≤ Φj(m,n, α, λ, δ, β, b)

2 |b| (1− δ)

∞X
k=2

| aj || zj−1 |

≤ |z| ≤ 1

by using (3.2). Hence f(z) ≺ fj(z) which readily yields the integral means in-
equality (4.4). ¤

On setting α = 0 in Theorem 5.3, we get the result of integral means
inequality established by Mahzoon and Latha [8, Thm. 5.2, p.198]. More
special results of integral means inequalities can be obtained by specifying the
parameters of the subclass eN α

m,n(b, δ, β, λ).

Open Problem: The class N α
m,n(b, δ, β, λ) and the subclass

eN α
m,n(b, δ, β, λ) can be redefined by using a different multiplier operator or by

using the concept of convolution to get new classes. So, new results similar or
parallel to what obtained in this paper can be derived for the new classes.

Acknowledgement: The author is thankful to the referee for valuable
suggestions which improve the results obtained in this research.
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Sălăgean operator, J. Ineq. Pure Appl. Math. 10(1) (2009), Article 22,
12 pp.

[7] J.E. Littlewood , On inequalities in the theory of functions. Proc. London
Math. Soc., 23 (1925), 481-519.

[8] H. Mahzoon and S. Latha, On classes of analytic functions involving Al-
Oboudi operator. Int. J. Math. Anal. 4(4)(2010), 193-199.

[9] S. Owa, On the distortion theorems-I. Kyungpook Math. J., 18(1)(1978),
53-59.

[10] S. Owa and H.M. Srivastava, Univalent and starlike generalized hyperge-
ometric functions. Canad. J. Math, 39(5)(1987),1057-1077.

[11] M. S. Robertson, On the theory of univalent functions. Annals Math.,
37 (1936), 374 - 406.
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