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Abstract

We focus on the pointwise asymptotics inside the unit disk
for orthogonal polynomials with respect to a measure from
polynomial Szegő class and perturbed by a sequence of point
masses outside the unit circle. Moreover, we show that these
asymptotics hold in L2-sense on the unit circle.
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1 Introduction

Let T = {z ∈ C : |z| = 1} be the unit circle and z1, z2, ..., zm be m fixed points
outside T. Consider a measure on T∪{z1, z2, ..., zm} of the form

α = σ +
m∑

j=1

Ajδzj

where σ = σac + σs is a Borel probability measure on the unit circle T and δzj

denotes the Dirac unit measure supported at the point zj with mass Aj > 0,
for j = 1, ..., m.. As usual, σac denotes the absolutely continuous part of σ and
σs the singular part.
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Denote by Pn the set of polynomials of degree at most n and by ψn(z) =
γnz

n + ... ∈ Pn(γn > 0) the polynomial of degree n orthonormal with respect
to σ i.e.,

1

2π

∫ 2π

0

ψn(z)zkdσ(θ) +
m∑

j=1

Ajψn(zj)zk
j = γ−1

n δkn, (1)

k = 0, 1, ..., n, z = eiθ, where δkn is the Kronecker’s symbol.
Let ϕn(z) = knzn + ... ∈ Pn(kn > 0) be the polynomial of degree n

orthonormal with respect to σ i.e.,

1

2π

∫ 2π

0

ϕn(z)zkdσ(θ) = k−1
n δkn, (2)

k = 0, 1, ..., n, z = eiθ.
For a polynomial p ∈ Pn, we put p∗(z) = znp(1/z). One can check that,

for z ∈ T, |p∗(z)| = |p(z)|.
It is well known from the recurrence formulae [8]

knϕn+1 = kn+1zϕn + ϕn+1(0)ϕ∗n
knϕ

∗
n+1 = kn+1ϕ

∗
n + ϕn+1(0)zϕn

that the orthonormal polynomials {ϕn(z)}n≥0 are uniquely determined by the

so called Geronimus parameters an = −ϕn+1(0)/kn+1, n = 0, 1, .... In therm of
the orthogonal polynomials {ϕn(z)}n≥0 recall the following classes of measures.
We say that a probability measure σ belongs to the Nevai class (N) (denoted
by σ ∈ (N) ) if lim

n→∞
an = 0. It follow by Rahmanov’ theorem [4,5] that

condition σ′ > 0 a.e. on T implies σ ∈ (N). The class of probability measures
with σ′ > 0 a.e. on T is called Erdős’ class, denoted by (E). Lastly, σ is a
Rahmanov measure (i.e. σ ∈ (R)) if

(∗)− lim
n→∞

|ϕn|2 dσ = dm

where m is the probability Lebesgue measure on T i.e.

dm(t) = dt/(2πit) = (1/2π) dθ, t = eiθ ∈ T.

For these classes of measures we have the following inclusions:

(E) ⊂ (N) ⊂ (R) .

Many details concerning these classes of measures can be found in the mono-
graph dedicated to orthogonal polynomials on the unite circle [7] or in [4].



Asymptotics of orthogonal polynomials 25

We say that a measure σ belongs to the Szegő class (denoted by σ ∈
(S)) if the Radon–Nikodym derivative σ′ac of σ with respect to the probability
Lebesgue measure m satisfies the usual Szegő’s condition:

∫ 2π

0

log σ′ac(e
iθ)dθ > −∞.

If σ ∈ (S) then one can construct the so-called Szegő function

D(z) = exp

{
1

4π

∫ 2π

0

eiθ + z

eiθ − z
log σ′ac(e

iθ)dθ

}

with the following properties
1) D is analytic in the open unit disc D = {z ∈ C : |z| < 1}, D(z) 6= 0 in

D, and D(0) > 0.
2) |D(t)| = σ′ac(t) a.e. on T.
It is well known ( Szegő [8]; Geronimus [2]) that if σ ∈ (S) then

lim
n→∞

D(z)ϕ∗n(z) = 1

for every z ∈ D. Moreover,

lim
n→∞

{
1

2π

∫ 2π

0

|Dϕ∗n − 1|2 dθ

}
= 0.

It is interesting to establish the same asymptotics for different classes of
measures. Recently in 2006 Denisov and Kupin in [1] have obtained similar
results for large class of measures defined as follow:

Let p be a trigonometric polynomial such that p(t) ≥ 0, t ∈ T. Without
loss of generality we can assume that

p(t) =
N∏

k=1

(t− ξk)
2mk ,

where {ξk} are points on T and mk > 0 are their multiplicities
We say that a measure σ belongs to the polynomial Szegő class (denoted by

σ ∈ (pS)) if the Radon–Nikodym derivative σ′ac of the absolute part of σ with
respect to the Lebesgue measure m satisfies the generalized Szegö’s condition:

∫ 2π

0

p(eiθ) log σ′ac(e
iθ)dθ > −∞.

It is easy to see that (S) ⊂ (pS) ⊂ (E) .
For a measure σ ∈ (pS), Kupin and Denisov in [1], obtained pointwise

asymptotics in the open unit disk D for the associated orthogonal polynomials
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{ϕn(z)} and proved these asymptotics in L2-sense on the unit circle. In the
case where the measure σ ∈ (pS) is perturbed with points masses outside
the unit circle, the problem is known as difficult and is an open problem in
analysis. In this work, we study the pointwise asymptotics inside the unit disk
for orthogonal polynomials with respect to a measure from polynomial Szegő
class and perturbed by a finite Blaschke sequence of point masses outside the
unit circle. The results of this paper are new and can be considered as a
contribution to the evolution of this field.

2 Preliminaries

First we give some notations.

For σ ∈ (pS) we introduce the functions

D̃(z) = exp

{
1

2π

∫ 2π

0

K(eiθ, z) log σ′ac(e
iθ)dθ

}
, (3)

ϕ̃∗n(z) = exp

{
1

2π

∫ 2π

0

K(eiθ, z) log
∣∣ϕ∗n(eiθ)

∣∣ dθ

}
, (4)

ψ̃∗n(z) = exp

{
1

2π

∫ 2π

0

K(eiθ, z) log
∣∣ψ∗n(eiθ)

∣∣ dθ

}
(5)

where K(eiθ, z) is the modified Schwarz kernel defined by

K(t, z) =
t + z

t− z

q(t)

q(z)
,

and q(t) =
∏N

k=1(t− ςk)
2mk/tN

′
, N ′ =

∑
k mk, t = eiθ ∈ T.

The functions {ϕ̃∗n} and
{

ψ̃∗n
}

are called the modified reversed orthogonal

polynomials with respect to σ and α respectively and satisfy the following
Lemma

Lemma 2.1 ([1]) Let σ ∈ (pS), the functions D̃(z), ϕ̃∗n(z) and ψ̃∗n(z) be
defined by (3),(4) and (5). Then

(i)
∣∣∣D̃(t)

∣∣∣
2

= σ′ac a.e.on T,

(ii) |ϕ̃∗n(t)| = |ϕ∗n(t)| a.e.on T,

(iii)
∣∣∣ψ̃∗n(t)

∣∣∣ = |ψ∗n(t)| a.e.on T.

Next, we cite two useful Theorems from [1].
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Theorem 2.2 ([1]) Let σ ∈ (pS). Then

lim
n→∞

D̃(z)ϕ̃∗n(z) = 1

for every z ∈ D.

Theorem 2.3 ([1]) Let α ∈ (pS). Then

lim
n→∞

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ϕ̃∗n(eiθ)− 1
∣∣∣
2

dθ = 0.

Remark 2.4 ([1]) Notice that from the following inequality

∥∥∥D̃ϕ̃∗n
∥∥∥

L2(T)
− ‖1‖L2(T) ≤

∥∥∥D̃ϕ̃∗n − 1
∥∥∥

L2(T)

and the fact that the right hand side tends to 0 as n →∞ (see Theorem 2.3),
then

lim
n→∞

1

2π

∫ 2π

0

∣∣D(eiθ)ϕn(eiθ)
∣∣2 dθ = 1,

holds and it implies

lim
n→∞

1

2π

∫ 2π

0

∣∣ϕn(eiθ)
∣∣2 dσs = 0,

since ‖ϕn‖2
L2(σ) = 1.

3 Main results

We recall the asymptotics of the ratio for the two orthonormal polynomials
{ψn(z)} and {ϕn(z)} .

Theorem 3.1 ([3]) If α ∈ (N), then

lim
n→∞

ψn(z)

ϕn(z)
= B(z),

uniformly for |z| ≥ 1. Where

B(z) =
m∏

k=1

(z − zk)

(zkz − 1)

|zk|
zk

is the finite Blaschke product.
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Now we prove our main results, first we begin by establish the pointwise
asymptotics in the open unit disc for the orthogonal polynomials {ψn(z)}.

Theorem 3.2 Let a measure α = σ +
∑m

k=1 Akδzk
, such that σ ∈ (pS).

Associate with the measure α the functions D̃ and ψ̃∗n given by (3), (5) then
we have

lim
n→∞

D̃(z)ψ̃∗n(z) = 1,

for every z ∈ D.

Proof. Consider the following sequence of functions

hn(z) =
ψ̃∗n(z)

ϕ̃∗n(z)
= exp

{
1

2π

∫ 2π

0

K(eiθ, z) log

∣∣∣∣
ψ∗n(eiθ)

ϕ∗n(eiθ)

∣∣∣∣ dθ

}
,

using Lemma 2.1, it yields

hn(z) = exp

{
1

2π

∫ 2π

0

K(eiθ, z) log

∣∣∣∣
ψn(eiθ)

ϕn(eiθ)

∣∣∣∣ dθ

}
.

By passing to the limit when n →∞ and using Theorem 3.1 and the fact that∣∣B(eiθ)
∣∣ = 1, we obtain

lim
n→∞

hn(z) = exp

{
1

2π

∫ 2π

0

K(eiθ, z) log
∣∣B(eiθ)

∣∣ dθ

}
= 1. (6)

Finally, (6) and Theorem 2.2 imply

lim
n→∞

D̃(z)ψ̃∗n(z) = lim
n→∞

[
D̃(z)ϕ̃∗n(z)

]
hn(z) = 1.

This achieves the proof of the Theorem.
To prove the second main result we introduce the following Lemma

Lemma 3.3 Under the assumptions of Theorem 3.2, we have

lim
n→∞

2Re

∫ 2π

0

D̃(eiθ)ψ̃∗n(eiθ)dθ = 4π.

Proof. It is proved in [1,p.22] for ϕ̃∗n that

2Re

∫ 2π

0

D̃(eiθ)ϕ̃∗n(eiθ)dθ = 4πRe
[
D̃(ξ0)ϕ̃

∗
n(ξ0)

]
,

for a certain ξ0 ∈ D, the proof is based on the fact that (see Theorem 2.2),

lim
n→∞

[
D̃(z)ϕ̃∗n(z)

]
= 1, for, z ∈ D,

then by Theorem 3.2 it is also true for ψ̃∗n.
Next we give the asymptotics of the modified reversed orthogonal polyno-

mials with respect to α in L2 (T).
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Theorem 3.4 Under the assumptions of Theorem 3.2, we have

lim
n→∞

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)− 1
∣∣∣
2

dθ = 0.

Proof. First, we transform the integral in the Theorem in the following
sum:

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)− 1
∣∣∣
2

dθ =
1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)
∣∣∣
2

dθ (7)

−2Re
1

2π

∫ 2π

0

D̃(eiθ)ψ̃∗n(eiθ)dθ + 1. (8)

We start with the second term on the right-hand side of (7). From Lemma
3.3, it holds

lim
n→∞

2Re
1

2π

∫ 2π

0

D̃(eiθ)ψ̃∗n(eiθ)dθ = 2. (9)

Now for the first term on the right-hand side of (7), we have the estimate

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)
∣∣∣
2

dθ =
1

2π

∫ 2π

0

∣∣D(eiθ)ψ∗n(eiθ)
∣∣2 dθ

=
1

2π

∫ 2π

0

∣∣∣∣
ψn(eiθ)

ϕn(eiθ)

∣∣∣∣
2 ∣∣D(eiθ)ϕn(eiθ)

∣∣2 dθ

≤ sup
t∈T

∣∣∣∣
ψn(t)

ϕn(t)

∣∣∣∣
2 [

1

2π

∫ 2π

0

∣∣ϕn(eiθ)
∣∣2 α′a.c.dθ

]
.(10)

Since sup
t∈T

∣∣∣∣
ψn(t)

ϕn(t)

∣∣∣∣
2

→ |B(t)| as n →∞ (Theorem 3.1) and

1

2π

∫ 2π

0

∣∣ϕn(eiθ)
∣∣2 α′acdθ → 1 as n →∞ (see Remark 2.4), then letting n →∞

in the inequality (9), we get

lim sup
n→∞

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)
∣∣∣
2

dθ ≤ |B(t)| = 1. (11)

Finally by passing to the limit when n →∞ in (7) and using (8) and (10), we
obtain

0 ≤ lim inf
n→∞

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)− 1
∣∣∣
2

dθ

≤ lim sup
n→∞

1

2π

∫ 2π

0

∣∣∣D̃(eiθ)ψ̃∗n(eiθ)− 1
∣∣∣
2

dθ ≤ 0.

This achieves the proof of the Theorem.
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Remark 3.5 As a consequence of Theorem 3.4 we have

(i) lim
n→∞

1

2π

∫ 2π

0

∣∣ψn(eiθ)
∣∣2 dσs = 0

(ii) lim
n→∞

∑m
j=1 Aj |ψn(zj)|2 = 0

This is obvious, since from Theorem 3.1, it yields

lim
n→∞

1

2π

∫ 2π

0

∣∣ψn(eiθ)
∣∣2 dσac = 1

and

‖ψn‖2
L2(α) =

1

2π

∫ 2π

0

∣∣ψn(eiθ)
∣∣2 dσ +

m∑
j=1

Aj |ψn(zj)|2 = 1.

Note that the relation (ii) implies that the points zj, j = 1, .., m attract the
zeros of the orthonormal polynomials ψn(z).

4 Open problems

1- In this work, we have studied the pointwise asymptotics inside the unit
disk for orthogonal polynomials with respect to a measure perturbed by a
finite Blaschke sequence of point masses outside the unit circle. The case of a
measure supported on the unit circle with an infinite discrete part still remain
open problem.

2- The second open problem is the sudy of the pointwise asymptotics of
Lp extremal polynomials (p > 0) for measures concentrated on curve, arc and
segment and perturbed by an infinite masses points. The sudy of extremal
polynomials contributed in the resolution of other important and open prob-
lems in mathematics.
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