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Abstract

In this paper, we describe a method to derive a Weierstrass-
type representation formula for simply connected immersed maxi-
mal surfaces in Lorentzian Heisenberg group Heis31. We consider
the Lorentzian left invariant metric and use some results of Levi-
Civita connection. Furthermore, we show that any harmonic map
of a simply connected coordinate region D into Heis31 can be repre-
sented the form.
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1 Introduction

The Weierstrass representation formula for minimal surfaces in R3 has been
a fundamental tool for producing examples and to prove general properties
of such surfaces, since it allows to bring into the problem the theory of holo-
morphic function of one complex variable. In (see [7]) the authors describe a
general Weierstrass representation formula for minimal surfaces in an arbitrary
Riemannian manifold. The P.D.E. involved are, in general, too complicated to
be solved explicitly.
Surface theory has been intensively studied in mathematics and physics.

The application of the theory to solitary wave phenomena in physics yields
socalled “soliton geometry”. An important branch is the Weierstrass represen-
tation of the surface in constant curvature space. The representation makes us
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study surfaces and their properties by means of analysis methods. A classical
example of such an approach is given by the Weierstrass representation for the
minimal surface in R3.
Surfaces and their dynamics are key ingredients in a number of phenomena

in physics too. They are, for instance, surface waves, propagation of flame
fronts, growth of crystals, deformation of membranes, dynamics of vortex
sheets, many problems of hydrodynamics connected with motion of bound-
aries between region of differing densities and viscosities. Number of papers
has been devoted to a study and application of the integrals over surfaces in
gauge field theories, string theory, quantum gravity and statistical physics (see
[12]).

Analytic methods to study surfaces and their properties are of great in-
terest both in mathematics and in physics. A classical example of such an
approach is given by theWeierstrass representation for minimal surfaces (see
[1—3]). This representation allows us to construct any minimal surface in the
three-dimensional Euclidean space R3 via two holomorphic functions. It is the
most powerful tool for the analysis of minimal surfaces.
It is well-known that the classical Weierstrass-Enneper representation for-

mula describes minimal surfaces in Euclidean 3-space R3 in terms of their
Gauss maps and auxiliary holomorphic functions (see [13]). More generally, a
remarkable representation formula has been discovered by Kenmotsu (see [3])
for arbitrary surfaces in R3 with nonvanishing mean curvature, which describes
these surfaces in terms of their Gauss maps and mean curvature functions.
On the other hand, Kobayashi (see [6]) proved the Lorentzian version of the
classical Weierstrass-Enneper representation formula for maximal surfaces in
Minkowski 3-space L3 (see [8]) and applied it to the study of maximal surfaces
with conelike singularities.

In this paper, we describe a method to derive a Weierstrass-type represen-
tation formula for simply connected immersed maximal surfaces in Lorentzian
Heisenberg group Heis31. We consider the Lorentzian left invariant metric and
use some results of Levi-Civita connection. Furthermore, we show that any
harmonic map of a simply connected coordinate region D into Heis31 can be
represented the form.

2 The Lorentzian Heisenberg Group Heis31

Heisenberg group plays an important role in many branches of mathemat-
ics such as representation theory, harmonic analysis, PDEs or even quantum
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mechanics, where it was initially defined as a group of 3× 3 matrices⎧⎨⎩
⎛⎝ 1 x1 x3

0 1 x2

0 0 1

⎞⎠ : x1, x2, x3 ∈ R

⎫⎬⎭
with the usual multiplication rule.
We will use the following complex definition of the Heisenberg group.

Heis31 = C× R = {(w, z) : w ∈ C, z ∈ R}

with
(w, z) ∗ (w, z) = (w + w, z + z + Im(hw,wi)), (2.1)

where h, i is the usual Hermitian product in C.
The identity of the group is (0, 0, 0) and the inverse of (x1, x2, x3) is given

by (−x1,−x2,−x3).

Let a = (w1, z1), b = (w2, z2) and c = (w3, z3). The commutator of the
elements a, b ∈ Heis31 is equal to

[a, b] = a ∗ b ∗ a−1 ∗ b−1

= (w1, z1) ∗ (w2, z2) ∗ (−w1,−z1) ∗ (−w2,−z2)
= (w1 + w2 − w1 − w2, z1 + z2 − z1 − z2)

= (0, α) ,

where α 6= 0 in general. For example

[(1, 0), (i, 0)] = (0, 2) 6= (0, 0).

Which shows that Heis3 is not abelian.
On the other hand , for any a, b, c ∈ Heis31, their double commutator is

[[a, b] , c] = [(0, α) , (w3, z3)]

= (0, 0).

This implies that Heis31 is a nilpotent Lie group with nilpotency 2.
The left-invariant Lorentz metric on Heis31 is

g = −
¡
dx1
¢2
+
¡
dx2
¢2
+ (x1dx2 + dx3)2. (2.2)

The following set of left-invariant vector fields forms an orthonormal basis
for the corresponding Lie algebra:½

e1 =
∂

∂x3
, e2 =

∂

∂x2
− x

∂

∂x3
, e3 =

∂

∂x1

¾
. (2.3)
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The characterising properties of this algebra are the following commutation
relations:

[e2, e3] = 2e1, [e3, e1] = 0, [e2, e1] = 0, (2.4)

with
g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. (2.5)

Lemma 2.1 For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g, defined above the following is true:

∇ =

⎛⎝ 0 e3 e2
e3 0 e1
e2 −e1 0

⎞⎠ , (2.6)

where the (i, j)-element in the table above equals ∇eiej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

3 Integral Representation Formula in the Lorentzian
Heisenberg Group Heis31

In this section, we obtain an integral representation formula for spacelike max-
imal surfaces in the Lorentzian Heisenberg group Heis31.
We will denote with Ω ⊆ C ∼= R2 a simply connected domain with a

complex coordinate z = u + iv, u, v ∈ R. Also we will use the standard
notations for complex derivatives:

∂

∂z
:=
1

2

µ
∂

∂u
− i

∂

∂v

¶
,

∂

∂z
:=
1

2

µ
∂

∂u
+ i

∂

∂v

¶
. (3.1)

For X ∈ χ (Heis31), denote by ad(X)
∗ the adjoint operator of ad(X), i.e.,

it satisfies the equation

g ([X,Y ] , Z) = g (Y, ad(X)∗ (Z)) , (3.2)

for any Y,Z ∈ χ (Heis31). Let U be the symmetric bilinear operator on
χ (Heis31) defined by

U (X,Y ) :=
1

2
{ad(X)∗ (Y ) + ad(Y )∗ (X)} . (3.3)

Lemma 3.1 Let {e1, e2, e3} be the orthonormal basis for an orthonormal
basis for the corresponding Lie algebra defined in (2.3). Then
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U (e1, e1) = 0, U (e1, e2) = −e3, U (e1, e3) = −e2,
U (e2, e1) = −e3, U (e2, e2) = 0, U (e2, e3) = 0,

U (e3, e1) = −e2, U (e3, e2) = 0, U (e3, e3) = 0.

Proof. Using (3.2) and (3.3), we have

2g (U (X,Y ) , Z) = g ([X,Z] , Y ) + g ([Y, Z] ,X) .

Thus, direct computations lead to the table of U above. Lemma 3.1 is
proved.

Lemma 3.2 (see [17]) Let D be a simply connected domain. A smooth map
ϕ : D −→ Heis31 is harmonic if and only if¡
ϕ−1ϕu

¢
u
+
¡
ϕ−1ϕv

¢
v
−ad

¡
ϕ−1ϕu

¢∗ ¡
ϕ−1ϕu

¢
−ad

¡
ϕ−1ϕv

¢∗ ¡
ϕ−1ϕv

¢
= 0 (3.4)

holds.

Let z = u + iv. Then in terms of complex coordinates z, z̄, the harmonic
map equation (3.4) can be written as

∂

∂z̄

µ
ϕ−1

∂ϕ

∂z

¶
+

∂

∂z

µ
ϕ−1

∂ϕ

∂z̄

¶
− 2U

µ
ϕ−1

∂ϕ

∂z
, ϕ−1

∂ϕ

∂z̄

¶
= 0. (3.5)

Let ϕ−1dϕ = Adz + Ādz̄. Then, (3.5) is equivalent to

Az̄ + Āz = 2U
¡
A, Ā

¢
. (3.6)

The Maurer—Cartan equation is given by

Az̄ − Āz =
£
A, Ā

¤
. (3.7)

(3.6) and (3.7) can be combined to a single equation

Az̄ = U
¡
A, Ā

¢
+
1

2

£
A, Ā

¤
. (3.8)

(3.8) is both the integrability condition for the differential equation ϕ−1dϕ =
Adz + Ādz̄ and the condition for ϕ to be a harmonic map.
Let D(z, z̄) be a simply connected domain and ϕ : D −→ Heis31 a smooth

map. If we write ϕ (z) = (x1 (z) , x2 (z) , x3 (z)) , then by direct calculation

A = x1ze1 + x2ze2 +
¡
x1x2z + x3z

¢
e3. (3.9)

It follows from the harmonic map equation (3.6) that
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Theorem 3.3 ϕ : D −→ Heis31 is harmonic if and only if the following
equations hold:

x1zz̄ = 0, (3.10)

x2zz̄ + x1z
¡
x1x2z̄ + x3z̄

¢
+ x1z̄

¡
x1x2z + x3z

¢
= 0, (3.11)

x1z̄x
2
z + x1zx

2
z̄ + x1x2zz̄ + x3zz̄ = 0. (3.12)

Proof. From (3.9), we have

Ā = x1z̄e1 + x2z̄e2 +
¡
x1x2z̄ + x3z̄

¢
e3. (3.13)

Using (3.9) and (3.13), we obtain

U
¡
A, Ā

¢
= −x1zx2z̄e3 − x1z

¡
x1x2z̄ + x3z̄

¢
e2

−x1z̄x2ze3 − x1z̄
¡
x1x2z + x3z

¢
e2.

On the other hand, we have

Az̄ = x1zz̄e1 + x2zz̄e2 +
¡
x1z̄x

2
z + x1x2zz̄ + x3zz̄

¢
e3,

Āz = x1z̄ze1 + x2z̄ze2 +
¡
x1zx

2
z̄ + x1x2z̄z + x3z̄z

¢
e3.

Hence, using (3.6) we obtain (3.10)-(3.12). This completes the proof of the
Theorem.

The exterior derivative d is decomposed as

d = ∂ + ∂̄, ∂ =
∂

∂z
dz, ∂̄ =

∂

∂z̄
dz̄, (3.14)

with respect to the conformal structure of D.
Let

℘1 = x1zdz, ℘2 = x2zdz, ℘
3 =

¡
x1x2z + x3z

¢
dz. (3.15)

Theorem 3.4 The triplet {℘1, ℘2, ℘3} of (1, 0)-forms satisfies the following
differential system:

∂̄℘1 = 0, (3.16)

∂̄℘2 = −
³
℘1 ∧ ℘3 + ℘1 ∧ ℘3

´
, (3.17)

∂̄℘3 = −
³
℘1 ∧ ℘2 + ℘1 ∧ ℘2

´
. (3.18)

Proof. From (3.10), we have (3.16) and Equation (3.17) is obtained by
(3.12). Finally, using (3.13) and (3.15) we obtain (3.18).
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Theorem 3.5 Let {℘1, ℘2, ℘3} be a solution to (3.16)-(3.18) on a simply
connected coordinate region D. Then

ϕ (z, z̄) = 2Re

Z z

z0

¡
℘1, ℘2, ℘3 − x1℘2

¢
(3.19)

is a harmonic map into Heis31.
Conversely, any harmonic map of D into Heis31 can be represented in this

form.

Proof. By theorem (3.3) we see that ϕ (z, z̄) is a harmonic curve if and
only if ϕ (z, z̄) satisfy (3.10)-(3.12).
From (3.15), we have

x1 = 2Re

Z z

z0

℘1, x2 = 2Re

Z z

z0

℘2, x3 = 2Re

Z z

z0

¡
℘3 − x1℘2

¢
,

which proves the theorem.

4 Open Problem

In this work, we obtain relationship between harmonic maps and representation
formula. Additionally, problems such as investigation of relationship between
biharmonic maps and representation formula. In addition to, resarcher can
show umbilic points on a minimal surface are flat.
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