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Abstract

The main object of the present paper is to derive certain differential inequalities for
two integral operators Pﬂ“ and Q/”,‘ which are introduced by Lashin [1].
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1 Introduction

Let > denote the class of functions of the form

(1.1) f(z)=%+iakz",

==1
which are analytic in the punctured unit disk U™ ={z:0 <|z| <1} =U \{0}, with a
simple pole at the origin.
For the function f(z)e X ,givenby (1.1) and g(z) € X defined by

(1.2) 9(2) :1+ibkz", zeU”
z

the Hadamard product (or convolution ) of f(z) and g(z) is given by
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13) (F*g)@)=>+Yabz =g F))

Analogous to the operators defined by Jung, Kim and Srivastava [2] on the
analytic functions Lashin [1] defines the following integral operators

P;,QZ:Z»Z:

(1.4) P;=P;f(z)=r'fa)Z/}Hjtﬁ(logfja_ f(t)dt (@ >0,8>0,zeU")
a 0

and

(15) Q5 =Q;f(z)= Fr((g;(a;) Z,il !t” (1_3 7 f(t)dt (@>0,8>0;zeU"),

where I'(«) is the familiar Gamma function. Using the integral representation of

the Gamma and Beta functions given by (1.4) and (1.5), it can be shown that

P;f(z):%+§(k+i’+lj a2, (@>0,4>0)

and

a 1 T(B+a)s T(k+B8+D)
LN ) = T ATk Bra D™

It is easily verified from (1.6) and (1.7) (see [1])

(18) z(Pyf(2)) = AP, T (2) - (B+D(P{ (2)) (¢>15>0)

and

(1.9) z(Q;f(2)'=(B+a-DQ; f(2)-(B+a)Q;f(2)) (a>15>0).

Definition 1.1. Let H be the set of complex valued function h(r,s,t):C*> —-C (C

z*, (¢>0,8>0).

Is the complex plane) such that:
(i) h(r,s,t) is continuous in a domain D < C?,

(i) 11,1)eD and |h(1,11)|<1,
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i0 i0
L+2pe N e

—|[21,
ﬂeie)

(iii) h e”’,—+ei9,
Ll+~=
( ¢

whenever

i0 i0
h ei9,£+e“9 —L+2§e_ & lep
elH)

B
ﬂ(+g

with Re(L) > 0 for real &€ and for £ >1.

Definition 1.2. Let G be the set of complex valued function g(r,s,t):C* —C (C
is the complex plane) such that:
(i) g(r,s,t) is continuous in a domain D cC?,

(i) 1L11) e D and [g(1,11)| <1,
(iii)

o ¢ (Bra-De’-1 1 | (M-D+2(f+a-1e”
'B+a-2 B+a-2 B+a-3 1+(e‘9(ﬂ+a—l)_1j
g g

gle —(f+a-1) e’ ||>1

whenever

w ¢ +(,B+a—1)eig—1 1 (M =1)+2(8 +a —-1)e"
"Bta-2 B+a-2 B+a-3 1+[e‘9(ﬂ+a—1)_lj
¢ 4

gle —(f+a-1) e |[eD for ¢ >1.

with Re(M) > 1 for real 8 and for £ >1.
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2  Main Results

In proving our main result, we shall need the following lemma due to Miller and
Mocanu [3].

Lemma2.1. Let w(z)=a+w,z" +..., be analytic in U with w(z) #0and n>1.
If z,=re’(0<r,<land |w(z,)|= r‘na>‘(|w(z)|,Then

(2-1) ZOWI(ZO) =§W(ZO),

and

(2.2) Re{1+M} > ¢, where £ >1is areal number.
w(z,)

Theorem 2.1. Let h(r,s,t)eHand f X satisfy

oy [[CETE) (G (EEIE) )
O CRIO R NGRIOR

and

I N 1) G ) Gl G2
| GO RN GRIDENGIOR

forall zeU;a >3, >0 forsome a e R".

Then we have

(P (@)

Pt ) <1 (zeU).
Proof. Let
(R @)
(2.5) W =w(z),

then it follows that w(z) is analytic in U, w(0)=1and w(z) #1. Differentiate
(2.5) logarithmically and with the aid of the identity
(2.6) z(P;f(z))“”) :,B(P;’lf(z))“)—(ﬂ+j+1)(P;f(z))(” (a>1,4>0),

and making some simple calculation, we obtain



V. G. Gupta and Bhavna Sharma 234

(P21 @) i)
R T @7 pw(a)

Again differentiate logarithmically and using (2.6), we easily get

(2.7) w(z).

w (2)

(P2t ()" :( w (2) +1j+2,6’w(z) L W@)
(P f (@) ﬂ@+ﬂwa)waﬂ B

(2.8)

W (2)
We claim that |W(z)| <1 for zeU .Otherwise there exist a point z, €U such

that max|w(z)| =w(z,) =1. Letting w(z,) =€" and using the Lemma 2.1 with

|2I<[2o]
a=n=1, we can see that
R
(P f(z)™

(P *f(z)” ¢

i0

CRI A
and
a-3 (1) i0 i0 n
(P/j”f(zo))(j) _Lrope” et e zon (z,)
(Pﬂ f(zo)) ﬂ(1+?e“9) B W(Zo)

Since h(r,s,t) e H,we have

h(%lu%W“(%ZH%W”(%suaw"]

P T @)™ (@) (B F (z)”

i0 i0
=|h e“9,£+e‘6’ Lr2per & s

’/3(1+?e‘9) B

where Re(L)>0and ¢ >1.

This contradicts the condition (2.4) of the Theorem 2.1. Therefore we conclude
that
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(R (z)”
(P f(z,)"”

This completes the proof of the theorem.

Corollary 2.1. Let h(r,s,t)=sand f X satisfy the condition in Theorem 2.1.

<1, (zeU).

Then

(Bt @)

(2.9) — <1, (i=0,12,..,a>4,i jeN,zeU).
| (P f(2) |

Theorem 2.2. Let g(r,s,t)eG and f X satisfy

a-1 (1 a-=2 () a-3 (1)
(210) {(Qﬁ " Q@) ’(Qﬁzf(z»(_)Je Dt
Qs f () (Q f(2)” (Q f(2))"”
and
a-1 €)] a-=2 9)] a-3 (0
(2.11) |g Q f(z)). ,(Qf{ f(z)). ,(Qﬂf f(2) _ <1, forall zeU;a, 3>0
Q; f @) Q7 ()P Q7 f ()
for some a € N .Then we have
Q7 f () .
W <1, (jeN,zel).
Proof. Let
Q)Y

Obviously w(z) is analytic in U, w(0)=1and w(z) #1. With the aid of the
identity

2(Q; F ()" = (B+a-1)(Q; F ()P - (B-i-DQ; f () (¢>1,4>0),
and proceed exactly same method describe in Theorem 2.1, we easily get

Qf@)” _ w(2) L (Bra-Dw(@)-1
Q@)Y (B+a-2)w(2) (B+a-2)

and
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_ w"(z)
QCt@)” 1 w'(2)
Q2 f(2)"  p+a-3 1+ (B +a—1) (w(2))*  w(z)

w'(z) zw'(2)

+2(f+a-1)w(z)

—(f+a-Dw(z).

We can see that

@ @),
(@ T (z,)?

Q2 f ()Y ¢ ,(Bra-De’-1
Q@) pra-2 (B+a-2)

and
Q7 f@)” 1 |M-D+2Apra-De’|
QTN fra=d| o Pra LT
¢ ¢
where M:M and ¢ >1.
w'(z,)

Since g(r,s,t) € G, we have

g Q5 F (@) Q5 F(z)” Q57 ()"
Q5 F(z)” " (Q57 F(z))” Q5" F (7)™

" e +(,6’+a—1)ei‘9—1 1 (M =) +2(8+a-1)e"
Bra-2  (B+a-2) p+a-3] ; (Bra-1) 4 1
g g

_lgle —(B+a-1e" |21

where Re(M) >1.

This contradicts the condition (2.10) of the Theorem 2.2. Therefore we conclude
that

a-1 (1
‘(Qﬂ fz) <1, (jeN,zel).

Q5 f(z)"
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This completes the proof of the theorem.
Corollary 2.2. Let g(r,s,t)=sand f X satisfy the condition in Theorem 2.2.
Then

Q5 (2)"”]
| (@ F @)D |

(2.13) <1 (i=0,12,...,a>4i, jeN,zeU).

3 An Open Problem

In this paper, we obtain some differential inequalities for the two integral

operators P7 f(z) and Qg f(z) . Is it possible to generalize these results for

meromorphic multivalent functions?

ACKNOWLEDGEMENT

The authors are grateful to the referee for his/her valuable suggestions to improve
our paper.

References

[1] A.Y. Lashin, “On certain subclasses of meromorphic functions associated with
certain integral operators”, Computer Math. Appl., 59(1)(2010), 524-531.

[2] 1.B. Jung, Y.C. Kim and H.M. Srivastava, “The Hardy Space of analytic
functions associate with certain one-parameter families of integral operators”,
J. Math. Anal. Appl., 176(1) (1993), 138-147.

[3] S.S. Miller and P.T. Mocanu, “Second order differential inequalities in the
complex plane”, J. Math. Anal. Appl., 65 (1978), 289-305.



