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Abstract

In this paper, close-to-convexity and univalence of analytic
functions in terms of certain differential inequalities, have
been obtained. As a special case, it has been shown that ana-
lytic functions satisfying a differential inequality are strongly
starlike of order p, 0 < pu < 1.

Keywords: Analytic Function, Close-to-conver function, Differential sub-
ordination, Univalent function.

2000 Mathematical Subject Classification: Primary 30C80, Secondary
30C45.

1 Introduction

A function f is said to be analytic at a point z in a domain D if it is differen-
tiable not only at z but also in some neighborhood of point z. A function f is
said to be analytic on a domain D if it is analytic at each point of D.

Let A be the class of all functions f which are analytic in the open unit disk
E = {z:|z] < 1} and normalized by the conditions that f(0) = f'(0) —1 = 0.
Thus, f € A has the Taylor series expansion

f(z)=z+ Zakzk.
k=2

For two analytic functions f and ¢ in the open unit disk E, we say that f is
subordinate to ¢ in E and write as f < g if there exists a Schwartz function w
analytic in E with w(0) = 0 and |w(z)| < 1, z € E such that f(z) = g(w(z2)).
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In case the function ¢ is univalent, the above subordination is equivalent
to £(0) = g(0) and f(E) C g(E).

A function f € A is said to be close-to-convex if there is a real number
a,—7/2 < a < /2, and a convex function g (not necessarily normalized) such

that
!/
R (em—f,(z)> >0, z € E.
g (z)
It is well-known that every close-to-convex function is univalent. In 1934/35,
Noshiro [3] and Warchawski [5] obtained a simple but interesting criterion for
univalence of analytic functions. They proved that if an analytic function f
satisfies the condition R f/(z) > 0 for all z in E, then f is close-to-convex and
hence univalent in E.
A function f € A is said to be strongly starlike of order o, 0 < o < 1, if

2f'(2)
f(2)

2f'(2) 1+ 2\
< .
f(z) 1—2
The main objective of this paper is to obtain close-to-convexity and uni-
valence of analytic functions in terms of differential inequalities involving real

part and modulus of the operator (1— Q)M +af’(2) in the open unit disk E,
2

aT
27

arg

equivalently

where « is a pre-assigned real number. Some results of subordination involving
the said operator are also obtained.

To prove the main results, the following lemmas are used.

Lemma 1.1 (/2]). Let D be a subset of C x C (C is the complex plane)
and let ¢ : D — C be a complex function. For u = uy + iug, v = v1 + U
(uy, ug, v1,v9 are real), let ¢ satisfy the following conditions:

(1) ¢(u,v) is continuous in D;
(i7) (1,0) € D and R ¢(1,0) > 0; and
(iii) R{D(iug,v1)} < 0 for all (iug,vy) € D such that vy < —(1 + u3)/2.

Let p(z) = 1+ p1z + poz? + -+ be reqular in the unit disk E, such that

(p(2),20'(2)) € D for all z € E. If

R(p(p(2), 2p'(2))] > 0, z € E,

then R p(z) > 0 in E.
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Lemma 1.2 ([1]). Let G be a convex function in E, with G(0) = a and let

v be a complex number, with ® v > 0. If F(2) = a+ a,2" + apy 12" 4+, is

analytic in E and F < G, then
1 z

— [ Fw)w 'dw <
2 0 nz’)’/”

/ G(w)w= " dw.
0

Lemma 1.3 ([4]). Suppose f € A is such that f'(z) < 1+ az in E, where

0<a<l, then
2f'(z) | (1+2\"
E
1) <(1—z> eeE
28111(%)

5+ 4cos (%)

where 0 < a < , 0<pu<1.

2 Main Results

Theorem 2.1 Let o and 3 be real numbers such that 423 > 0 and 6 < 1.
If f € A satisfies the differential inequality

R (1—a)@—l—af’(z) >, z € E, (1)

then%m>0mﬂi.
z

Proof. Let p(z) = 1+ p1z + p22% + -+ be an analytic function in E such
that for all z € E,

1) _ o), )
Then,
1=y ap) =) +anl(e).

Therefore, the condition (1) is equivalent to

p(2) +azp'(2) — 3
1-p

If D =C x C, define ®(u,v) : D — C as below:

R >0, z €E. (3)

1

O (u,v) = -

[u+ av — .
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Then ®(u,v) is continuous in D, (1,0) € D and R ®(1,0) = 1 > 0. Further,
in view of (3), we get R ®(p(z),2p'(2)) > 0, z € E. Let u = uy +ius, v =10, +

1 2
ivy where wuq, ug, v; and vy are real. Then, for (iug,v1) € D with v; < — —;%,
we have . 5 2

) 1Uo + QU — o+
R P =R|—| = <0.
(#z, 1) { 1-p } 21-p) ~

In view of (2) and Lemmal.1, proof now follows.

Theorem 2.2 Let o and (3 be real numbers such that 423 <0 and § > 1.
If f € A satisfies the differential inequality

f(z)

R {(1 —a) ozf’(z)] <8, z€E, (4)

then%@>0mE

Proof. Let p(z) = 1+ p1z + p22® + - -+ be an analytic function in E such
that for all z € E,

1) _ o), )
Then,
1=y ap) =) +anl(e).

Therefore, the condition (4) is equivalent to

p() +azpl(z) — 8
R

Now, the proof can be completed proceeding same as in case of Theorem 2.1.

>0, z € E. (6)

Theorem 2.3 Let o and (3 be real numbers such that o > 1 and 0 < § < 1.
If f € A satisfies the differential inequality

f(2)

%[(1-@ +af’(z)] > 8, z €L,

then R f'(2) > @ in E and therefore, f is close-to-convex and hence univalent
e
n E.

Proof. The use of Theorem 2.1 for 0 < g < 1 implies M >0, z € E.
z

Write
fz)
z

(1 — )= +af'(z) = P(2).
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Therefore,

Hence R f'(z) > é
oY

Theorem 2.4 Let h be a convex function in E, with h(0) =1 and let « be
a real number, with o > 1. If f € A satisfies

(1—(1)@—1—&]”(2) < h(z), z € E, (7)
then B
f(ZZ> =< 1l / h(w)w%_1 dw.

Proof. Let p(z) = 1+ p1z + p222 + - -+ be an analytic function in E such
that for all z € E,

f(;) =p(2).
Then, (7) reduces to
p(z) + azp'(z) < h(z). (8)

1
Using Lemma 1.2 for v = —, from (8), we get
a

1 4
p(z) < 1/ h(w)wa" dw
aza Jo
Therefore,
f(2) 1

3 Deductions

Theorem 3.1 Let a be a real number, with o > 1. If f € A satisfies

f(2)

(1—a)—=—=+af(z) <1+Az, >0, z €E, 9)
z
then ) \
z z
1 1

. <1+ P (10)
and 9)
Flz) <14 22

a+1
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Proof. The use of Theorem 2.4 for h(z) = 1+ Az gives (10), whenever (9)
holds. Write

< /
1-0f i ape-1=00)
Therefore,
oy L SN ()

1'(z) 1-@@(2)—1— 1 - . 1.
In view of (9) and (10), from the above equation, we obtain

, 2\ , 2z

‘f<z)_1|<a+l orf(z)<1+a+1, z € E.

From the above theorem, we immediately get the following result.

1
Corollary 3.1 Let a and X be real numbers, witha > 1 and 0 < \ < a—2|— .

If f € A satisfies

(1—04)%2)—1—()@”(2)—1 <\ z€E,

then |f'(z) — 1] < o < 1, therefore f is close-to-convex and hence univa-
a
lent in E.

In view of Lemma 1.3 and Theorem 3.1, we obtain the following result.

2\
Corollary 3.2 Let o and X\ be real numbers, with o > 1 and 0 < ar1 <1.
«
If f € A satisfies

‘(1—0&)M+ f,()—1‘</\,Z€]E,
z
then ) . p
) < R , 2 €K,
f(z) -2z
2 2sin (%) . |
where 0 < 1 < , 0 < p < 1. Hence f is strongly starlike
ot @/5+4cos(%)
of order p.

Theorem 3.2 Let a be a real number, with o > 1. If f € A satisfies

(1- a)@ Laf(y) < Lo dFa)

A—22 z € E, (11)
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then
) 1

z 1—=2

and 5
§Rf’(z)>1, z€eE

and therefore, f is close-to-convex and hence univalent in E.

1-(1
Proof. It can be easily verified that h(z) = %, z € E is convex
-z
1-1(1
in E for @ > 1. Therefore the use of Theorem 2.4 for h(z) = %
—z

ensures the existence of (12), whenever (11) holds. Write

1-0f ape) = re)

Therefore,

f(z) = éR(z) + (1 _ l) M

(0% z

In view of (11) and (12), from the above equation, we obtain

§Rf’(z)>z, z € E.

4 Open Problem

Most of the results proved in this paper give close-to-convexity and univalence
of normalized analytic functions for o > 1, so it would be interesting to settle
the question of close-to-convexity and univalence of functions f € A, implied
f(z)

by the operator (1 — a)——= + af'(z) in case a < 1.
z
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