Int. J. Open Problems Complex Analysis, Vol. 2, No. 3, November 2010 ISSN 2074-2827; Copyright ©ICSRS Publication, 2010 www.i-csrs.org

Extremal Function and Coefficient Inequalities For Certain Analytic Functions

K. Hamai, T. Hayami, K. Kuroki and S. Owa

Department of Mathematics Kinki University
Higashi-Osaka, Osaka 577-8502, Japan
e mail: 0933310146v@kindai.ac.jp
e mail: ha_ya_to112@hotmail.com
e mail: freedom@sakai.zaq.ne.jp
e mail: owa@math.kindai.ac.jp(corresponding author)

Abstract

For analytic functions f(z) in the open unit disk \mathbb{U} , an interesting subclass \mathcal{R}_{α} with $|2\alpha - 1| < \frac{\operatorname{Re}(\alpha)}{|\alpha|}$ of analytic functions is introduced. The object of the present paper is to discuss an extremal function and some coefficient inequalities for the class \mathcal{R}_{α} .

 $\mathbf{Keywords:}\,$ analytic, extremal function, coefficient inequality.

AMS Mathematics Subject Classification (2010): 30C45.

1 Introduction and Definitions

Let \mathcal{A} be the class of functions f(z) of the form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} ; |z| < 1\}.$

If $f(z) \in \mathcal{A}$ satisfies the following inequality

$$\operatorname{Re}(f'(z)) > \alpha \qquad (z \in \mathbb{U})$$

for some real α ($0 \le \alpha < 1$), then we say that $f(z) \in \mathcal{R}(\alpha)$. This class was investigated by Hayami and Owa (1). In this paper, we consider the new subclass \mathcal{R}_{α} of \mathcal{A} defined by some complex number α .

Definition 1.1 If $f(z) \in A$ satisfies the following inequality

$$\left| \frac{1}{f'(z)} - \frac{1}{2\alpha} \right| < \operatorname{Re}\left(\frac{1}{2\alpha}\right) \qquad (z \in \mathbb{U})$$

for some complex number α $\left(|2\alpha - 1| < \frac{\operatorname{Re}(\alpha)}{|\alpha|}\right)$, then we say that $f(z) \in \mathcal{R}_{\alpha}$. If $0 < \alpha < 1$, then the class \mathcal{R}_{α} is equivalent to the class $\mathcal{R}(\alpha)$.

We first introduce the following remark to think about the extremal function for the class \mathcal{R}_{α} .

Remark 1.2 Let M(z) be defined by

$$M(z) = \frac{a - mz}{1 - \frac{\overline{a}}{m}z}$$
 $(a \in \mathbb{C} \text{ and } m > 0).$

Then, we know that M(0) = a and M(z) maps the open unit disk \mathbb{U} onto the following entire circular domain

$$\mathbb{D} = \{ w \in \mathbb{C} ; |w| < m \}.$$

This assertion has been investigated by Miller and Mocanu (2). Using this result, we consider the extremal function for the class \mathcal{R}_{α} .

Theorem 1.3 The extremal function for the class \mathcal{R}_{α} is f(z) defined by

$$f(z) = \frac{B}{A}z + \left(1 - \frac{B}{A}\right)\frac{1}{A}\log\left(1 + Az\right)$$

where
$$A = \frac{(\operatorname{Im}(\alpha))^2 - 2\bar{\alpha}|\alpha|^2}{2\operatorname{Re}(\alpha)|\alpha|^2}$$
, $B = \frac{\alpha - 2|\alpha|^2}{\operatorname{Re}(\alpha)}$.

Proof: Noting that $f(z) \in \mathcal{R}_{\alpha}$ satisfies

$$\left| \frac{1}{f'(z)} - \frac{1}{2\alpha} \right| < \operatorname{Re}\left(\frac{1}{2\alpha}\right),$$

If we define the function M(z) by

$$M(z) = \frac{1}{f'(z)} - \frac{1}{2\alpha},$$

then it is clear that $M(0) = 1 - \frac{1}{2\alpha}$ and $|M(z)| < \text{Re}\left(\frac{1}{2\alpha}\right)$. Hence, from Remark 1.2, we can write

$$M(z) = \frac{\left(1 - \frac{1}{2\alpha}\right) - \operatorname{Re}\left(\frac{1}{2\alpha}\right)z}{1 - \frac{1 - \frac{1}{2\overline{\alpha}}}{\operatorname{Re}\left(\frac{1}{2\alpha}\right)}z}.$$

A simple computation gives us that

$$f'(z) = \frac{1 + \frac{\alpha - 2|\alpha|^2}{\operatorname{Re}(\alpha)} z}{1 + \frac{(\operatorname{Im}(\alpha))^2 - 2\bar{\alpha}|\alpha|^2}{2\operatorname{Re}(\alpha)|\alpha|^2} z}.$$

Integrating both sides from 0 to 2π on θ , we have that

$$f(z) = \frac{B}{A}z + \left(1 - \frac{B}{A}\right)\frac{1}{A}\log\left(1 + Az\right).$$

Thus, the above function f(z) is the extremal function for the class \mathcal{R}_{α} .

Remark 1.4 The extremal function f(z) for the class \mathcal{R}_{α} has the following Taylor expansion of the form

$$f(z) = \frac{B}{A}z + \left(1 - \frac{B}{A}\right)\frac{1}{A}\log(1 + Az) = z + \sum_{n=2}^{\infty} \frac{(-1)^{n-1}A^{n-2}(A - B)}{n}z^n$$

where
$$A = \frac{(\operatorname{Im}(\alpha))^2 - 2\bar{\alpha}|\alpha|^2}{2\operatorname{Re}(\alpha)|\alpha|^2}$$
, $B = \frac{\alpha - 2|\alpha|^2}{\operatorname{Re}(\alpha)}$.

2 Coefficient inequalities

We now consider the coefficient inequalities for f(z) belonging to the class \mathcal{R}_{α} .

Theorem 2.1 If a function $f(z) \in A$ satisfies the following inequality

$$\sum_{n=2}^{\infty} n|a_n| \le \frac{\operatorname{Re}(\alpha) - |\alpha||2\alpha - 1|}{\operatorname{Re}(\alpha) + |\alpha|}$$

for some complex number α $\left(|2\alpha - 1| < \frac{\operatorname{Re}(\alpha)}{|\alpha|}\right)$, then $f(z) \in \mathcal{R}_{\alpha}$.

Proof: Noting that

$$\left| \frac{1}{f'(z)} - \frac{1}{2\alpha} \right| = \frac{1}{2|\alpha|} \left| \frac{2\alpha - 1 - \sum_{n=2}^{\infty} n a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} n a_n z^{n-1}} \right| \le \frac{1}{2|\alpha|} \frac{|2\alpha - 1| + \sum_{n=2}^{\infty} n |a_n| |z|^{n-1}}{1 - \sum_{n=2}^{\infty} n |a_n| |z|^{n-1}}$$

$$<\frac{1}{2|\alpha|}\frac{|2\alpha-1|+\sum_{n=2}^{\infty}n|a_n|}{1-\sum_{n=2}^{\infty}n|a_n|},$$

if f(z) satisfies the following inequality

$$|2\alpha - 1| + \sum_{n=2}^{\infty} n|a_n| \le \frac{\operatorname{Re}(\alpha)}{|\alpha|} \left(1 - \sum_{n=2}^{\infty} n|a_n|\right),$$

that is,

$$\sum_{n=2}^{\infty} n|a_n| \le \frac{\operatorname{Re}(\alpha) - |\alpha||2\alpha - 1|}{\operatorname{Re}(\alpha) + |\alpha|},$$

then we see

$$\left| \frac{1}{f'(z)} - \frac{1}{2\alpha} \right| < \frac{\operatorname{Re}(\alpha)}{2|\alpha|^2}.$$

This completes the proof of the theorem.

Letting $0 < \alpha < 1$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.2 If a function $f(z) \in A$ satisfies the following inequality

$$\sum_{n=2}^{\infty} n|a_n| \le \begin{cases} \alpha & \left(0 < \alpha \le \frac{1}{2}\right) \\ 1 - \alpha & \left(\frac{1}{2} < \alpha < 1\right) \end{cases}$$

for some real number α (0 < α < 1), then $f(z) \in \mathcal{R}(\alpha)$.

Next we derive the following necessary condition for the class \mathcal{R}_{α} .

Theorem 2.3 If a function $f(z) \in \mathcal{R}_{\alpha}$ with $a_n = |a_n|e^{i((n-1)\theta+\pi)}$ $(n = 2, 3, 4 \cdots)$, then

$$\sum_{n=2}^{\infty} n|a_n| \le \begin{cases} 1-\alpha & (0 < \alpha < 1) \\ 1 - \frac{2|\alpha|^2 \left(\operatorname{Re}(\alpha) - \sqrt{(\operatorname{Re}(\alpha))^2 - (\operatorname{Im}(\alpha))^2}\right)}{(\operatorname{Im}(\alpha))^2} & (\alpha \notin \mathbb{R}). \end{cases}$$

Proof: By using the same method with Theorem 2.1, we obtain that

$$\left| \frac{2\alpha - 1 - \sum_{n=2}^{\infty} n a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} n a_n z^{n-1}} \right| < \frac{\operatorname{Re}(\alpha)}{|\alpha|} \qquad (z \in \mathbb{U})$$

for $f(z) \in \mathcal{R}_{\alpha}$. Since $a_n = |a_n|e^{i((n-1)\theta+\pi)}$, if we take $z = |z|e^{-i\theta}$, then we know that

$$\left| \frac{2\operatorname{Re}(\alpha) - 1 + \sum_{n=2}^{\infty} n|a_n||z|^{n-1} + 2i\operatorname{Im}(\alpha)}{1 - \sum_{n=2}^{\infty} n|a_n||z|^{n-1}} \right| < \frac{\operatorname{Re}(\alpha)}{|\alpha|} \qquad (z \in \mathbb{U}).$$

Letting $|z| \to 1$ and squaring both sides, we obtain that

$$\frac{(2\operatorname{Re}(\alpha)-1)^2+2(2\operatorname{Re}(\alpha)-1)\beta+\beta^2+4(\operatorname{Im}(\alpha))^2}{1-2\beta+\beta^2} \leqq \frac{(\operatorname{Re}(\alpha))^2}{|\alpha|^2},$$

that is, that

$$(\operatorname{Im}(\alpha))^2 \beta^2 + 2(2\operatorname{Re}(\alpha)|\alpha|^2 - (\operatorname{Im}(\alpha))^2)\beta$$

 $+4|\alpha|^4 - 4\operatorname{Re}(\alpha)|\alpha|^2 + (\operatorname{Im}(\alpha))^2 \le 0.$ (2.1)

where $\beta = \sum_{n=2}^{\infty} n|a_n|$. If $0 < \alpha < 1$, then we see that the inequality (2.1) is equivalent to

$$\beta \le 1 - \alpha$$
.

If $\alpha \notin \mathbb{R}$, then solving the inequality (2.1), we have that

$$\beta \le \frac{-(2\operatorname{Re}(\alpha)|\alpha|^2 - (\operatorname{Im}(\alpha))^2) + 2|\alpha|^2 \sqrt{(\operatorname{Re}(\alpha))^2 - (\operatorname{Im}(\alpha))^2}}{(\operatorname{Im}(\alpha))^2},$$

which is the desired our result.

Furthermore, we state about the following coefficient inequality.

Theorem 2.4 If a function $f(z) \in \mathcal{R}_{\alpha}$ $(\alpha \notin \mathbb{R})$, then

$$\sum_{n=2}^{\infty} n^2 |a_n|^2 \le \frac{(\operatorname{Re}(\alpha))^2 - |\alpha(2\alpha - 1)|^2}{(\operatorname{Im}(\alpha))^2}.$$

Proof: From the definition of the class \mathcal{R}_{α} , we note that

$$|\alpha|^2 |2\alpha - f'(z)|^2 < (\text{Re}(\alpha))^2 |f'(z)|^2.$$

Setting $z = re^{i\theta}$ $(0 \le r < 1, 0 \le \theta < 2\pi)$ and integrating both sides from 0 to 2π on θ , we have that

$$|\alpha|^2 \int_0^{2\pi} |2\alpha - f'(re^{i\theta})|^2 d\theta < (\operatorname{Re}(\alpha))^2 \int_0^{2\pi} |f'(re^{i\theta})|^2 d\theta.$$

A simple calculation gives us that

$$2\pi |\alpha|^2 \left(|2\alpha - 1|^2 + \sum_{n=2}^{\infty} n^2 |a_n|^2 r^{2(n-1)} \right) < 2\pi (\operatorname{Re}(\alpha))^2 \left(1 + \sum_{n=2}^{\infty} n^2 |a_n|^2 r^{2(n-1)} \right).$$

Therefore, letting $r \to 1$, we obtain that

$$\sum_{n=2}^{\infty} n^2 |a_n|^2 \le \frac{(\operatorname{Re}(\alpha))^2 - |\alpha(2\alpha - 1)|^2}{(\operatorname{Im}(\alpha))^2},$$

which completes the proof of the theorem.

3 Open problem

In view of Theorem 2.3, we have that

$$|a_n| \le \frac{1-\alpha}{n}$$
 $(0 < \alpha < 1; n = 2, 3, 4, \cdots)$

and

$$|a_n| \le \frac{1}{n} \left(1 - \frac{2|\alpha|^2 \left(\operatorname{Re}(\alpha) - \sqrt{(\operatorname{Re}(\alpha))^2 - (\operatorname{Im}(\alpha))^2} \right)}{(\operatorname{Im}(\alpha))^2} \right)$$

where $\alpha \notin \mathbb{R}$; $n = 2, 3, 4, \cdots$.

Also, from Theorem 2.4, we have that

$$|a_n| \le \frac{1}{n} \left(\frac{(\operatorname{Re}(\alpha))^2 - |\alpha(2\alpha - 1)|^2}{(\operatorname{Im}(\alpha))^2} \right)^{\frac{1}{2}}.$$

But, we know that the extremal function f(z) for the class \mathcal{R}_{α} in Theorem 1.3 satisfies

$$|a_n| = \frac{A^{n-2}(A-B)}{n}$$
 $(n=2,3,4,\cdots).$

Therefore, we guess that the function $f(z) \in \mathcal{R}_{\alpha}$ satisfies

$$|a_n| \le \frac{A^{n-2}(A-B)}{n}$$
 $(n=2,3,4,\cdots).$ (3.1)

How can we prove the coefficient inequality (3.1) for $f(z) \in \mathcal{R}_{\alpha}$?

References

- [1] T. Hayami and S. Owa, Coefficient conditions for certain univalent functions, Int. J. Open Problems Comput. Sci. Math. 1 (2008), 53-65.
- [2] S. S. Miller and P. T. Mocanu, *Differential Subordinations*, Pure and Applied Mathematics **225**, Marcel Dekker, 2000.