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Abstract

The object of this paper is to introduce a multiplier trans-
formation defined by convolution involving differential oper-
ator given by Al-Oboudi. A new subclass of strongly close-
to-convex functions in the open unit disk using this operator
will be discussed. Our results include several previous known
results as special cases.
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1 Introduction

Let H be the class of analytic functions in the open unit disk U = {z : |z| < 1}
and H [a, n] be the subclasses of H consisting of functions of the form :

f (z) = a + anz
n + an+1z

n+1 + ...

Let A be the subclass of H consisting of functions of the form :
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f (z) = z +
∞∑

n=2

anz
n , z ∈ U (1)

which are analytic in the unit disk U. Let F and G be analytic functions in the
unit disk U, the function F is said to be subordinate to G or G is said to be
superordinate to F, if there exists a function w analytic in U with w (0) = 0
and |w| < 1 for z ∈ U and such that F (z) = G (w (z)) , z ∈ U in such a case,
we write F ≺ G or F (z) ≺ G (z) if the function G is univalent in U , then

F ≺ G ⇔ F (0) = G (0) , F (U) ⊂ G (U) .

For functions f given by (1) and g (z) = z +
∞∑

n=2

bnz
n , z ∈ U . let (f ∗ g) (z)

denote the Hadamard product (convolution) of f (z) and g (z), defined by :

(f ∗ g) (z) = z +
∞∑

n=2

anbnz
n

For f ∈ A, Al- Oboudi [2] introduced the following operator :

D0f (z) = f (z) (2)

D1
λf (z) = Dλf (z) = (1− λ) f (z) + λzf ′ (z) (3)

Dm
λ f (z) = Dλ

(
Dm−1

λ f (z)
)
, λ > 0 (4)

if f is given by (1), then from (3) and (4) we see that

Dm
λ f (z) = z +

∞∑
n=2

[1 + (n− 1) λ]manz
n, m ≥ 0, λ > 0

when λ = 1, we get Salagean differential operator [16] .

For any complex number s, we define the multiplier transformation Is
δ of func-

tions f ∈ A by :

Is
δf (z) = z +

∞∑
n=2

(
n + δ

1 + δ

)s

zn , (δ > −1)

By Hadamard product we get Dm, s
λ, δ f (z) defined by :

Dm, s
λ, δ f (z) = z +

∞∑
n=2

[1 + (n− 1) λ]m
(

n + δ

1 + δ

)s

anz
n ,
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(s ∈ C, λ > 0, δ > −1, m ≥ 0, z ∈ U) .

Obviously, we observe that

Dm, s
λ, δ

(
Dl, k

λ, δf (z)
)

= Dm+l, s+ k
λ, δ f (z) , (s, k ∈ C, δ > −1, l, m ≥ 0, z ∈ U) .

For s ∈ Z, δ = 1 and m = 0 the operator Dm, s
λ, δ was studied by Uralegaddi and

Somanatha [19], and for s ∈ Z, m = 0 the operator Dm, s
λ, δ was closely related

to multiplier transformations studied by Flett [6], also, for s = −1, m = 0
the operator Dm, s

λ, δ belongs to integral operator studied by Owa and Srivastava
[14]. And for any negative real number s and δ = 1, m = 0, the operator
Dm, s

λ, δ was a multiplier transformation studied by Jung et, al.[7], and for any
nonnegative integer s and δ = m = 0, the operator Dm, s

λ, δ was the differential
operator given by Salagean [16]. Finally, for different choices of s, δ and m,
several operators investigated earlier by other authors (see for example Ahuja
[1], Cho and Kim [4], and Lin and Owa [9]) are obtained .

Now, by using Dm, s
λ, δ , new classes of analytic functions are defined as follows:

For s ∈ C, δ > −1 and m ≥ 0, let Km,s
λ,δ (γ, α, β, A,B) be the class of functions

f ∈ A satisfying the condition :∣∣∣∣∣arg

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ g (z)

− γ

)∣∣∣∣∣ < π

2
α (0 ≤ γ < 1 ; 0 < α ≤ 1 ; z ∈ U)

for some g ∈ Sm, s
λ, δ (β, A, B), where

Sm, s
λ, δ (β, A, B) =

{
g ∈ A :

1

1− β

(
z
(
Dm, s

λ, δ g (z)
)′

Dm, s
λ, δ g (z)

− β

)
≺ 1 + Az

1 + Bz

}
,

(0 ≤ β < 1 ;−1 ≤ B < A ≤ 1 ; z ∈ U)

Note that K1, 0
1, 0 (γ, 1, β, 1,−1) and K0, 0

0, 0 (γ, 1, β, 1,−1) are the classes of quasi-
convex and close-to-convex functions of order γ and type β, respectively in-
troduced and studied by Noor and Alkhora sani [11] and Silverman [17]. Fur-
ther K0, 1

0, 0 (0, α, 0, 1,−1) = K1, 0
1, 0 (0, α, 0, 1,−1) is the class of strongly close-to-

convex functions of order α in the sense of Pommerenke [15]. Finally, notice
that for integer s and m = 0, the class K0, s

0, δ (γ, α, β, A,B) was studied by Cho
and Kim [4].

We need the following lemmas to prove our main results:
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Lemma 1.1 [5] Let h be convex univalent in U with h (0) = 1 and
< (βh (z) + γ) > 0, (β, γ ∈ C) . If p is analytic in U with p (0) = 1, then

p (z) +
zp′ (z)

βp (z) + γ
≺ h (z) , (z ∈ U)

implies
p (z) ≺ h (z)

Lemma 1.2 [10] Let h be convex univalent in U and w be analytic in U with
<w (z) ≥ 0. If p is analytic in U and p (0) = h (0) , then

p (z) + w (z) zp′ (z) ≺ h (z)

implies
p (z) ≺ h (z)

Lemma 1.3 [13] Let p be analytic in U with p (0) = 1 and p (z) 6= 0 in U.
suppose that there exists a point z0 ∈ U such that :

|arg p (z)| < π

2
η for |z| < |z0| (5)

and
|arg p (z0)| =

π

2
η (0 < η ≤ 1) . (6)

then we have
zp′ (z0)

p (z0)
= ikη, (7)

where

k ≥ 1

2

(
a +

1

a

)
when arg p (z0) =

π

2
η (8)

and

k ≤ −1

2

(
a +

1

a

)
when arg p (z0) = −π

2
η (9)

and
p (z0)

1
η = ± ia (a > 0) . (10)

At first, with the help of Lemma 1.1, we obtain the following theorem :

Theorem 1.4 Let h be convex univalent in U with h (0) = 1 and
< ((1− β) h (z) + β + δ) > 0. If a function f ∈ A satisfies the condition

1

1− β

(
z
(
Dm, s+1

λ, δ f (z)
)′

Dm, s+1
λ, δ f (z)

− β

)
≺ h (z) , (0 ≤ β < 1 ; z ∈ U)
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then

1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
≺ h (z) , (0 ≤ β < 1 ; z ∈ U)

Proof : Let

p (z) =
1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
where p is analytic function with p (0) = 1. By using the equation :

z
(
Dm, s

λ, δ f (z)
)′

= (δ + 1) Dm, s+1
λ, δ f (z)− δDm, s

λ, δ f (z) (11)

we get :

δ + β + (1− β) p (z) =
(δ + 1) Dm, s+1

λ, δ f (z)

Dm, s
λ, δ f (z)

(12)

taking logarithmic derivatives in both sides of (12) and multiplying by z, we
have

p (z) +
zp′ (z)

δ + β + (1− β) p (z)
=

1

1− β

(
z
(
Dm, s+1

λ, δ f (z)
)′

Dm, s+1
λ, δ f (z)

− β

)
, z ∈ U.

Applying Lemma 1.1, it follows that p ≺ h, that is

1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
≺ h (z) .

Taking h (z) = (1 + Az)/(1 + Bz) , (−1 ≤ B < A ≤ 1) in Theorem 1.4 we
have

Corollary 1.5 The inclusion relation Sm, s+1
λ, δ (β, A, B) ⊂ Sm, s

λ, δ (β, A, B) holds
for s ∈ C, δ > −1, m ≥ 0.

Letting s = δ = 0, m = 0 and h (z) = ((1 + z)/(1− z))µ , (0 < µ ≤ 1) in
Theorem 1.4 we have the following inclusion relation:

Corollary 1.6 For s ∈ C, δ > −1, m ≥ 0 and h (z) = ((1 + z)/(1− z))µ ,
(0 < µ ≤ 1) then we have C (µ, β) ⊂ S∗ (µ, β) .
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Theorem 1.7 Let h be convex univalent in U with h (0) = 1 and
<
(
(1− β) h (z) + β + 1

λ
− 1
)

> 0. If a function f ∈ A satisfies the condition

1

1− β

(
z
(
Dm+1, s

λ, δ f (z)
)′

Dm+1, s
λ, δ f (z)

− β

)
≺ h (z) , (0 ≤ β < 1 ; z ∈ U)

then

1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
≺ h (z) , (0 ≤ β < 1 ; z ∈ U)

for s ∈ C, δ > −1, m ≥ 0

Proof : Let

p (z) =
1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
, (0 ≤ β < 1 ; z ∈ U)

where p is analytic function with p (0) = 1. By using the equation

λz
(
Dm, s

λ, δ f (z)
)′

= Dm+1, s
λ, δ f (z)− (1− λ) Dm, s

λ, δ f (z)

we get

β +
1

λ
− 1 + (1− β) p (z) =

Dm+1, s
λ, δ f (z)

λDm, s
λ, δ f (z)

(13)

and taking logarithmic derivatives in both sides of (13) and multiplying by z
we get

p (z) +
zp′ (z)

β + 1
λ
− 1 + (1− β) p (z)

=
1

1− β

(
z
(
Dm+1, s

λ, δ f (z)
)′

Dm+1, s
λ, δ f (z)

− β

)
.

Applying Lemma 1.1 it follows that p ≺ h , that is

1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
≺ h (z) .

Taking h (z) = (1 + Az)/(1 + Bz) , (−1 ≤ B < A ≤ 1) in Theorem 1.7 we
have
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Corollary 1.8 The inclusion relation Sm+1, s
λ, δ (β, A, B) ⊂ Sm, s

λ, δ (β, A, B) holds
for s ∈ C, δ > −1, m ≥ 0 .

Theorem 1.9 Let h be convex univalent in U, with h (0) = 1 and
< ((1− β) h (z) + β + c) > 0. If a function f ∈ A satisfies the condition

1

1− β

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ f (z)

− β

)
≺ h (z) , (0 ≤ β < 1 ; z ∈ U)

then

1

1− β

(
z
(
Dm, s

λ, δ Fc (f) (z)
)′

Dm, s
λ, δ Fc (f) (z)

− β

)
≺ h (z) , (0 ≤ β < 1 ; z ∈ U)

where Fc be the integral operator defined by

Fc (f) : = Fc (f) (z) =
c + 1

zc

z∫
0

tc−1f (t) dt, (c ≥ 0) (14)

Proof : From (14) we have

z
(
Dm, s

λ, δ Fc (f) (z)
)′

= (c + 1) Dm, s
λ, δ f (z) − c Dm, s

λ, δ Fc (f) (z) (15)

By using the same technique as in the proof of the Theorem 1.4 and Lemma
1.1 the required result is obtained.

Letting h (z) = (1 + Az)/(1 + Bz) , (−1 ≤ B < A ≤ 1) in Theorem 1.9 we
have immediately the following

Corollary 1.10 If f ∈ Sm, s
λ, δ (β, A, B) , then Fc (f) (z) ∈ Sm, s

λ, δ (β, A, B) where
Fc is the integral defined by (14).

Now, we obtain the following:

Theorem 1.11 Let f ∈ A and 0 < α ≤ 1, 0 ≤ γ < 1. If∣∣∣∣∣arg

(
z
(
Dm, s+1

λ, δ f (z)
)′

Dm, s+1
λ, δ g (z)

− γ

)∣∣∣∣∣ < π

2
α

for some g ∈ Sm, s+1
λ, δ (β, A, B) , then∣∣∣∣∣arg

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ g (z)

− γ

)∣∣∣∣∣ < π

2
η
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where η (0 < η ≤ 1) is the solution of the equation :

α =

 η + 2
π

tan−1

(
η cos π

2
t1

(1−β)(1+A)
1+B

+β+δ+η sin π
2
t1

)
for B 6= −1

η for B = −1

 (16)

and

t1 =
2

π
sin−1

(
(1− β) (A−B)

(1− β) (1− AB) + (β + δ) (1−B2)

)
. (17)

Proof : Let

p (z) =
1

1− γ

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ g (z)

− γ

)
.

Using (11) and simplifying, we have

((1− γ) p (z) + γ) Dm, s
λ, δ g (z) = (δ + 1) Dm, s+1

λ, δ f (z)− δDm, s
λ, δ f (z) . (18)

Differentiating (18) and multiplying by z, we obtain

(1− γ) zp′ (z) Dm, s
λ, δ g (z) + ((1− γ) p (z) + γ) z

(
Dm, s

λ, δ g (z)
)′

= (δ + 1) z
(
Dm, s+1

λ, δ f (z)
)′ − δz

(
Dm, s

λ, δ f (z)
)′

(19)

Since g ∈ Sm, s+1
λ, δ (β, A, B) , by Corollary 1.5, we know that g ∈ Sm, s

λ, δ (β, A, B) .

Let

q (z) =
1

1− β

(
z
(
Dm, s

λ, δ g (z)
)′

Dm, s
λ, δ g (z)

− β

)
.

Then using (11) once again, we have

(1− β) q (z) + β + δ = (δ + 1)
Dm, s+1

λ, δ g (z)

Dm, s
λ, δ g (z) .

(20)

From (19) and (20) we obtain

1

1− γ

(
z
(
Dm, s+1

λ, δ f (z)
)′

Dm, s+1
λ, δ g (z)

− γ

)
= p (z) +

zp′ (z)

(1− β) q (z) + β + δ
.

While, by using the result of Silverman and Silvia [18], we have∣∣∣∣q (z)− 1− AB

1−B2

∣∣∣∣ < A−B

1−B2
, (z ∈ U ; B 6= −1) (21)
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and

<{q (z)} >
1− A

2
, (z ∈ U ; B 6= −1) (22)

Then from (21) and (22), we obtain

(1− β) q (z) + β + δ = ρei πφ
2 ,

where {
(1−β)(1−A)

1−B
+ β + δ < ρ < (1−β)(1+A)

1+B
+ β + δ

−t1 < φ < t2 for B 6= −1,

When t1 is given by (17), and{
(1−β)(1−A)

2
+ β + δ < ρ < ∞

−1 < φ < 1 for B = −1.

We note that p is analytic in U, by applying the assumption and Lemma 1.2
with w (z) = 1/((1− β) q (z) + β + δ). Hence p (z) 6= 0 in U.

If there exists a point z0 ∈ U such that the conditions (5) and (6) are satisfied,
then (by Lemma 1.3) we obtain (7) under the restrictions (8), (9) and (10).

At first, suppose that p (z0)
1
η = ia, (a > 0) . Then we obtain

arg

(
p (z0) +

z0p
′ (z0)

(1− β) q (z0) + β + δ

)
=

π

2
η + arg

(
1 + iηk

(
ρei πφ

2

)−1
)

≥ π

2
η + tan−1

(
ηk sin π

2
(1− φ)

ρ + ηk cos π
2

(1− φ)

)

≥ π

2
η + tan−1

(
η cos π

2
t1

(1−β)(1+A)
1+B

+ β + δ + η sin π
2
t1

)

=
π

2
α

where α and t1 given by (16) and (17), respectively. Similarly for the case
B = −1 we have

arg

(
p (z0) +

z1p
′ (z0)

(1− β) q (z0) + β + δ

)
≥ π

2
η.

These evidently contradict the assumption of Theorem 1.11.
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Next, suppose that p (z0)
1
η = −ia, (a > 0) . Applying the same method as

the above, we have

arg

(
p (z0) +

z0p
′ (z0)

(1− β) q (z0) + β + δ

)

≤ −π

2
η − tan−1

(
η cos π

2
t1

(1−β)(1+A)
1+B

+ β + δ + η sin π
2
t1

)

= −π

2
α,

where α and t1 are given by (16) and(17), respectively. Similarly, for the case
B = −1 we have

arg

(
p (z0) +

z1p
′ (z0)

(1− β) q (z0) + β + δ

)
≤ −π

2
η.

These also contradict to the assumption of Theorem 1.11. Therefore we com-
plete the proof of Theorem 1.11.

From Theorem 1.11, we see easily the following:

Corollary 1.12 The inclusion relation
Km, s+1

λ, δ (γ, α, β, A, B) ⊂ Km, s
λ, δ (γ, α, β, A, B) holds for s ∈ C, δ > −1, m ≥

0 .

Taking s = −1, δ = 0 and m = λ = 1 in Theorem 1.11 we have

Corollary 1.13 Let f ∈ A. If∣∣∣∣arg

(
(zf ′ (z))′

g′ (z)
− γ

)∣∣∣∣ < π

2
α, (0 ≤ γ < 1, 0 < α ≤ 1)

for some g ∈ S1, 0
1, 0 (β, A, B) , then∣∣∣∣arg

(
zf ′ (z)

g (z)
− γ

)∣∣∣∣ < π

2
η

where η, (0 < η ≤ 1) is the solution of the equation given by (16).

Remark : If we put A = 1, B = 1 and η = 1 in Corollary 1.13 then we
see that every quasi-convex function of order γ and type β is close-to-convex
function of order γ and type β, which reduced to the result obtained by Noor
[12].
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Theorem 1.14 Let f ∈ A and 0 < α ≤ 1, 0 ≤ γ < 1. If∣∣∣∣∣arg

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ g (z)

− γ

)∣∣∣∣∣ < π

2
α

from some g ∈ Sm, s
λ, δ (β, A, B) , then∣∣∣∣∣arg

(
z
(
Dm, s

λ, δ Fc (f) (z)
)′

Dm, s
λ, δ Fc (g) (z)

− γ

)∣∣∣∣∣ < π

2
η ,

where Fc is defined by (14), and η, (0 < η ≤ 1) is the solution of the equation
given by (16).

Proof : Let

p (z) =
1

1− γ

(
z
(
Dm, s

λ, δ Fc (f) (z)
)′

Dm, s
λ, δ Fc (g) (z)

− γ

)
.

Since g ∈ Sm, s
λ, δ (β, A, B) , we have from Corollary 1.10 that Fc (g) (z) ∈

Sm, s
λ, δ (β, A, B). Using (15) we have

((1− γ) p (z) + γ) Dm, s
λ, δ Fc (g) (z) = (c + 1) Dm, s

λ, δ f (z)− cDm, s
λ, δ Fc (f) (z) .

Then, by a simple calculation, we get

(1− γ) zp′ (z)+((1− γ) p (z) + γ) ((1− β) q (z) + c + β) = (c + 1)
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ Fc (g) (z)

where

q (z) =
1

1− β

(
z
(
Dm, s

λ, δ Fc (g) (z)
)′

Dm, s
λ, δ Fc (g) (z)

− β

)

Hence we have

1

1− γ

(
z
(
Dm, s

λ, δ f (z)
)′

Dm, s
λ, δ g (z)

− γ

)
= p (z) +

zp′ (z)

(1− β) q (z) + β + c
.

The remaining part of the proof in Theorem 1.14 is similar to that of Theorem
1.11 and so we omit it.

From Theorem 1.9, we see easily the following:
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Corollary 1.15 If f ∈ Km, s
λ, δ (γ, α, β, A, B) then Fc (f) ∈ Km, s

λ, δ (γ, α, β, A, B)
where Fc is the integral operator defined by (14).

Remark : If we take s = δ = 0, m = λ = 1 and s = δ = m = 0 with
α = 1, A = 1 and B = −1 in Corollary 1.15, respectively, then we have the
corresponding results obtained by Noor and Alkhorasani [11]. Furthermore,
taking s = δ = m = γ = 0, A = 1 , B = −1 and α = 1 in Corollary 1.15, we
obtain the classical result by Bernardi [3], which implies the result studied by
Libera [8].

2 Open Problem

The operator defined can be extended and can solve many new results and
properties.
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