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Abstract
In this paper, we obtain univalence of a certain general integral
operator and some interesting properties involving the integral
operators defined by Cho-Kwon-Srivastava Operator. Relevant
connections of the results, which are presented in this paper, with
various other interesting results are also pointed out.
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1 Introduction

Let A denote the class of functions of the form

f(z)=z+) a,2", a,>0 (1.1)
n=2

which are analytic in the open disc U ={z eC;|z|<1}and S be the subclass of
function f € A, which are univalent in U.

For g,(z)=z+) a,2" and g,(z)=z+> b z" of the class A, the Hadamard
n=2 n=2
product (or convolution) is defined by

gl(z)*gz(z)=(gl*gz)(z):z+ianbnz” . (1.2)

Let
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%,4(2)22+k2_2:(k+/1_1j 2 (£20,2>0), (1.3)
p (z):z+i (#)cy Z (u20) (1.4)
! = (k-1)! e -

Analogously N.E. Cho, O.S. Kwon and H.M. Srivastava [4] operator, for
£>0,1>0, >0, we define a linear operator Iﬁ# : A— Aas follows:

17,f(2)=(f*p,*q,,)(z) = Z+i(k+/}1—lj ((SE'I;!akzk : (1.5)

k=2

Definition: Forme N,ie€{1,2,....m},¢; €C, let us define the integral
operator Rff(fl, fyre £n) AT > A,

R (f,, fp0.e. fm)(z)zr{M} {M} it zeU (1.6)

0 t
where f,(z)eAand 1/ is defined in (1.5).

Obviously, putting #—0,z=1in the operator, we get an operator studied by

Breaz and Breaz [1].

Recently many authors (see for example [1], [2], [3] and [4]) have studied and
obtained univalence conditions for the analytic function. In the present paper, we
also obtain univalence conditions for integral operator which is defined by (1.6).
To prove our main results we need followings Lemmas.

Lemma 1 [6]. If the function f is regular in the unit disc U,
f(z)=z+a,2°+..,

| zZf (2
(1—|Z| ) f((z))
Then the function f is univalent.
Lemma 2 [7]. (Schwarz’s Lemma) If the analytic function f(z) f (z) is regular

in U, with f(0)=0 and |f(z)|<1forall zeU, then
|f(2)|<|2],vz U and ‘f'(O)‘sl (1.8)
The equality holds if and only if f (z)=cz,z €U, |c|=1.

<1 VzeU. (1.7)
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2  Main Results

Theorem 1. LetmeN,ie{1,2,..,m},¢; €C, f e A. If

2(12,1,(2)) _,‘Sl,

17 1. (2)

A i

||+ a|+ ... e, | <1, €U, (2.1)
then RY (f, f,,..., f,)(z)given by (1.6) is univalent.
Proof: Since f, e Ajie{l,2,..,m},we have

12,6(2) M) (ﬁii!aﬂk

Z Z
© B
=1+ ( 4 j (#)ey az"", (2.2)
Slk+21-1) (k-1)!
Mio zeU.

N

For z =0, we have

{[.fﬂ 3<z>r._.{uf,,fzmm}“m} " 23

z=0
By differentiating (1.6), we obtain
. |2 f “ B o§ “m
(R (£ fyuee £,)(2)] { M‘;(Z)} { ! Z‘“(Z)} zeU. 2.4)

[RI(fy, fp0en £)(0) ] =1
Using (2.4), we obtain

log[ R/ (f,, ... fm)(z)]l =a[loglf, f,(z)-logz]+..+a,[logl/,f,(z)-logz] zeU

(2.5)
By differentiating (2.5), we have

[RE(f foen f@(z)]f_%(l@ﬁ(z))’;}_._m [(Ifﬂfmu)) 1},@
[RI(f,, fpeee £,)(2) ] i

17,6(z) z
Simple computation, we get

A m
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|f#f1(2) If#fm(z)

2[R (f 1500 fm)(z)]"_a{Z(lfﬂfl(Z))‘ 1}..” [wl},zeu

2[R (fu ot )@)]| (o
(2)] (k)

17 f.(2)

» [z(lfmz)) 1]

17 fa(2)
Z(I/Iﬂ,// fl(z))'

, z(lf’ﬂfm(z))'
S(l‘|z| )@0‘1' 17 5,(2) 17,£.(2) _‘H

< (L[l )[let |+ et ] < et +. # |era | <1

L+ +|a,|

Thus by Lemma 1, we have R (f,, f,,..., f, )(z) €S.

Corollary 1. Let meN,ie{12,..,m},¢ €C, f e A Putting f=0,u=1 in
Theorem 1, we obtain if

|0¢l|+|a2|+...+|am| <1l zeU.

Then R(f, f,,..., f,)(z)Is univalent, where R(f,, f,,..., f,)(z)is given by Breaz
and Breaz[1].

Theorem 2. LetmeN,ie{1,2,...m},q; €C. If f e Asatisfy and

. 1
M |al|+|a2|+...+|am|£§,

(i) 17, f,(z) <1,
2(1 8
(iii) ‘ (Il”‘f (2) ~1<1.
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For all zeU , then the integral operator given by (1.6) is univalent.

Proof: Using (2. 6) we obtain
2[RY(f,, 0o ]‘ o[ 5)

1
(R (fu o fm)( 01

217,10 (2))
|2t (2)
(2.9)

/Iy 1 ) 1

17,%(2)

+ot ety -1,

Multiply (2.9) by(l |z|2) using Schwarz’s Lemma and obtain
)

(1 2 | )Z[ . (2 ]‘ ( |2 | )|al|wl‘+...+|am| i

(Rl (2)] 12,0(2) TG
S(1_|Z |2)|0‘1| % +(1—|Z |2)|al|+...+(1—|z |2)|a | (Ilgl;‘fmm(( )))}
+(1—|Z |2)|am|

(Ifﬂfm<z>)'

12 ta(2)

]+(1|Z|2)[l%|+-"+|“m|]
(02,12 )ﬂ]

{ 2 (12,1,(2)
(12,5 (2))
+(1_|z|2)[|a1|+...+|a I

1,1, ))2 } (212 )l -+l

ot ||

i

|+t |, |

zz(|fﬂf1(z))‘_waJ+¢aJ}+.“

22(17,4,(2))]

_Wam|+LLJ]+(l—¢ZF)UQJ+n“+¢amH
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Z(17,5(2)) 2 (17,f.(2))

1‘+...+|am| : 1]
(125(2) (12,.(2)
{2 el e T+ (112 Tl -+ ]

< (12" ) [Jeu| o+ e ]+ 222 )l + o+l ] = 3(1=[2f" ) et e ]

<3[|ay|+ ... +| ety ] (2.10)
From (2.10) and condition (i), we have

2[R (2)]
2 e

By Lemma 1, it follows that the integral operator Rfj(fl, f,,..., fm)(z)is univalent.
By putting f — 0, =1, Theorem 2 reduced in the following corollary.

<(1|zr>@ N VA0

<1, forallzeU.

Corollary 2. LetmeN,ie{1,2,...m},¢; €C. If f €A and satisfy

. 1
(i) |al|+|a2|+...+|am|S§,
(ii) |f,(z)|<1, and

2(5() |
(1.(2))

for all z €U, then the integral operator given by (1.6) is univalent.

<1,

(iii) |————=~

3  Open Problem

In this paper, we introduce a new operator R ( f,, f,,..., f,)(z). Is it possible

to introduce a new operator related to this operator for meromorphic univalent
functions?
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