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Abstract

Let A (p, n) = {f ∈ H(U) : f(z) = zp+
∑∞

j=p+n ajz
j , z ∈ U}, with

A (1, n) = An, n ∈ N . We consider in this paper the operator
RIγ(m,λ, l) : An → An, defined by

RIγ(m,λ, l)f(z) := (1− γ) Rmf (z) + γI(m,λ, l)f(z) where

I(m,λ, l)f(z) = z +
∑∞

j=n+1

[
1+λ(j−1)+l

l+1

]m
ajz

j and

(m + 1)Rm+1f (z) = z(Rmf (z))′ + mRmf (z), m ∈ N0, N0 =
N ∪ {0}, λ ∈ R, λ ≥ 0, l ≥ 0 is the Ruscheweyh operator. By
making use of the above mentioned differential operator, a
new subclass of univalent functions in the open unit disc is
introduced. The new subclass is denoted by RIγ(m,n, µ, α, λ, l).
Parallel results, for some related classes including the class of
starlike and convex functions respectively, are also obtained.
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1 Introduction and definitions

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and
H(U) the space of holomorphic functions in U .
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Let

A (p, n) = {f ∈ H(U) : f(z) = zp +
∞∑

j=p+n

ajz
j, z ∈ U},

with A (1, n) = An and

H[a, n] = {f ∈ H(U) : f(z) = a + anz
n + an+1z

n+1 + . . . , z ∈ U},

where p, n ∈ N , a ∈ C.
Let S denote the subclass of functions that are univalent in U .
By S∗ (α) we denote a subclass of An consisting of starlike univalent func-

tions of order α, 0 ≤ α < 1 which satisfies

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U. (1.1)

Further, a function f belonging to S is said to be convex of order α in U ,
if and only if

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> α, z ∈ U (1.2)

for some α, (0 ≤ α < 1) . We denote by K(α) the class of functions in S which
are convex of order α in U and denote by R(α) the class of functions in An

which satisfy
Ref ′(z) > α, z ∈ U. (1.3)

It is well known that K(α) ⊂ S∗(α) ⊂ S.
If f and g are analytic functions in U , we say that f is subordinate to g,

written f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1,
for all z ∈ U such that f(z) = g(w(z)) for all z ∈ U . If g is univalent, then
f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

Definition 1.1 [6] For f ∈ A(p, n), p, n ∈ N , m ∈ N ∪ {0}, λ, l ≥ 0, the
operator Ip (m, λ, l) f(z) is defined by the following infinite series

Ip (m,λ, l) f(z) := zp +
∞∑

j=p+n

(
p + λ (j − 1) + l

p + l

)m

ajz
j.

Remark 1.2 It follows from the above definition that

Ip (0, λ, l) f(z) = f(z),

(p + l) Ip (m + 1, λ, l) f(z) = [p(1− λ) + l] Ip (m, λ, l) f(z)+λz (Ip (m, λ, l) f(z))′ ,

for z ∈ U.
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Remark 1.3 If p = 1 we have I1 (m,λ, l) f(z) = I (m, λ, l) and

(l + 1) I (m + 1, λ, l) f(z) = [l + 1− λ] I (m,λ, l) f(z) + λz (I (m,λ, l) f(z))′ ,

for z ∈ U.

Remark 1.4 If f ∈ An, f(z) = z +
∑∞

j=n+1 ajz
j, then

I (m, λ, l) f (z) = z +
∞∑

j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

ajz
j,

for z ∈ U .

Remark 1.5 For l = 0, λ ≥ 0, the operator Dm
λ = I (m,λ, 0) was intro-

duced and studied by Al-Oboudi [5], which reduced to the Sălăgean differential
operator Sm = I (m, 1, 0) [14] for λ = 1. The operator Im

l = I (m, 1, l) was
studied recently by Cho and Srivastava [9] and Cho and Kim [10]. The operator
Im = I (m, 1, 1) was studied by Uralegaddi and Somanatha [15], the operator
Dδ

λ = I (δ, λ, 0), with δ ∈ R, δ ≥ 0, was introduced by Acu and Owa [1].

Definition 1.6 [13] Ruscheweyh has defined the operator Rm : An → An,

R0f (z) = f (z)

R1f (z) = zf ′(z)

(m + 1)Rm+1f(z) = z [Rmf(z)]′ + mRmf(z), z ∈ U.

To prove our main theorem we shall need the following lemma.

Lemma 1.7 [12] Let u be analytic in U with u(0) = 1 and suppose that

Re

(
1 +

zu′(z)

u(z)

)
>

3α− 1

2α
, z ∈ U. (1.4)

Then Reu(z) > α for z ∈ U and 1/2 ≤ α < 1.

2 Main results

Definition 2.1 For a function f ∈ An we define the differential operator

RIγ(m,λ, l)f(z) = (1− γ) Rmf (z) + γI(m,λ, l)f(z), (2.5)

where m, n ∈ N0, N0 = N ∪ {0}, λ ∈ R, λ ≥ 0, γ ≥ 0, l ≥ 0.

Remark 2.2 For l = 0 the above defined operator was introduced in [4] and
for l = 0 and λ = 1 the operator was introduced in [3].
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Definition 2.3 We say that a function f ∈ An is in the class
RIγ(m,n, µ, α, λ, l), m,n ∈ N, µ ≥ 0, α ∈ [0, p), γ ≥ 0 if∣∣∣∣∣∣RIγ(m + 1, λ, l)f(z)

z

(
z

RIγ(m,λ, l)f(z)

)µ

− 1

∣∣∣∣∣∣ < 1− α, z ∈ U. (2.6)

Remark 2.4 The family RIγ(m, n, µ, α, λ, l) is a new comprehensive class
of analytic functions which includes various new classes of analytic univalent
functions as well as some very well-known ones. For example, RI1(m, n, µ, α,
λ, l) was studied in [7], RI1 (0, 1, 1, α, 1, 0) = S∗ (α) , BI1 (1, 1, 1, α, 1, 0) =
K (α) and BI1 (0, 1, 0, α, 1, 0) = R (α). Another interesting subclass is the
special case RI1(0, 1, 2, α, 1, l)=B (α) which has been introduced by Frasin and
Darus [11] and also the class RI1(0, 1, µ, α, 1, 0) = B(µ, α) which has been
introduced by Frasin and Jahangiri [12].

In this note we provide a sufficient condition for functions to be in the class
RIγ(m,n, µ, α, λ, l). Consequently, as a special case, we show that convex
functions of order 1/2 are also members of the above defined family.

Theorem 2.5 For the function f ∈ An, m, n ∈ N, µ ≥ 0, 1/2 ≤ α < 1 if

(m + 2)RIγ(m + 2, λ, l)f(z)

RIγ(m + 1, λ, l)f(z)
− µ(m + 1)

RIγ(m + 1, λ, l)f(z)

RIγ(m,λ, l)f(z)
+ (2.7)

γ

(
l + 1

λ
−m− 2

)
I(m + 2, λ, l)f(z)

RIγ(m + 1, λ, l)f(z)
+

γµ

(
l + 1

λ
−m− 1

)
I(m + 1, λ, l)f(z)

RIγ(m,λ, l)f(z)
−

γ

[
l + 1

λ
−m− 2

]
I(m + 1, λ, l)f(z)

RIγ(m + 1, λ, l)f(z)
+

γµ

[
l + 1

λ
−m− 1

]
I(m, λ, l)f(z)

RIγ(m,λ, l)f(z)
+ (m + 1)(µ− 1) ≺ 1 + βz, z ∈ U,

where

β =
3α− 1

2α
,

then f ∈ RIγ(m,n, µ, α, λ, l).

Proof If we consider

u(z) =
RIγ (m + 1, λ, l) f (z)

z

(
z

RIγ (m, λ, l) f(z)

)µ

, (2.8)



64 A. Alb Lupaş

then u(z) is analytic in U with u(0) = 1. Taking into account the relation

(l + 1)I(m + 1, λ, l)f(z) = (1− λ + l) I(m, λ, l)f(z) + λz (I(m, λ, l)f(z))′ ,

a simple differentiation yields

zu′(z)

u(z)
=

(m + 2)RIγ(m + 2, λ, l)f(z)

RIγ(m + 1, λ, l)f(z)
−µ(m+1)

RIγ(m + 1, λ, l)f(z)

RIγ(m,λ, l)f(z)
+ (2.9)

γ

(
l + 1

λ
−m− 2

)
I(m + 2, λ, l)f(z)

RIγ(m + 1, λ, l)f(z)
+

γµ

(
l + 1

λ
−m− 1

)
I(m + 1, λ, l)f(z)

RIγ(m,λ, l)f(z)
−

γ

[
l + 1

λ
−m− 2

]
I(m + 1, λ, l)f(z)

RIγ(m + 1, λ, l)f(z)
+

γµ

[
l + 1

λ
−m− 1

]
I(m, λ, l)f(z)

RIγ(m,λ, l)f(z)
+ (m + 1)(µ− 1)− 1.

Using (2.7) we get

Re

(
1 +

zu′(z)

u(z)

)
>

3α− 1

2α
.

Thus, from Lemma 1.7 we deduce that

Re

RIγ(m + 1, λ, l)f(z)

z

(
z

RIγ(m,λ, l)f(z)

)µ
 > α.

Therefore, f ∈ RIγ(m,n, µ, α, λ, l), by Definition 2.3.
As a consequence of the above theorem we have the following interesting

corollaries [2].

Corollary 2.6 If f ∈ A1 and

Re

{
2zf

′′
(z) + z2f

′′′(z)

f ′(z) + zf ′′(z)
− zf ′′(z)

f ′(z)

}
> −1

2
, z ∈ U, (2.10)

then

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

1

2
, z ∈ U. (2.11)

That is, f is convex of order 1
2
, or f ∈ RI1

(
1, 1, 1, 1

2
, 1, 0

)
.
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Corollary 2.7 If f ∈ A1 and

Re

{
2zf

′′(z) + z2f
′′′(z)

f ′(z) + zf ′′(z)

}
> −1

2
, z ∈ U, (2.12)

then f ∈ RI1
(
1, 1, 0, 1

2
, 1, 0

)
, that is

Re {f ′(z) + zf ′′(z)} >
1

2
, z ∈ U. (2.13)

Corollary 2.8 If f ∈ A1 and

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

1

2
, z ∈ U, (2.14)

then

Ref ′(z) >
1

2
, z ∈ U. (2.15)

In another words, if the function f is convex of order 1
2
, then f ∈ RI1(0, 1, 0, 1

2
,

1, 0) ≡ R
(

1
2

)
.

Corollary 2.9 If f ∈ A1 and

Re

{
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

}
> −3

2
, z ∈ U, (2.16)

then f is starlike of order 1
2
, hence f ∈ RI1(0, 1, 1, 1

2
, 1, 0).

3 Open Problem

The open problem is to define a generic class of analytic functions such that
the class RIγ(m, n, µ, α, λ, l), m, n ∈ N, µ ≥ 0, α ∈ [0, p), γ ≥ 0 is contained
inside and is possible to obtain. Compare the new results with the results
given by [12] and [8].
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[14] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math.,
Springer Verlag, Berlin, 1013(1983), 362-372.

[15] B.A. Uralegaddi, C. Somanatha, Certain classes of univalent functions,
Current topics in analytic function theory, World. Sci. Publishing, River
Edge, N.Y., (1992), 371-374.


