Int. J. Open Problems Complex Analysis, Vol. 2, No. 1, March 2010 ISSN 2074-2827; Copyright ©ICSRS Publication, 2010 www.i-csrs.org

Some Properties For An Integral Operator On The $CVH(\beta)$ -Class

Nicoleta Breaz, Daniel Breaz, Mugur Acu

Faculty of Sciences, 1 Decembrie 1918 University of Alba Iulia, Romania. e-mail: nbreaz@yahoo.com

Faculty of Sciences, 1 Decembrie 1918 University of Alba Iulia, Romania. e-mail:dbreaz@uab.ro

Department of Mathematics "Lucian Blaga" University of Sibiu, Sibiu, Romania. e-mail: $acu_mugur@yahoo.com$

Abstract

In this paper we prove some properties for a general integral operator on the $CVH(\beta)$ -class of convex functions associated with some hyperbola.

Keywords: analytic functions, integral operator, convex functions. AMS Mathematics Subject Classification (2000): 30C45.

1 Introduction

Consider $\mathcal{H}(\mathcal{U})$ be the set of functions which are regular in the unit disc

$$\mathcal{U} = \{ z \in C, |z| < 1 \},$$

 \mathcal{A} denotes the class of the functions f(z) of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots, z \in \mathcal{U}$$

with the property f(0) = f'(0) - 1 = 0 and $S = \{ f \in A : f \text{ is univalent in } \mathcal{U} \}$. A function $f \in S$ is convex function of order $\alpha, 0 \le \alpha < 1$ and denote this class by $K(\alpha)$ if f satisfies the inequality

$$\operatorname{Re}\left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > \alpha, z \in \mathcal{U}.$$

We recall here the definition of the class $CVH(\beta)$ introduced by Acu and Owa in [1].

The function $f \in \mathcal{A}$ is in the class $\mathcal{CVH}(\beta)$, $\beta > 0$, if

$$\left| \frac{zf''(z)}{f'(z)} - 2\beta \left(\sqrt{2} - 1 \right) + 1 \right| < \mathbf{Re} \left\{ \sqrt{2} \frac{zf''(z)}{f'(z)} \right\} + 2\beta \left(\sqrt{2} - 1 \right) + \sqrt{2}, \ z \in \mathcal{U}.$$

$$\tag{1.1}$$

Geometric interpretation: $f \in \mathcal{CVH}(\beta)$ if and only if $\frac{zf''(z)}{f'(z)} + 1$ take all values in the convex domain $\Omega(\beta) = \{w = u + i \cdot v : v^2 < 4\beta u + u^2, u > 0\}$. Note that $\Omega(\beta)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin.

Regarding the class $\mathcal{CVH}(\beta)$ we recall the coefficient estimations obtained in [1]:

Theorem 1.1. If $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ belongs to the class $\mathcal{CVH}(\beta)$, $\beta > 0$, then

$$|a_2| \le \frac{1+4\beta}{2(1+2\beta)}, |a_3| \le \frac{(1+4\beta)(3+16\beta+24\beta^2)}{12(1+2\beta)^3}.$$

We consider the integral operator defined by

$$F_{\gamma_1,\dots,\gamma_n}(z) = \int_0^z \left[f_1'(t) \right]^{\gamma_1} \cdot \dots \cdot \left[f_n'(t) \right]^{\gamma_n} dt \tag{1.2}$$

where $f_i \in \mathcal{A}$ and $\gamma_i > 0$, for all $i \in \{1, ..., n\}$. This operator was introduced by Breaz, Owa and Breaz in [2].

2 Main results

Theorem 2.1. If $f_i \in \mathcal{CVH}(\beta_i)$, $\beta_i > 0$, $\gamma_i > 0$, for all $i \in \{1, ..., n\}$, then the integral operator defined in (2) is in the class $\mathcal{K}(\alpha)$, where $\alpha = 1 - \sum_{i=1}^{n} \gamma_i - (2 - \sqrt{2}) \sum_{i=1}^{n} \gamma_i \beta_i$, $0 \le \alpha < 1$.

Proof. After some simple calculus, we have:

$$\frac{zF_{\gamma_{1},\ldots,\gamma_{n}}''\left(z\right)}{F_{\gamma_{1},\ldots,\gamma_{n}}'\left(z\right)}=\gamma_{1}\frac{zf_{1}''\left(z\right)}{f_{1}'\left(z\right)}+\ldots+\gamma_{n}\frac{zf_{n}''\left(z\right)}{f_{n}'\left(z\right)}=\sum_{i=1}^{n}\gamma_{i}\frac{zf_{i}''\left(z\right)}{f_{i}'\left(z\right)}.$$

Since $f_i \in \mathcal{CVH}(\beta_i)$, for all $i \in \{1, ..., n\}$ we have that every function f_i satisfies the inequality (1).

Thus, we obtain:

$$\begin{split} \sqrt{2} \frac{z F_{\gamma_1, \dots, \gamma_n}''(z)}{F_{\gamma_1, \dots, \gamma_n}'(z)} &= \sqrt{2} \sum_{i=1}^n \gamma_i \frac{z f_i''(z)}{f_i'(z)} \,, \\ \sqrt{2} \frac{z F_{\gamma_1, \dots, \gamma_n}''(z)}{F_{\gamma_1, \dots, \gamma_n}'(z)} &= \\ &= \sum_{i=1}^n \left(\sqrt{2} \gamma_i \frac{z f_i''(z)}{f_i'(z)} + 2 \gamma_i \beta_i \left(\sqrt{2} - 1 \right) + \sqrt{2} \gamma_i - 2 \gamma_i \beta_i \left(\sqrt{2} - 1 \right) - \sqrt{2} \gamma_i \right) \,, \\ \sqrt{2} \mathbf{Re} \left(\frac{z F_{\gamma_1, \dots, \gamma_n}''(z)}{F_{\gamma_1, \dots, \gamma_n}'(z)} + 1 \right) &= \\ &= \mathbf{Re} \sum_{i=1}^n \left(\sqrt{2} \gamma_i \frac{z f_i''(z)}{f_i'(z)} + 2 \gamma_i \beta_i \left(\sqrt{2} - 1 \right) + \sqrt{2} \gamma_i - 2 \gamma_i \beta_i \left(\sqrt{2} - 1 \right) - \sqrt{2} \gamma_i \right) + \sqrt{2} \,, \\ \sqrt{2} \mathbf{Re} \left(\frac{z F_{\gamma_1, \dots, \gamma_n}''(z)}{F_{\gamma_1, \dots, \gamma_n}'(z)} + 1 \right) &= \\ &= \sum_{i=1}^n \gamma_i \left[\mathbf{Re} \left\{ \sqrt{2} \frac{z f_i''(z)}{f_i'(z)} \right\} + 2 \beta_i \left(\sqrt{2} - 1 \right) + \sqrt{2} \right] - \\ &- \sum_{i=1}^n \left(2 \gamma_i \beta_i \left(\sqrt{2} - 1 \right) + \sqrt{2} \gamma_i \right) + \sqrt{2} \,, \\ \sum_{i=1}^n \gamma_i \left| \frac{z f_i''(z)}{f_i'(z)} - 2 \beta_i \left(\sqrt{2} - 1 \right) + 1 \right| - \sum_{i=1}^n \left(2 \gamma_i \beta_i \left(\sqrt{2} - 1 \right) + \gamma_i \sqrt{2} \right) + \sqrt{2} \,, \\ > &- \sqrt{2} \sum_{i=1}^n \gamma_i - 2 \left(\sqrt{2} - 1 \right) \sum_{i=1}^n \gamma_i \beta_i + \sqrt{2} \,. \end{split}$$

Thus, we obtain:

$$\operatorname{Re}\left(\frac{zF_{\gamma_{1},\dots,\gamma_{n}}^{"}\left(z\right)}{F_{\gamma_{1},\dots,\gamma_{n}}^{"}\left(z\right)}+1\right) > 1 - \sum_{i=1}^{n} \gamma_{i} - \left(2 - \sqrt{2}\right) \sum_{i=1}^{n} \gamma_{i}\beta_{i}$$

which implies that $F_{\gamma_1,...,\gamma_n}(z) \in \mathcal{K}(\alpha)$, where $\alpha = 1 - \sum_{i=1}^n \gamma_i - (2 - \sqrt{2}) \sum_{i=1}^n \gamma_i \beta_i$.

If we consider $\beta_1 = \beta_2 = \cdots = \beta_n = \beta > 0$ in the above theorem we obtain:

Corollary 2.1. If $f_i \in \mathcal{CVH}(\beta)$, $\beta > 0$ and $\gamma_i > 0$, for all $i \in \{1, ..., n\}$, then the integral operator defined in (2) is in the class $\mathcal{K}(\alpha)$, where $\alpha = 1 - \left[1 + \beta(2 - \sqrt{2})\right] \sum_{i=1}^{n} \gamma_i$, $0 \le \alpha < 1$.

If we consider n = 1 in the Theorem 2.1 we obtain:

Corollary 2.2. If $f \in \mathcal{CVH}(\beta)$, $\beta > 0$ and $\gamma > 0$, then the integral operator defined by $F_{\gamma}(z) = \int_{0}^{z} [f'(t)]^{\gamma} dt$ is in the class $\mathcal{K}(\alpha)$, where $\alpha = 1 - \gamma - (2 - \sqrt{2})\gamma\beta$, $0 \le \alpha < 1$.

If in (2) we consider $\gamma_1 = \gamma_2 = \cdots = \gamma_n = 1$ we obtain the integral operator

$$F_1(z) = \int_0^z f_1'(t) \cdot \dots \cdot f_n'(t) dt.$$
 (2.3)

For this integral operator we have:

Corollary 2.3. If $f_i \in \mathcal{CVH}(\beta_i)$, $\beta_i > 0$ for all $i \in \{1, ..., n\}$, then the integral operator defined by F_1 is in the class $\mathcal{K}(\alpha)$, $0 \leq \alpha < 1$, where $\alpha = 1 - n - \left(2 - \sqrt{2} \sum_{i=1}^{n} \beta_i\right)$.

Also for the operator defined in (3) we have the following estimations for the coefficients:

Theorem 2.2. Let $f_i \in \mathcal{CVH}(\beta_i)$, $\beta_i > 0$, for all $i \in \{1, ..., n\}$, $f_i(z) = z + \sum_{j=2}^{\infty} a_{i,j} z^j$, $i = \overline{1, n}$. If we consider the integral operator defined by (3), with $F_1(z) = z + \sum_{j=2}^{\infty} b_j z^j$, then:

$$|b_2| \le \frac{1}{2} \sum_{i=1}^n \frac{1+4\beta_i}{(1+2\beta_i)}$$

and

$$|b_3| \le \sum_{i=1}^n \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3} + \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{1+4\beta_k}{(1+2\beta_k)} \cdot \sum_{i=k+1}^n \frac{1+4\beta_i}{(1+2\beta_i)} \right).$$

Proof. From (3) we obtain

$$F_1'(z) = f_1'(z) \cdot f_2'(z) \cdots f_n'(z)$$
,

namely

$$1 + \sum_{j=2}^{\infty} j b_j z^{j-1} = \left(1 + \sum_{j=2}^{\infty} j a_{1,j} \cdot z^{j-1} \right) \cdot \left(1 + \sum_{j=2}^{\infty} j a_{2,j} \cdot z^{j-1} \right) \cdot \cdots \left(1 + \sum_{j=2}^{\infty} j a_{n,j} \cdot z^{j-1} \right) .$$

Thus we have:

$$b_2 = \sum_{i=1}^n a_{i,2}$$

$$b_3 = \sum_{i=1}^n a_{i,3} + \frac{4}{3} \sum_{k=1}^{n-1} \left(a_{k,2} \sum_{i=k+1}^n a_{i,2} \right) .$$

But, from Theorem 1.1, we have

$$|a_{i,2}| \le \frac{1+4\beta_i}{2(1+2\beta_i)} , i = \overline{1,n}$$

$$|a_{i,3}| \le \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3} , i = \overline{1,n}$$

In these conditions we obtain

$$|b_2| \le \sum_{i=1}^n |a_{i,2}| \le \frac{1}{2} \sum_{i=1}^n \frac{1+4\beta_i}{1+2\beta_i}$$

$$|b_3| \le \sum_{i=1}^n |a_{i,3}| + \frac{4}{3} \sum_{k=1}^{n-1} \left(|a_{k,2}| \sum_{i=k+1}^n |a_{i,2}| \right)$$

$$\le \sum_{i=1}^n \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3} + \frac{1}{3} \sum_{k=1}^{n-1} \left(\frac{1+4\beta_k}{1+2\beta_k} \sum_{i=k+1}^n \frac{1+4\beta_i}{1+2\beta_i} \right)$$

For
$$\beta_1 = \beta_2 = \cdots = \beta_n = \beta > 0$$
, we obtain

Corollary 2.4. Let
$$f_i \in \mathcal{CVH}(\beta)$$
, $\beta > 0$, $f_i(z) = z + \sum_{j=2}^{\infty} a_{i,j} z^j$, $i = \overline{1, n}$.

If we consider the integral operator defined by (3), with $F_1(z) = z + \sum_{j=2}^{\infty} b_j z^j$, then:

$$|b_2| \le \frac{n(1+4\beta)}{2(1+2\beta)}$$

$$|b_3| \le \frac{n(1+4\beta) \cdot [2n+1+4(3n+1)\beta+8(2n+1)\beta^2]}{12(1+2\beta)^3}.$$

An open problem. Similar results can be obtained using other integral operators.

Acknowledgement: This work was supported by the Grant 2-CEx 06-11-10/25.07.2006.

References

- [1] M. Acu, S. Owa, Convex functions associated with some hyperbola, Journal of Approximation Theory and Applications, Vol. 1, No.1(2005), 37-40.
- [2] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Universitatis Apulensis, No. 16/2008, pp. 11-16.