Int. J. Open Problems Complex Analysis, Vol. 2, No. 1, March 2010 ISSN 2074-2827; Copyright ©ICSRS Publication, 2010 www.i-csrs.org

Certain Applications of Differential Subordination to Analytic Functions

Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

Department of Applied Sciences Baba Banda Singh Bahadur Engineering College Fatehgarh Sahib-140 407, Punjab, India e-mail: ssbilling@gmail.com Department of Mathematics Sant Longowal Institute of Engineering & Technology Deemed University, Longowal-148 106, Punjab, India e-mail: sushmagupta1@yahoo.com e-mail: sukhjit_d@yahoo.com

Abstract

In the present paper, we study two subclasses of analytic functions recently introduced by Owa et al. [3] and extend their results. Mathematica 5.2 is used to plot the extended regions. We also obtain some results in regard of problems left open by them.

Keywords: Analytic Function, Close-to-convex function, Differential subordination, Univalent function.

2000 Mathematical Subject Classification: Primary 30C80, Secondary 30C45.

1 Introduction

Let \mathcal{A} be the class of functions f, analytic in the open unit disk $E = \{z : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0.

Let f be analytic in E, g analytic and univalent in E and f(0) = g(0). Then, by the symbol $f(z) \prec g(z)$ (f subordinate to g) in E, we shall mean $f(E) \subset g(E)$. Certain Applications of Differential...

Let $\psi : C \times C \to C$ be an analytic function, p be an analytic function in E, with $(p(z), zp'(z)) \in C \times C$ for all $z \in E$ and h be univalent in E, then the function p is said to satisfy first order differential subordination if

$$\psi(p(z), zp'(z)) \prec h(z), \ \psi(p(0), 0) = h(0).$$
 (1)

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1), is said to be the best dominant of (1). The best dominant is unique up to a rotation of E.

A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number $\alpha, -\pi/2 < \alpha < \pi/2$, and a convex function g (not necessarily normalized) such that

$$\Re\left(e^{i\alpha}\frac{f'(z)}{g'(z)}\right) > 0, \ z \in E.$$

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro [2] and Warchawski [4] obtained a simple but interesting criterion for univalence of analytic functions. They proved that if an analytic function fsatisfies the condition $\Re f'(z) > 0$ for all z in E, then f is close-to-convex and hence univalent in E.

A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}_{\delta}(\alpha)$ if it satisfies the condition

$$(f'(z))^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z}, \ z \in E,$$

for some real numbers $\alpha > 1$ and $\delta > 0$. We notice that the functions in $S_1(\alpha)$ satisfy the condition $\Re f'(z) > 0$ and therefore, are close-to-convex and hence univalent.

A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{T}_{\delta}(\alpha)$ if it satisfies the condition

$$\left(\frac{1}{f'(z)}\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z}, \ z \in E,$$

for some real numbers $\alpha > 1$ and $\delta > 0$.

The above defined classes are introduced by Owa et al. [3]. They proved the following results for these classes.

Theorem 1.1 If $f \in A$ satisfies

$$\Re \frac{zf''(z)}{f'(z)} < \frac{\alpha - 1}{2\delta(\alpha + 1)}, \ z \in E,$$

for some real numbers $\alpha > 1$ and $\delta > 0$, then $f \in S_{\delta}(\alpha)$.

Theorem 1.2 If $f \in A$ satisfies

$$\Re \frac{zf''(z)}{f'(z)} > \frac{1-\alpha}{2\delta(\alpha+1)}, \ z \in E,$$

for some real numbers $\alpha > 1$ and $\delta > 0$, then $f \in \mathcal{T}_{\delta}(\alpha)$.

They also left one problem open with each of the above classes. The main objective of this paper is to extend the results of Owa et al. [3] and obtain some results in regard of open problems raised by them.

2 Preliminaries

We shall use the following lemma to prove our main result.

Lemma 2.1 ([1], p.132, Theorem 3.4 h) Let q be univalent in E and let θ and ϕ be analytic in a domain D containing q(E), with $\phi(w) \neq 0$, when $w \in q(E)$. Set $Q(z) = zq'(z)\phi[q(z)]$, $h(z) = \theta[q(z)] + Q(z)$ and suppose that either (i) h is convex, or (ii) Q is starlike. In addition, assume that (iii) $\Re \frac{zh'(z)}{Q(z)} > 0$, $z \in E$. If p is analytic in E, with $p(0) = q(0), p(E) \subset D$ and

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)],$$

then $p \prec q$ and q is the best dominant.

3 Main Results

The following result is essentially due to Miller and Mocanu [1,p.76]. However, we present an alternative proof of the same by using Lemma 2.1.

Theorem 3.1 Let q $(q(z) \neq 0)$ be a univalent function in E such that $\frac{zq'(z)}{q(z)}$ is starlike in E. If an analytic function p $(p(z) \neq 0)$ satisfies the differential subordination

$$\frac{zp'(z)}{p(z)} \prec \frac{zq'(z)}{q(z)}, \ z \in E,$$
(2)

then $p(z) \prec q(z)$ and q is the best dominant.

Certain Applications of Differential...

Proof. Let us define the functions θ and ϕ as follows:

$$\theta(w) = 0,$$

and

$$\phi(w) = \frac{1}{w}$$

Obviously, the functions θ and ϕ are analytic in domain $D = C \setminus \{0\}$ and $\phi(w) \neq 0$ in D.

Now, define the functions Q and h as follows :

$$Q(z) = zq'(z)\phi(q(z)) = \frac{zq'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + Q(z) = \frac{zq'(z)}{q(z)}$$

Given that, Q is starlike in E and we also have $\Re \frac{z h'(z)}{Q(z)} > 0, z \in E$. Thus conditions (ii) and (iii) of Lemma 2.1, are satisfied. In view of (2), we have

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)].$$

Therefore, the proof, now, follows from Lemma 2.1.

On writing $p(z) = (f'(z))^{\delta}$, $f \in \mathcal{A}$ in Theorem 3.1, we obtain the following result.

Theorem 3.2 Suppose $\delta > 0$ is a real number. Let q $(q(z) \neq 0)$ be a univalent function in E such that $\frac{zq'(z)}{q(z)}$ is starlike in E. If $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the differential subordination

$$\frac{zf''(z)}{f'(z)} \prec \frac{1}{\delta} \frac{zq'(z)}{q(z)}, \ z \in E,$$

then $(f'(z))^{\delta} \prec q(z)$ and q is the best dominant.

By setting $p(z) = \left(\frac{1}{f'(z)}\right)^{\delta}$, $f \in \mathcal{A}$ in Theorem 3.1, we have the following result.

Theorem 3.3 Let $\delta > 0$ be a real number. Let q $(q(z) \neq 0)$ be a univalent function in E such that $\frac{zq'(z)}{q(z)}$ is starlike in E. If $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the differential subordination

$$\frac{zf''(z)}{f'(z)} \prec -\frac{1}{\delta} \frac{zq'(z)}{q(z)}, \ z \in E,$$

then $\left(\frac{1}{f'(z)}\right)^{\delta} \prec q(z)$ and q is the best dominant.

4 Applications to Analytic Functions

If we select the dominant $q(z) = \frac{\alpha(1-z)}{\alpha-z}$, a little calculation yields that $\frac{zq'(z)}{q(z)}$ is starlike in *E* for real $\alpha > 1$. From Theorem 3.2, we have the following result.

Theorem 4.1 If $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the differential subordination

$$\frac{zf''(z)}{f'(z)} \prec \frac{(1-\alpha)z}{\delta(\alpha-z)(1-z)} = F_1(z), \ z \in E,$$

then $f \in S_{\delta}(\alpha)$, where $\alpha > 1$ and $\delta > 0$ are some real numbers.

Remark 4.1 For $\alpha = 2$, $\delta = 1$, the constant on right hand side of Theorem 1.1 reduces to $\frac{1}{6}$. In Figure 4.1, we plot the dotted line $\Re(z) = \frac{1}{6}$ and the curve $F_1(z), z \in E$. According to result of Owa et al. [3], the result in Theorem 1.1 holds only if the operator $\frac{zf''(z)}{f'(z)}$ lies in the portion of the plane left to the dotted line $\Re(z) = \frac{1}{6}$. Theorem 4.1 shows that the result holds even when the operator $\frac{zf''(z)}{f'(z)}$ lies in the portion of the plotted curve $F_1(z)$, thus extending the region of variability of the operator $\frac{zf''(z)}{f'(z)}$ for the required implication. The extended portion lies between the dotted line $\Re(z) = \frac{1}{6}$ and the curve $F_1(z), z \in E$.

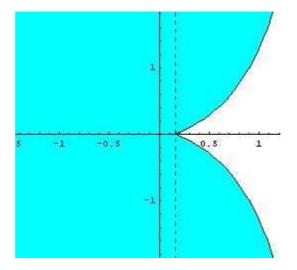


Figure 4.1 (when $\alpha = 2, \ \delta = 1$)

By setting $q(z) = \frac{\alpha(1-z)}{\alpha-z}$ in Theorem 3.3, we obtain the following result.

Theorem 4.2 Suppose $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the differential subordination

$$\frac{zf''(z)}{f'(z)} \prec \frac{(\alpha-1)z}{\delta(\alpha-z)(1-z)} = F_2(z), \ z \in E,$$

then $f \in \mathcal{T}_{\delta}(\alpha)$, where $\alpha > 1$ and $\delta > 0$ are some real numbers.

Remark 4.2 For $\alpha = 2$, $\delta = \frac{1}{2}$, the constant on right hand side of Theorem 1.2 reduces to $-\frac{1}{3}$. In Figure 4.2, we plot the dotted line $\Re(z) = -\frac{1}{3}$ and the curve $F_2(z)$. According to result of Owa et al. [3], the result in Theorem 1.2 holds only if the operator $\frac{zf''(z)}{f'(z)}$ takes values in the portion of the plane right to the dotted line $\Re(z) = -\frac{1}{3}$. Theorem 4.2 shows that the result holds when the operator $\frac{zf''(z)}{f'(z)}$ lies in the portion of the plane right to the plotted curve $F_2(z)$, thus extending the region of variability of the operator $\frac{zf''(z)}{f'(z)}$ for the required implication. In Figure 4.2, extended region lies between the dotted line and the curve.

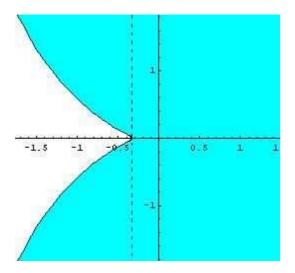


Figure 4.2 (when $\alpha = 2$, $\delta = 1/2$)

Now we obtain the results related to the problems left open by Owa et al. [3]. These are given below in Theorem 4.3 and Theorem 4.4. For this if we take $q(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$ in Theorem 3.2, then a little calculation yields that $\frac{zq'(z)}{q(z)}$ is starlike in E for $0 \le \beta < 1$ and we arrive at the following result.

Theorem 4.3 If $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the differential subordination

$$\frac{zf''(z)}{f'(z)} \prec \frac{2(1-\beta)z}{\delta(1+(1-2\beta)z)(1-z)}, \ z \in E,$$

then $(f'(z))^{\delta} \prec \frac{1 + (1 - 2\beta)z}{1 - z}$, for some real numbers $0 \leq \beta < 1$ and $\delta > 0$.

In view of Theorem 4.3, we have the following result.

Corollary 4.1 Let $0 \leq \beta < 1$ and $\delta > 0$ be real numbers. If $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the condition

$$\Re \ \frac{zf''(z)}{f'(z)} > \begin{cases} \frac{1}{2\delta} \left(1 - \frac{1}{1-\beta}\right), & 0 \le \beta \le 1/2, \\ \frac{1}{2\delta} \left(1 - \frac{1}{\beta}\right), & 1/2 \le \beta < 1, \end{cases}$$

then $\Re (f'(z))^{\delta} > \beta$.

Remark 4.3 Setting $\beta = \delta = 1/2$ in above Corollary, we obtain the following result of Miller and Mocanu [1, p. 57]:

Certain Applications of Differential...

For $f \in \mathcal{A}$ $(f'(z) \neq 0)$, $\Re \left(\frac{zf''(z)}{f'(z)} + 1\right) > 0 \Rightarrow \Re \sqrt{f'(z)} > 1/2, z \in E.$

By setting $q(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$ in Theorem 3.3, we obtain the following result.

Theorem 4.4 Suppose $f \in \mathcal{A}$ $(f'(z) \neq 0)$ satisfies the differential subordination $zf''(z) = 2(\beta - 1)z$

$$\frac{zf(z)}{f'(z)} \prec \frac{2(\beta-1)z}{\delta(1+(1-2\beta)z)(1-z)}, \ z \in E,$$

then $\left(\frac{1}{f'(z)}\right)^{\delta} \prec \frac{1+(1-2\beta)z}{1-z}, \ where \ 0 \le \beta < 1 \ and \ \delta > 0 \ are \ some \ real numbers.$

In view of Theorem 4.4, we obtain the following result.

Corollary 4.2 Let $0 \leq \beta < 1$ and $\delta > 0$ be real numbers. If $f \in \mathcal{A}$ $(f'(z) \neq 0)$, satisfies the condition

$$\Re \ \frac{zf''(z)}{f'(z)} < \begin{cases} \ \frac{1}{2\delta} \left(\frac{1}{1-\beta}-1\right), & 0 \le \beta \le 1/2, \\ \frac{1}{2\delta} \left(\frac{1}{\beta}-1\right), & 1/2 \le \beta < 1, \end{cases}$$

then $\Re \ \left(\frac{1}{f'(z)}\right)^{\delta} > \beta.$

5 Open Problem

It would be of interest to raise the following problems.

(i) For $0 \le \beta < 1$, $\delta > 0$ and $f \in \mathcal{A}$, does there exist a best value of $\gamma > 0$ such that the condition

$$\Re \frac{zf''(z)}{f'(z)} < \gamma, \ z \in E,$$

implies that $\Re(f'(z))^{\delta} > \beta$?

(ii) For $0 \leq \beta < 1$, $\delta > 0$ and $f \in \mathcal{A}$, does there exist a best value of $\gamma < 0$ such that the condition

$$\Re \frac{zf''(z)}{f'(z)} > \gamma, \ z \in E,$$

implies that $\Re\left(\frac{1}{f'(z)}\right)^{\delta} > \beta$?

Acknowledgements. The authors are thankful to the referee for careful reading of the paper.

References

- Miller S. S. and Mocanu, P. T., "Differential Subordinations: Theory and Applications", Series on monographs and textbooks in pure and applied mathematics (No. 225), Marcel Dekker, New York and Basel, 2000.
- [2] Noshiro, K., "On the Theory of Šchlicht Functions", J. Fac. Sci., Hokkaido Univ., 2(1934-35), 129-155.
- [3] Owa, S., Nishiwaki, J. and Niwa, N., "Subordinations for Certain Analytic Functions", Int. J. Open Problems Compt. Math., 1(2)(2008), 94-100.
- [4] Warchawski, S. E., "On the Higher Derivatives at the Boundary in Conformal Mappings", Trans. Amer. Math. Soc., 38(1935), 310-340.