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Abstract
The authors in [1] have recently introduced a new gener-

alised derivative operator µn,m
λ1,λ2

, which generalised many well-
known operators studied earlier by many different authors. By
using this operator and differential subordination, we intro-
duce certain new subclasses of analytic function defined in
the open unit disk U = {z ∈ C : |z| < 1}, which are defined by
means of the Hadamard product (or convolution). The pur-
pose of the present paper is to investigate various inclusion
properties of these subclasses. In addition, some integral pre-
serving properties are also considered.
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1 Introduction and Definitions

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

ak z
k, ak is complex number (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1} on the complex
plane C. Let S, S∗(α), K(α) , C(α) (0 ≤ α < 1) denote the subclasses of A
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consisting of functions that are univalent, starlike of order α, convex of order
α, and close-to-convex of order α in U , respectively. In particular, the classes
S∗(0) = S∗, K(0) = K and C(0) = C are the familiar classes of starlike,
convex and close-to-convex functions in U , respectively.

Let be given two functions f(z) = z+
∞∑

k=2

akz
k and g(z) = z+

∞∑
k=2

bkz
k analytic

in the open unit disc U = {z ∈ C : |z| < 1}. Then the Hadamard product
(or convolution) f ∗ g of two functions f , g is defined by

f(z) ∗ g(z) = (f ∗ g)(z) = z +
∞∑

k=2

akbkz
k .

Next, we state basic ideas on subordination. If f and g are analytic in U , then
the function f is said to be subordinate to g, and can be written as

f ≺ g or f(z) ≺ g(z) (z ∈ U),

if and only if there exists the Schwarz function w, analytic in U , with w(0) =
0 and |w(z)| < 1 such that f(z) = g(w(z)) (z ∈ U) .

Furthermore, if g is univalent in U , then f ≺ g if and only if f(0) = g(0) and f(U) ⊂
g(U).([13],P.36).

Now, (x)k denotes the Pochhammer symbol (or the shifted factorial) defined
by

(x)k =

{
1 for k = 0, x ∈ C\{0},
x(x+ 1)(x+ 2)...(x+ k − 1) for k ∈ N = {1, 2, 3, ...}and x ∈ C.

Let

ka(z) =
z

(1− z)a

where a is any real number. It is easy to verify that ka(z) = z +
∞∑

k=2

(a)k−1

(1)k−1
zk.

Thus ka ∗ f, denotes the Hadamard product of ka with f that is

(ka ∗ f)(z) = z +
∞∑

k=2

(a)k−1

(1)k−1

akz
k.

Let N denotes the class of all functions φ which are analytic, convex and uni-
valent in U , with normalisation φ(0) = 1 and Re(φ(z)) > 0 (z ∈ U). Making
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use of the principle of subordination between analytic functions, many au-
thors investigated the subclasses S∗(φ), K(φ), and C(φ, ψ) of the class A for
φ, ψ ∈ N (cf. [7, 10]), which are defined by

S∗(φ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z) in U

}
,

K(φ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ φ(z) in U

}
,

C(φ, ψ) :=

{
f ∈ A : ∃g ∈ S∗(φ) s.t.

zf ′(z)

g(z)
≺ ψ(z) in U

}
.

For φ(z) = ψ(z) = (1+z)/(1−z) in the definitions defined above, we have the
well-known classes S∗, K, and C, respectively. Furthermore, for the function
classes S∗[A,B] and K[A,B] investigated by Janowski [9] ( also see [8]), it is
easily seen that

S∗
(

1 + Az

1 +Bz

)
= S∗[A,B] (−1 ≤ B < A ≤ 1),

K

(
1 + Az

1 +Bz

)
= K[A,B] (−1 ≤ B < A ≤ 1).

The authors in [1] have recently introduced a new generalised derivative oper-
ator µn,m

λ1,λ2
, as the following:

Definition 1.1. For f ∈ A the generalised derivative operator µn,m
λ1,λ2

is defined
by µn,m

λ1,λ2
: A → A

µn,m
λ1,λ2

f(z) = z +
∞∑

k=2

(1 + λ1(k − 1))m−1

(1 + λ2(k − 1))m c(n, k)akz
k, (z ∈ U),

where n,m ∈ N0 = {0, 1, 2... .} , λ2 ≥ λ1 ≥ 0 and c(n, k) =
(

n+k−1
n

)
=

(n+1)k−1

(1)k−1
.

Special cases of this operator includes the Ruscheweyh derivative operator in
the cases µn,1

λ1,0 ≡ µn,m
0,0 ≡ µn,0

0,λ2
≡ Rn [17], the Salagean derivative operator

µ0,m+1
1,0 ≡ Sn [18], the generalised Ruscheweyh derivative operator µn,2

λ1,0 ≡ Rn
λ

[5], the generalised Salagean derivative operator introduced by Al-Oboudi
µ0,m+1

λ1,0 ≡ Sn
β [3], and the generalised Darus and Al-Shaqsi derivative op-

erator µn,m+1
λ1,0 ≡ Dn

λ,β [4]. It is easily seen that µ0,1
λ1,0f(z) = µ0,m

0,0 f(z) =

µ0,0
0,λ2

f(z) = f(z) and µ1,1
λ1,0f(z) = µ1,m

0,0 f(z) = µ1,0
0,λ2

f(z) = zf ′(z) and also

µa−1,0
λ1,0 f(z) = µa−1,m

0,0 f(z) where a = 1, 2, 3, ... .
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Let us remind the well known Carlson-Shaffer operator L(a, c) [6] associated
with the incomplete beta function h(a, c; z), defined by

L(a, c) : A → A,
L(a, c)f(z) := h(a, c; z) ∗ f(z), (z ∈ U),

where

h(a, c; z) = z +
∞∑

k=2

(a)k−1

(c)k−1

zk,

a is any real number and c /∈ z−0 ; z−0 = {0,−1,−2, ...}.

It is easily seen that

µ0,0
0,λ2

f(z) = µ0,m
0,0 f(z) = µ0,1

λ1,0f(z) = L(0, 0)f(z) = f(z),

µ1,m
0,0 f(z) = µ1,0

0,λ2
f(z) = µ1,1

λ1,0f(z) = L(2, 1)f(z) = zf ′(z).

Furthermore, we note that

µn,m
0,0 f(z) = µn,0

0,λ2
f(z) = µn,1

λ1,0f(z) = L(n+ 1, 1)f(z) = Dnf(z) (n ∈ N0),

where the symbol Dn denotes the familiar Ruscheweyh derivative [17] (also,
see [2]) for n ∈ N0. By using the new generalised derivative operator µn,m

λ1,λ2
, we

introduce the following classes of analytic functions for φ, ψ ∈ N, λ2 ≥ λ1 ≥ 0
and n,m ∈ N0 = {0, 1, 2... .} ,

Sn,m
λ1,λ2

(φ) :=
{
f ∈ A : µn,m

λ1,λ2
f(z) ∈ S∗(φ)

}
,

Kn,m
λ1,λ2

(φ) :=
{
f ∈ A : µn,m

λ1,λ2
f(z) ∈ K(φ)

}
,

Cn,m
λ1,λ2

(φ, ψ) :=
{
f ∈ A : µn,m

λ1,λ2
f(z) ∈ C(φ, ψ)

}
.

We note that the class

Sa−1,m
0,0 (φ) = Sa−1,0

0,λ2
(φ) = Sa(φ),

was studied by Padmanabhan and Parvatham in [14],

Ka−1,m
0,0 (φ) = Ka−1,0

0,λ2
(φ) = Ka(φ),

were studied by Padmanabhan and Manjini in [13]. Obviously, for the special
choices function φ and variables n,m we have the following relation ships:

S0,0
0,λ2

(
1 + z

1− z

)
≡ S0,m

0,0

(
1 + z

1− z

)
≡ S∗

(
1 + z

1− z

)
,

K0,0
0,λ2

(
1 + z

1− z

)
≡ K0,m

0,0

(
1 + z

1− z

)
≡ K

(
1 + z

1− z

)
,

C0,0
0,λ2

(
1 + z

1− z
, ψ

)
≡ C

(
1 + z

1− z
, ψ

)
.
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And

S0,0
0,λ2

(
1 + (1− 2α)z

1− z

)
≡ S0,m

0,0

(
1 + (1− 2α)z

1− z

)
≡ S∗(α),

K0,0
0,λ2

(
1 + (1− 2α)z

1− z

)
≡ K0,m

0,0

(
1 + (1− 2α)z

1− z

)
= K(α) (0 ≤ α < 1).

In particular, we set

Sn,m
λ1,λ2

(
1 + Az

1 +Bz

)
= Sn,m

λ1,λ2
[A,B] (−1 ≤ B < A ≤ 1),

Kn,m
λ1,λ2

(
1 + Az

1 +Bz

)
= Kn,m

λ1,λ2
[A,B] (−1 ≤ B < A ≤ 1).

In this paper, we investigate several inclusion properties of the classes Sn,m
λ1,λ2

(φ),
Kn,m

λ1,λ2
(φ) and Cn,m

λ1,λ2
(φ, ψ). The integral preserving properties in connection

with the operator µn,m
λ1,λ2

are also considered. Furthermore, relevant connection
of the results presented here with those obtained in earlier works are pointed
out.

We first state some preliminary lemmas which shall be used in our investiga-
tion.

2 Preliminary Results

To establish our results, we recall the following:

Lemma 2.1 (Ruscheweyh and Sheil-Small ([16], p.54). If f ∈ K, g ∈ S∗, then
for each analytic function φ in U ,

(f ∗ φg) (U)

(f ∗ g) (U)
⊂ coφ(U),

where coφ(U) denotes the closed convex hull of φ(U).

Lemma 2.2 (Ruscheweyh [15]). Let 0 < a ≤ c. If c ≥ 2 or a + c ≥ 3, then
the function

h(a, c; z) = z +
∞∑

k=2

(a)k−1

(c)k−1

zk (z ∈ U),

belongs to the class K of convex functions.

Lemma 2.3 ([11]). Let φ be analytic, univalent, convex in U , with φ(0) = 1
and

Re(βφ(z) + γ) > 0 (β, γ ∈ C; z ∈ U).
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If p(z) is analytic in U , with p(0) = φ(0), then

p(z) +
zp′(z)

βp(z) + γ
≺ φ(z) ⇒ p(z) ≺ φ(z).

3 Inclusion Properties Involving the Operator

µn,mλ1,λ2

Our main results, are the following:

Theorem 3.1. f(z) ∈ Kn,m
λ1,λ2

(φ) if and only if zf ′(z) ∈ Sn,m
λ1,λ2

(φ).

Proof. Consider

µn,m
λ1,λ2

f(z) = hn,m
λ1,λ2

(z) ∗ f(z), (3.1)

where

hn,m
λ1,λ2

(z) = z +
∞∑

k=2

(1 + λ1 (k − 1))m−1

(1 + λ2 (k − 1))m c(n, k)zk. (3.2)

By the definition of the class Kn,m
λ1,λ2

(φ) and using the well-known property of
convolution z(f ∗ g)′(z) = (f ∗ zg′)(z), we have

f ∈ Kn,m
λ1,λ2

(φ) ⇔ 1 +
z(µn,m

λ1,λ2
f(z))′′

(µn,m
λ1,λ2

f(z))′
≺ φ(z),

⇔
[
z(µn,m

λ1,λ2
f(z))′

]′
(µn,m

λ1,λ2
f(z))′

≺ φ(z),

⇔
z

[
z

[
hn,m

λ1,λ2
(z) ∗ f(z)

]′]′
z

[
hn,m

λ1,λ2
(z) ∗ f(z)

]′ ≺ φ(z),

⇔
z

[
hn,m

λ1,λ2
(z) ∗ zf ′(z)

]′
hn,m

λ1,λ2
(z) ∗ zf ′(z)

≺ φ(z),

⇔
z

[
µn,m

λ1,λ2
zf ′(z)

]′
µn,m

λ1,λ2
zf ′(z)

≺ φ(z),

⇔ zf ′(z) ∈ Sn,m
λ1,λ2

(φ).

Theorem 3.2. Let φ ∈ N, λ2 ≥ λ1 ≥ 0, n2 ≥ n1 ≥ 0 and n1, n2,m ∈ N0. If

n2 ≥ 1 or n1 + n2 ≥ 1, then

Sn2,m
λ1,λ2

(φ) ⊂ Sn1,m
λ1,λ2

(φ).
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Proof. We suppose that f ∈ Sn2,m
λ1,λ2

(φ). Then there exists an analytic function
w in U with |w(z)| < 1 (z ∈ U) and w(0) = 0 such that

z(µn2,m
λ1,λ2

f(z))′

(µn2,m
λ1,λ2

f(z))
= φ(w(z)), (z ∈ U). (3.3)

Where φ is analytic and convex univalent with φ(0) = 1 and Re(φ(z)) >
0, (z ∈ U). We set

µn1,m
λ1,λ2

f(z) = µn2,m
λ1,λ2

f(z) ∗ ψn1
n2

(z),

where

ψn1
n2

(z) = z +
∞∑

k=2

(n1 + 1)k−1

(n2 + 1)k−1

zk.

We get

z(µn1,m
λ1,λ2

f(z))′

(µn1,m
λ1,λ2

f(z))
=

z
[
µn2,m

λ1,λ2
f(z) ∗ ψn1

n2
(z)

]′
µn2,m

λ1,λ2
f(z) ∗ ψn1

n2 (z)

=
ψn1

n2
(z) ∗

[
z(µn2,m

λ1,λ2
f(z))′

]
ψn1

n2 (z) ∗ µn2,m
λ1,λ2

f(z)

=
ψn1

n2
(z) ∗ φ(w(z))p(z)

ψn1
n2 (z) ∗ p(z)

, (3.4)

where p(z) = µn2,m
λ1,λ2

f(z).

It follows from Lemma 2.2 that ψn1
n2

(z) ∈ K and it follows from the definition
of the class Sn,m

λ1,λ2
(φ) that p(z) ∈ S∗. Therefore applying Lemma 2.1 to (3.4)

we obtain {
ψn1

n2
(z) ∗ φ(w(z))p

}
(U)

{ψn1
n2 (z) ∗ p} (U)

⊂ co φ(w(U)) ⊂ φ(U). (3.5)

Since φ is analytic and convex univalent. Therefore from the definition of
subordination and (3.5), we note that (3.4) is subordinate to φ in U and
consequently f(z) ∈ Sn1,m

λ1,λ2
(φ). This completes the proof of Theorem 3.2.

Theorem 3.3. Let φ ∈ N, λ2 ≥ λ1 ≥ 0, n2 ≥ n1 ≥ 0 and n1, n2,m ∈ N0. If
n2 ≥ 1 or n1 + n2 ≥ 1, then

Kn2,m
λ1,λ2

(φ) ⊂ Kn1,m
λ1,λ2

(φ).

Proof. Let f(z) ∈ Kn2,m
λ1,λ2

(φ) we want to show f(z) ∈ Kn1,m
λ1,λ2

(φ). Applying
Theorem 3.1 and Theorem 3.2 we observe that

f(z) ∈ Kn2,m
λ1,λ2

(φ) ⇔ zf ′(z) ∈ Sn2,m
λ1,λ2

(φ),

⇒ zf ′(z) ∈ Sn1,m
λ1,λ2

(φ),

⇔ f(z) ∈ Kn1,m
λ1,λ2

(φ).
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Theorem 3.4. Let φ ∈ N, λ2 ≥ λ1 ≥ 0 and n,m ∈ N0 then

i) Sn,m
λ1,λ2

(φ) ⊂ Sn,m+1
λ1,λ2

f(z)

ii) Kn,m
λ1,λ2

(φ) ⊂ Kn,m+1
λ1,λ2

(φ)

Proof. i) We suppose that f(z) ∈ Sn,m
λ1,λ2

(φ). Using similar arguments as in
the proof of Theorem 3.2, and set

µn,m+1
λ1,λ2

f(z) = µn,m
λ1,λ2

f(z) ∗ ψλ1
λ2

(z),

where

ψλ1
λ2

(z) = z +
∞∑

k=2

1 + λ1 (k − 1)

1 + λ2 (k − 1)
zk.

We obtain

z(µn,m+1
λ1,λ2

f(z))′

µn,m+1
λ1,λ2

f(z)
=

z
[
µn,m

λ1,λ2
f(z) ∗ ψλ1

λ2
(z)

]′
µn,m

λ1,λ2
f(z) ∗ ψλ1

λ2
(z)

,

=
ψλ1

λ2
(z) ∗ z(µn,m

λ1,λ2
f(z))′

ψλ1
λ2

(z) ∗ µn,m
λ1,λ2

f(z)
,

=
ψλ1

λ2
(z) ∗ φ(w(z))p(z)

ψλ1
λ2

(z) ∗ p(z)
. (3.6)

Where p(z) = µn,m
λ1,λ2

f(z) and w is an analytic function in U with |w(z)| <
1 (z ∈ U) and w(0) = 0. It follows from the definition of the class Sn,m

λ1,λ2
(φ)

that p(z) ∈ S∗. And by classical results in the class of convex, the coefficients

problem for convex: |an| ≤ 1, and here 1+λ1(k−1)
1+λ2(k−1)

≤ 1 since λ2 ≥ λ1 ≥ 0, so we

find ψλ1
λ2
∈ K. Hence it follows from applying Lemma 2.1 to (3.6) that{

ψλ1
λ2

(z) ∗ φ(w(z))p
}

(U){
ψλ1

λ2
(z) ∗ p

}
(U)

⊂ co φ(w(U)) ⊂ φ(U). (3.7)

Since φ is analytic and convex univalent. And from the definition of subor-
dination and (3.7). Thus (3.6) is subordinate to φ in U and consequently
f(z) ∈ Sn,m+1

λ1,λ2
f(z). The proof of Theorem 3.4 is complete.

ii) Let f(z) ∈ Kn,m
λ1,λ2

(φ). We shall show f(z) ∈ Kn,m+1
λ1,λ2

(φ). By applying
Theorem 3.1, and Theorem 3.4 (i), we have

f(z) ∈ Kn,m
λ1,λ2

(φ) ⇔ zf ′(z) ∈ Sn,m
λ1,λ2

(φ),

⇒ zf ′(z) ∈ Sn,m+1
λ1,λ2

f(z),

⇔ f(z) ∈ Kn,m+1
λ1,λ2

(φ).
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Theorem 3.5. Let φ ∈ N, λ3 ≥ λ2 ≥ λ1 ≥ 0 and n,m ∈ N0, then

Sn,m
λ1,λ2

(φ) ⊂ Sn,m
λ1,λ3

(φ).

Proof. Let f ∈ Sn,m
λ1,λ2

(φ). Applying the definition of the class Sn,m
λ1,λ2

(φ), then
the setting,

µn,m
λ1,λ3

f(z) = µn,m
λ1,λ2

f(z) ∗ ψm
λ2,λ3

(z),

where

ψm
λ2,λ3

(z) = z +
∞∑

k=2

(
1 + λ2 (k − 1)

1 + λ3 (k − 1)

)m

zk, (z ∈ U).

And by classical results in the class of convex, the coefficients problem for
convex: |an| ≤ 1, and here(

1 + λ2 (k − 1)

1 + λ3 (k − 1)

)m

≤ 1, since λ3 ≥ λ2 ≥ 0,

so we get ψm
λ2,λ3

(z) ∈ K. After that, using the same arguments as in the
Theorem 3.4 we obtain the desired result.

Theorem 3.6. Let φ ∈ N, λ3 ≥ λ2 ≥ λ1 ≥ 0 and n ∈ N0, then.

If m ∈ N then Sn,m
λ2,λ3

(φ) ⊂ Sn,m
λ1,λ3

(φ).

Proof. Let f(z) ∈ Sn,m
λ2,λ3

(φ). Applying the definition of the class Sn,m
λ2,λ3

(φ),
then the setting.

µn,m
λ1,λ3

f(z) = µn,m
λ2,λ3

f(z) ∗ ψm
λ1,λ2

(z),

where

ψm
λ1,λ2

(z) = z +
∞∑

k=2

(
1 + λ1 (k − 1)

1 + λ2 (k − 1)

)m−1

zk, (z ∈ U).

And using the same arguments as in the Theorem 3.4 we obtain the desired
result.

Corollary 3.1. Let φ ∈ N, λ3 ≥ λ2 ≥ λ1 ≥ 0 and n,m ∈ N0, then

i) Kn,m
λ1,λ2

(φ) ⊂ Kn,m
λ1,λ3

(φ)

ii) If m ∈ N then Kn,m
λ2,λ3

(φ) ⊂ Kn,m
λ1,λ3

(φ).

Taking

φ(z) =
1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1, z ∈ U).

In Corollary 3.1 and Theorems 3.5 and 3.6 we have the following Corollary.
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Corollary 3.2. Let λ3 ≥ λ2 ≥ λ1 ≥ 0 and n,m ∈ N0, then

Sn,m
λ1,λ2

[A,B] ⊂ Sn,m
λ1,λ3

[A,B], (−1 ≤ B < A ≤ 1),

Kn,m
λ1,λ2

[A,B] ⊂ Kn,m
λ1,λ3

[A,B] (−1 ≤ B < A ≤ 1),

if m ∈ N then

Sn,m
λ2,λ3

[A,B] ⊂ Sn,m
λ1,λ3

[A,B] (−1 ≤ B < A ≤ 1),

Kn,m
λ2,λ3

[A,B] ⊂ Kn,m
λ1,λ3

[A,B] (−1 ≤ B < A ≤ 1).

Theorem 3.7. If f(z) ∈ Sn,m
λ1,λ2

(φ) for n,m ∈ N0. Then Fµ(f) ∈ Sn,m
λ1,λ2

(φ).
Where Fµ is the integral operator defined by

Fµ(f) = Fµ(f)(z) :=
µ+ 1

zµ

z∫
0

tµ−1f(t)dt (µ ≥ 0). (3.8)

Proof. Let f(z) ∈ Sn,m
λ1,λ2

(φ) and

p(z) =
z

[
µn,m

λ1,λ2
Fµ(f)

]′
µn,m

λ1,λ2
Fµ(f)

.

From (3.8), we have

z(Fµ(f))′(z) + µFµ(f)(z) = (µ+ 1)f(z)

and so

(hn,m
λ1,λ2

∗ z(Fµ(f))′)(z) + µ(hn,m
λ1,λ2

∗ Fµ(f))(z) = (µ+ 1)(hn,m
λ1,λ2

∗ f)(z).

Using the fact

z(hn,m
λ1,λ2

∗ Fµ(f))′(z) = (hn,m
λ1,λ2

∗ zF ′
µ(f))(z),

and setting (3.1), we obtain

z(µn,m
λ1,λ2

Fµ(f))′(z) + µ(µn,m
λ1,λ2

Fµ(f))(z) = (µ+ 1)µn,m
λ1,λ2

f(z). (3.9)

Differentiating (3.9), we have

p(z) + µ = (µ+ 1)

[
µn,m

λ1,λ2
f(z)

µn,m
λ1,λ2

Fµ(f)

]
. (3.10)
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Making use of the logarithmic differentiation on both sides of (3.10) and mul-
tiplying the resulting equation by z, we have

p(z) +
zp′(z)

p(z) + µ
=
z(µn,m

λ1,λ2
f(z))′

µn,m
λ1,λ2

f(z)
. (3.11)

By applying Lemma 2.3 to (3.11), it follows that p ≺ φ in U , that is Fµ(f) ∈
Sn,m

λ1,λ2
(φ).

Remark 3.1. special case of this operator µn,m
λ1,λ2

include the Bernardi integral

operator Fµ(f) in two cases, for n = 0,m = 0, and λ1 = 1
1+µ

and also for

n = 0,m = 1 and λ2 = 1
1+µ

.

Theorem 3.8. If f ∈ Sn,m
λ1,λ2

(φ). Then

ψ =

z∫
0

f(t)

t
dt ∈ Kn,m

λ1,λ2
(φ).

Proof. Let f ∈ Sn,m
λ1,λ2

(φ). Now zψ′ = f that is zψ′ ∈ Sn,m
λ1,λ2

(φ), applying
Theorem 3.1, we see

zψ′ ∈ Sn,m
λ1,λ2

(φ) ⇔ ψ ∈ Kn,m
λ1,λ2

(φ).

This proves the Theorem.

To prove the Theorems below, we need the following Lemma.

Lemma 3.1. Let φ ∈ N. If f ∈ K and q ∈ S∗(φ), then f ∗ q ∈ S∗(φ).

Proof. Let q ∈ S∗(φ). Then there exists an analytic function w in U with
|w(z)| < 1, (z ∈ U) and w(0) = 0 such that

zq′(z)

q(z)
= φ(w(z)), (z ∈ U).

Where φ is analytic and convex univalent with φ(0) = 1 and Re(φ(z)) >
0, (z ∈ U). Thus we have

z (f(z) ∗ q(z))′

f(z) ∗ q(z)
=

f(z) ∗ zq′(z)
f(z) ∗ q(z)

=
f(z) ∗ φ(w(z))q(z)

f(z) ∗ q(z)
, (z ∈ U). (3.12)
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By using similar arguments to those used in the proof of Theorem 3.2, we
conclude that (3.12) is subordinate to φ in U and so f ∗ q ∈ S∗(φ).

Theorem 3.9. Let φ, ψ ∈ N , λ2 ≥ λ1 ≥ 0 and n1, n2,m ∈ N0. If n2 ≥
min{1, 1− n1}, then

Cn2,m
λ1,λ2

(φ, ψ) ⊂ Cn1,m
λ1,λ2

(φ, ψ) ⊂ Cn1,m+1
λ1,λ2

(φ, ψ).

Proof. First of all, we show that

Cn2,m
λ1,λ2

(φ, ψ) ⊂ Cn1,m
λ1,λ2

(φ, ψ). (3.13)

Let f ∈ Cn2,m
λ1,λ2

(φ, ψ). Then there exist a function q ∈ S∗(φ) such that

z
(
µn2,m

λ1,λ2
f(z)

)′
q(z)

≺ ψ(z) (z ∈ U). (3.14)

Then there exists analytic function w in U with |w(z)| < 1 (z ∈ U), and
w(0) = 0 such that

z
(
µn2,m

λ1,λ2
f(z)

)′
= ψ(w(z))q(z) (z ∈ U),

where ψ is analytic and convex univalent with ψ(0) = 1 and Re(ψ(z)) >
0, (z ∈ U). We setting

µn1,m
λ1,λ2

f(z) = µn2,m
λ1,λ2

f(z) ∗ ψn1
n2

(z),

where

ψn1
n2

(z) = z +
∞∑

k=2

(n1 + 1)k−1

(n2 + 1)k−1

zk.

By virtue of Lemma 2.2, ψn1
n2
∈ K and using Lemma 3.1, we see that ψn1

n2
(z) ∗

q(z) belongs to S∗(φ). Then we have

z
(
µn1,m

λ1,λ2
f(z)

)′
g(z)

=
z

[
µn2,m

λ1,λ2
f(z) ∗ ψn1

n2
(z)

]′
ψn1

n2 (z) ∗ q(z)
,

=
ψn1

n2
(z) ∗ z

(
µn2,m

λ1,λ2
f(z)

)′
ψn1

n2 (z) ∗ q(z)
,

=
ψn1

n2
(z) ∗ ψ(w(z))q(z)

ψn1
n2 (z) ∗ q(z)

. (3.15)

By using similar arguments to those used in the proof of Theorem 3.2, we con-
clude that (3.15) is subordinated to ψ in U . This implies that f ∈ Cn1,m

λ1,λ2
(φ, ψ).

Moreover, the proof of the second part is similar to that of the first part and
so we omit the details involved.
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4 Convolution Results and Inclusion Proper-

ties Involving Various Operators

The next theorem shows that the classes

Sn,m
λ1,λ2

(φ), Kn,m
λ1,λ2

(φ) and Cn,m
λ1,λ2

(φ, ψ)

are invariant under convolution with convex functions.

Theorem 4.1. Let φ, ψ ∈ N , λ2 ≥ λ1 ≥ 0, n,m ∈ N0 and let g ∈ K. Then

i) f ∈ Sn,m
λ1,λ2

(φ) ⇒ g ∗ f ∈ Sn,m
λ1,λ2

(φ),

ii) f ∈ Kn,m
λ1,λ2

(φ) ⇒ g ∗ f ∈ Kn,m
λ1,λ2

(φ),

iii) f ∈ Cn,m
λ1,λ2

(φ, ψ) ⇒ g ∗ f ∈ Cn,m
λ1,λ2

(φ, ψ).

Proof. i) We begin by assuming f ∈ Sn,m
λ1,λ2

(φ) and g ∈ K. In the proof we
use the same techniques as in the proof of Theorem 3.2. Let

z(µn,m
λ1,λ2

f(z))′

µn,m
λ1,λ2

f(z)
= φ(w(z)), (z ∈ U).

and
p(z) = µn,m

λ1,λ2
f(z).

Using the following equality

z
(
hn,m

λ1,λ2
∗ f

)′
(z) =

(
hn,m

λ1,λ2
∗ zf ′

)
(z),

from (3.1) we write

z
[
µn,m

λ1,λ2
(g ∗ f)

]′
(z)

µn,m
λ1,λ2

(g ∗ f)(z)
=

z
[
hn,m

λ1,λ2
(z) ∗ (g ∗ f)(z)

]′
hn,m

λ1,λ2
(z) ∗ (g ∗ f)(z)

,

=
g(z) ∗ z(µn,m

λ1,λ2
f(z))′

g(z) ∗ µn,m
λ1,λ2

f(z)
,

=
g(z) ∗ φ(w(z))p(z)

g(z) ∗ p(z)
≺ φ(z).

Consequently g ∗ f ∈ Sn,m
λ1,λ2

(φ).

ii) Let f ∈ Kn,m
λ1,λ2

(φ). Then by Theorem 3.1 and from Theorem 4.1(i), we have

f ∈ Kn,m
λ1,λ2

(φ) ⇔ zf ′(z) ∈ Sn,m
λ1,λ2

(φ),

⇒ g ∗ [zf ′(z)] ∈ Sn,m
λ1,λ2

(φ),

⇔ z(g ∗ f)′ ∈ Sn,m
λ1,λ2

(φ),

⇔ g ∗ f ∈ Kn,m
λ1,λ2

(φ).
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iii) Let f ∈ Cn,m
λ1,λ2

(φ, ψ). Then there exists a function q ∈ S∗(φ) such that

z
(
µn,m

λ1,λ3
f(z)

)′
= ψ(w(z))q(z) (z ∈ U),

where w is an analytic function in U with |w(z)| < 1 (z ∈ U) and w(0) = 0.
From Lemma 3.1, we have that g ∗ q ∈ S∗(φ). Applying the same method in
the proof of Theorem 3.9 and using the fact that z(f ∗ g)′(z) = (f ∗ zg′)(z) we
have

z
[
µn,m

λ1,λ2
(g ∗ f)

]′
(z)

(g ∗ q)(z)
=

g(z) ∗ z(µn,m
λ1,λ2

f(z))′

g(z) ∗ q(z)
,

=
g(z) ∗ ψ(w(z))q(z)

g(z) ∗ q(z)
≺ ψ(z) (z ∈ U).

We obtain (iii).

Now we consider the following operators [17, 12] given by

ψ1(z) =
∞∑

k=1

1 + c

k + c
zk (Re {c} ≥ 0; (z ∈ U),

(4.1)

ψ2(z) =
1

1− x
log

[
1− xz

1− z

]
(Log 1 = 0; |x| ≤ 1, x 6= 1; z ∈ U).

It is well known [17] that the operators ψ1 and ψ2 are convex univalent in U .
Therefore, we have the following result, which can be obtained from Theorem
4.1 immediately.

Corollary 4.1. Let λ2 ≥ λ1 ≥ 0, n,m ∈ N0, φ, ψ ∈ N and let ψi (i = 1, 2)
be defined by (4.1). Then

i) f ∈ Sn,m
λ1,λ2

(φ) ⇒ ψi ∗ f ∈ Sn,m
λ1,λ2

(φ),

ii) f ∈ Kn,m
λ1,λ2

(φ) ⇒ ψi ∗ f ∈ Kn,m
λ1,λ2

(φ),

iii) f ∈ Cn,m
λ1,λ2

(φ, ψ) ⇒ ψi ∗ f ∈ Cn,m
λ1,λ2

(φ, ψ).

5 Open Problem

The generalised derivative operator for the three classes Sn,m
λ1,λ2

(φ), Kn,m
λ1,λ2

(φ)
and Cn,m

λ1,λ2
(φ, ψ) can be applied in the subordination and superordination the-

orem. In fact, basic properties such as the coefficient estimates are yet to be
solved for these type of classes.
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