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Abstract

In this paper, we investigate the local growth and oscilla-
tion, near the singular point z = 0, of solutions to the differ-
ential equation

F+(AE) exp {5} +40(2)) f’+(B (2) exp {b} + By (z)) f=H(2),

where A(z),Ap(z),B(2),By(z),H (z) are analytic functions in
D(0,R)={z€C:0< |z| <R}

and a,b are non-zero complex constants.

Keywords: Growth and oscillation of solutions, linear differential equa-

tions, Nevanlinna theory, singular point.
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1 Introduction

Throughout this paper, we assume that the reader is familiar with the fun-
damental results of the Nevanlinna value distribution theory of meromorphic
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function f in the complex plane C, in particular the definitions and the stan-
dard notations N (r, f),m (r, f),T (r, f),o (f), etc., (see [14, 26, 19]). The
importance of this theory has inspired many authors to find modifications and
generalizations to different domains. Extensions of some results of Nevanlinna
Theory to annuli have been made by [3, 16, 17, 20]. Linear ordinary differ-
ential equations with singular points represents a rich and classical field for
which the symbolic computation of the solutions is a challenge for the capabil-
ities of Mathematics. Only the simplest differential equations admit solutions
given by explicit formula; however, some properties of solutions of a given dif-
ferential equation may be determined without finding their exact form. The
idea to study the growth of solutions of the linear differential equations near
a finite singular point by using the Nevanlinna theory has began by the pa-
per [10]; then after some publications have followed, see [12, 6, 7, 8]. The
principal tools used in these investigations is the estimates of the logarithmic

I\ for a meromorphic function finC\{z}, (C=CuU{oo}).

derivative’ e
A question was asked in [10, 12] about if we can get similar estimates near

(k) : : .. )
zg of ‘% where f is a meromorphic function in a region of the form

D, (0,R)={2€C:0<|z— z| < R}. This question is answered in [13] with
some applications.

First we recall the appropriate definitions for this paper [10, 20]. Suppose
that f (z) is meromorphic in D (0, +-00] = C\{0}. Define the counting function
near 0 by

o0

No(r, f) = / n(tf) —tn(oo,f)dt —n (oo, f)logr, (1.1)

r

where n (¢, f) counts the number of poles of f (z) in the region {z € C : t < |z|}U
{o0} each pole according to its multiplicity; and the proximity function by

27
1

mo (r, ) = %/hﬁ | f (re?) | de. (1.2)

0

The characteristic function of f is defined by

To (r, f) =mo (r, f) + No (1, f). (1.3)

For a meromorphic function f(z) in D(0,R) = {z€ C:0<|z| < R}, we
define the counting function near 0 by

R/

No(r,R', f) = /

r

dt, (1.4)
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where n (¢, f) counts the number of poles of f (z) in the region {z € C : ¢t < |2| < R'}
(0 < R' < R), each pole according to its multiplicity; and the proximity func-
tion near the singular point 0 by (1.2). The characteristic function of f is
defined in the usual manner by

To (Tlevf):mO (T7f>+N0 (Tlevf)‘ (15)

In addition, the order of growth of a meromorphic function f(z) near 0 is
defined by
log" Ty (r, It f)

=i 1.
or (f,0) msup——— "~ (1.6)
For an analytic function f (z) in D (0, R), we have also the definition
log* log® M,
o (f,0) = limsup og” log™ Mo (r, f), (1.7)
r—0 —logr
where My (1, f) = max {|f (2)| : |z| =r}.
By the usual manner, we define the hyper order near 0 as follows:
log™ log™ T}
o2, (f,0) = limsup 08" log” o . /) (1.8)
r—0 —logr
log* log™ log™ M,
oo (f,0) = limsup og " log” log™ Mo (r, f). (1.9)

r—0 —logr
We will use A(f,0), (resp. A(f,0)) to denote the exponent of convergence
of the zero-sequence (resp. the exponent of convergence of the distinct zero-
sequence) of the meromorphic function f(z) in D (0, R) and Az (f,0), (resp.
X2 (f,0)) to denote the hyper-exponent of convergence of the zero-sequence

(resp. the hyper-exponent of convergence of the distinct zero-sequence) of
f (2), which are defined as follows:

log* Ny (r, R, %)
A(f,0) = limsup

r—0 —logr

_ log™ Ny (7‘, R, %)
A(f,0) = limsup

r—0 —logr

log™ log™ Ny (r, R, %)
A2 (f,0) = limsup
r—0 —logr

_ log*log® Ny (7", R %)
Ao (f,0) = limsup
r—0 —logr
where N (r, R, %) is defined as N <r, R, %) in (1.4) but instead of n (¢, f)

we use 7 (t, f) which counts the number of distinct poles without multiplicity.

)

)

Y
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Remark 1.1 The choice of R in (1.1) does not have any influence in the

values or (f,0), 021 (f,0), A (£,0), A2 (f,0), X (f,0), X2 (f,0). In fact, if we
take two values of R', namely 0 < R} < R, < R, then we have

Ry

n(t, f) R,
0 — plog =2
/ " dt = plog R

Ry

where p designates the number of poles of f (z) in the region {z € C: Ry < |z| < R}
which is bounded. Thus, No (r, R}, f) = No (r, Ry, f)+C; and then Ty (r, R}, f) =

To (r, RS, f) + C where C' is a real constant. So, we can write briefly Ty (r, f)
instead of Ty (r, R, f).

Remark 1.2 It is shown in [10] that op (f,0) = or (f,0), oo (f,0) =
oo (f,0). So, we can use the notations o (f,0), oo (f,0) without any ambi-

quaty.
Example 1.3 Consider the function f (z) = exp {Z%} . We have
1
T = = —
O(rmf) mo (va) a2’

then o (f,0) = 2. Also we have

then oy (f,0) = 2.

Example 1.4 For the function f(z) = expexp {Z%}, we have

My (r, f) = expexp{:—3},

and then o (f,0) = 400, o9 (f,0) = 3.
The linear differential equation
f'+Az) e f + B(2) e f = H (2),

where A(z),B(z) and H (z) are entire functions, is investigated by many
authors; see [1, 2, 4, 5, 11, 18, 15, 23]. In [10], Fettouch and Hamouda studied
the local growth near the singular point 2 of solutions of the linear differential
equation

[+ AG) exp{ﬁ}f’w(z)exp{ﬁ} =0,
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where A (z), B (z) # 0 are analytic functions in C \ {2} and arga # argb or
a =cb (0<c<1). The case ¢ > 1 has been completed recently by Cherief
and Hamouda in [6]. The question which arises here is how about the case
when the coefficients are analytic only in a punctured disc D (0, R)? In this
paper we will deal with this question.

2 Main results

In this work, we will investigate the order of growth and the exponent of
convergence of the zero-sequence of solutions of certain class of second order
linear differential equations where the coefficients are analytic in D (0, R). In
fact, we will prove the following results.

Theorem 2.1 Let A(z) # 0,B(z) # 0,F (2) be analytic functions in
D (0, R) such that max {o (A,0),0 (B,0),0(F,0)} <n,n € N\{0}; leta,b be
complez constants such that ab # 0 and a # b. Then, every solution f (z) Z 0
of the differential equation

f"—i—A(z)exp{:—n}f’—l—B(z)eXp{i}f:F(Z), (2.1)

Zn
satisfies o (f,0) = oo. Further, if F (z) # 0, we have
S‘(fw()) = )‘(f70) = U(f70) = —I—OO, ;\Q(fao) = )‘2(va) = 0-2(f70) S n.

Theorem 2.2 Let A(z) # 0,40 (2),B(z) # 0,By(z),F () be analytic
functions in D (0, R) such that

max {o (Ao, 0),0 (Bo,0),0(A,0),0(B,0),0(F,0)} <n, ne N\ {0};

let a,b be complex constants such that ab # 0 and a = ¢b, ¢ < 0. Then, every
solution f(z) Z 0 of the differential equation

4+ (A exp {5} +40(=) £+ (B (2) p{i} + By <z>) f=F(2),
satisfies o (f,0) = co. Further, if F (z) # 0, we have
A(f,0) = A(£,0) = 0(f,0) = +00, Aa(f,0) = Aa(f,0) = 02(f,0) < n.

Theorem 2.3 Let A(z) # 0,B(z) # 0,F(z) # 0 be analytic functions
in D (0, R) such that max{p(A,0),p(B,0),p(F,0)} < n, n € N\ {0} and
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P(z) #0,Q(z) # 0 are polynomials. Let a,b be complex numbers such that
ab # 0,a #b. Then, every solution f of the differential equations

P4 P () exp{ S} + B exp{ o} = Pz esp{ ), (23)

f1 A ep{ S + Q) e ) = F)ep{ ) (24)

satisfies
5‘(.][.70) :)\(f,O) :O'(f,O) = +09, 5\2<f70> :)‘2(f70) :02(f70) <n.

If some conditions of the previous theorems are not satisfied, the equations
(2.1), (2.2), (2.3) and (2.4) may admit a solutions of finite order as shown in
the following examples.

Example 2.4 The function g (z) = exp {i} of order o (g,0) = 1 satisfies
the differential equations

el el 2 (0 2) (2}
; -1\, (2 1 1
/ —exp{7} —(W;)f:;;
) -1\, (1 ~1 2 1

Example 2.5 The function h(z) = 1 of order o (h,0) = 0 satisfies the
differential equation

a 1 b 1 a 1 b 2
= exp{;}f’ - ;exp{z_n}f = ;eXp{Z—n} - ;GXP{Z—,L} + pex

where a,b (ab # 0) are arbitrary complex numbers.

3 Preliminary lemmas

To prove these results we need the following lemmas.

Lemma 3.1 [15] Let f be a non-constant meromorphic function in D (0, R)
with a singular point at the origin of finite order o (f,0) = 0 < oo, let e > 0 be
a given constant and k be a positive integer. Then the following two statements
hold.
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i) There exists a set F' C (0, R') that has finite logarithmic measure such that
for all r = |z| satisfying r € (0, R')\F, we have
¥ (2) 1
Flz) | = rhete

(3.1)

ii) There exists a set E C [0,27) that has a linear measure zero such that for
all 0 € [0,2m) \E there exists a constant ro = 19 (0) > 0 such that for all z
satisfying arg (z) € [0,2m) \E and r = |z| < 1o the inequality (3.1) holds.

Lemma 3.2 [13] Let A(z) be a non-constant analytic function in D (0, R)
with o (A,0) <n. Set g(z) = A(2) exp{ ¢

i #£0, z2=re%, 4, (p) = acos (np)+s sizn (ny), and E = {p € [0,27) : 0, ()
(obviously, E is of linear measure zero). Then for any given € > 0 and for any
@ € 10,27) \E, there exists ro > 0 such that for 0 < r < rg, the two following
statements hold.

(i) If 64 () > 0, then

, (n > 1 s an integer) ;a = a +

e {(1-20.0) = | <ol <ew {1428, 0) %}

T rr
(i) If 64 (p) < 0, then
e {(1+90,(0) 5 | <loll < e {1-28.(0) 7}
Lemma 3.3 Let f (2) be analytic function in D (0, R) and suppose that
G (2) = |2"|log™ | f¥ (2)]

1s unbounded as z — 0 on some ray argz = 6, where p > 0. Then there
exists an infinite sequence of points z, = rme? (m > 1), r,, — 0, such that
G (2,) = 400 and

f(j) (Zm)

F® (z0) <M, (M>0)(G=01,.,k=-1),

as m — +0o0.

Proof. Let M (r,6,G) denotes the maximum modulus of G (2) on the
line segment [’rlew,rew}. Clearly, we may construct a sequence of points
Zm = Tme® (m > 1), 7, — 0, such that M (r,0,G) = G (2,,) = +00. Since
G (2m) = +00 as 1, — 0, we see immediately that | f*) (z,)| — +oc. For
each m, by (k — j7)-fold iteration integration along the line segment [z1, 2,,,| we
have

FD () = £ (1) + £ (21) (o = 2) + -

0},
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.+ mf(kl) (z1) (zm — 20)" 771 + / /f z) dzxdy...dt;

and by an elementary triangle inequality estlmate we obtam

[F9 Cn)| < [F9 (0] + [F9 (20 1(zm = 20)] +

1
o el e =2l

G 7

=71 7% Gl 1 = 20) (32)

From (3.2) and taking account that when m — 400, f*) (z,,) = +o00, 2, —
0, we obtain

9 (z)
— | <M, (M>0).
| < 020

Lemma 3.4 Let f (z) be a non constant meromorphic function in D (0, R) .
Then o (f9,0) =0 (f,0), (j=1,2,...)

Proof. We have just to show that o (f',0) = ¢ (f,0). By Valiron’s decom-
position lemma, we have f (z) = 2"¢ (2) u(2), where

a) The poles and zeros of f in D (0, R') are precisely the poles and zeros of
¢ (z). The poles and zeros of f in D (R', R) are precisely the poles and zeros

of pu(z).

b) ¢ (z) is meromorphic in D (0, co] and analytic and nonzero in D [R', o0].
¢) it (2) is meromorphic in D (R) = {z € C : |z] < R} and analytic and nonzero
in D(R').

d) m e Z.

Set ¢ (z) = 2™ (z) . Since ,u( ) is analytic at zero, it is immediate to see
that Ty (r, f) = TO (7" gb) + O(1); and then o (f,0) = o <<;~5,0). Since ¢ (2)
is meromorphic in D (0
C and o(g) = (gg
in C we have o (¢') = o(g), (see [25, 21]). We have ¢’ (2) = —w?g (w).
Obviously, we have o (—w?¢’ (w)) = o (¢'), and then o (¢') = o (gz;’ > . S0, we

get o <gz~5’, O) =0 <gz~5, O) . In the other hand, we have

f(2)=¢ (2)u(2) + 6 (2) 1 (2). (3-3)
Since p(z) is analytic at zero, we have o (u,0) = 0. By (3.3) and since
o <$’,O> =0 (&,0) , we get

a(f,0) Sa(&,O).

oc], the function g (w) = ¢ (1) is meromorphic in

(0
O) It is well known that for a meromorphic function
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For the inverse inequality, we have

and then )
7 (#.0) < max{o (£,0).0(£.0)};

and by taking account that o (f,0) = o (¢, O> =0 <gz~5’, 0) , we obtain

0(&',0) <o(f,0).

Thus, we conclude that

o (f,0)=0(f,0).

Lemma 3.5 Let f be an analytic function in D (0, R) with finite order
o (f,0) = o. Suppose that there exists a set E C [0,2m) that has a linear

measure zero such that v

og” | [ (re”)| <
for any 6 € [0,27) \E where M is a positive constant depending on 0, while o
is a positive constant independent of 0. Then o (f,0) < .

Proof. By Valiron’s decomposition lemma [22, 20|, we have f(z) =
2M¢ (z) 1 (z) with the properties a)-d) cited in the proof of Lemma 3.4. Set
¢ (z) = 2™$ (z). As in the proof of Lemma 3.4, we have o (f,0) = o (é, O). If

o (f,0) = 0 there is nothing to prove; so we may assume that o (f,0) = o > 0;
and then } f (rew)’ > 1 for r small enough. We have

log ‘f (reie)‘ = log ‘QNS (rew)‘ + log |u (rew)‘ < % (3.4)

Since p(z) is analytic and nonzero in D (R'), log | (re?)| is bounded near
zero; and then by (3.4), for any 0 € [0, 27) \ E there exists M’ > 0, such that

!/

b (re®)| < 2L (3.5)

log
TOC

Since ¢ () is analytic in D (0, oo] , by the change of variable z = < the function
g(w)=¢ (i) is entire and o (g) = o (é, O) = 0. From (3.5), we have

log |g (Re’¥)| < M'R".

By [24, Lemma 2.6.], we deduce that o < a.
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Lemma 3.6 Let Ao (2),A1(2),...,Ax—1(2), H (2) be analytic functions in
D (0, R) such that

max {o (A, 0),...,0 (Ax-1,0),0 (H,0)} = a < 0. (3.6)
If f is a solution of the differential equation
O LA ()Y 4 AR+ A () f=H(2), (3.7)
then oy (f,0) < a.

Proof. By Valiron’s decomposition lemma [22, 20|, we have f(z) =
2™¢ (z) p(z) with the properties a)-d) cited in the proof of Lemma 3.4. Set
qg(z) = z™¢(z). As in the proof of Lemma 3.4, we have o (f,0) = o ((5, 0).

Since f (2) is analytic function in D (0, R), ¢ (2) is analytic in D (0, co] . By [13,
Theorem 8], there exists a set £ C (0,1) that has finite logarithmic measure,
such that for all j = 0,1, ..., k, we have

() Vi J
97 (14 o) <—0 (T)) , (3.8)
¢ (zr) “r
asr — 0, r ¢ E, where Vj (r) is the central index of ® near the singular point
0, z. is a point in the circle |z| = r that satisfies ‘(5 (z)| = I|n|zix gzg(z)’ . Since
p (z) is analytic and non zero in D (R’) , we have
()
p (2) :
<M, (G=1,..k). 3.9
e R ) 3

We have f(z) = ¢ (2) 1 (2), and then

f9 () = i\ 89D (2) p (z) -
fl) ZO( i ) 5z n(z) J=1 .k (3.10)

where ( ‘Z ) = WLZ), is the binomial coefficient. From (3.7), we have

G e P ) 1)

e e @)
If 0 (f,0) < oo, then the result is trivial: o5 (f,0) = 0 < . So, we may assume
that o (f,0) = co. Since ¢ (H,0) < oo, we have

— Ap(z) + (3.11)

=o0(1), r—0. (3.12)

‘H (2r)
f ()
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Set My (r) = Ei}:ﬂAJ(zﬂ :7=0,1,...,k —1}. By combining (3.8), (3.9),
(3.10) and (3.12) in (3.11), we get
(Vo ()" < C (Vo ()" My (1), 7 =0,
where C' > 0, and then
Vo (r) < CMy(r). (3.13)

By (3.13), we obtain o9 (f,0) < a.
By the well known logarithmic derivative lemma of meromorphic functions
in C we can prove its new version in D (0, R) as the following.

Lemma 3.7 Let f be a non constant meromorphic function in D (0, R),
and let k € N. Then

(1) 0 ey 1y ).

for allr € (0,R)\ E, where [, % < cc.

Proof. By Valiron’s decomposition lemma [22, 20], we have f (2) = 2™¢ (2) p (2)
with the properties a)-d) cited in the proof of Lemma 3.4. Set ¢ (z) = 2™ ¢ ().
By property b) the function ¢ (z) is meromorphic in D (0,00]. By [9, Lemma

13], we have
5(k) -
mo (r, %) =0 (10g T (r, (/5) + log %) , (3.14)

for allr € (0, R)\ E, where [, % < co. Since p(2) analytic at zero, it is clear
that

To (r, f) = To (7’, d3) +0(1). (3.15)

By (3.10), (3.14) and (3.15), there ezists a set E of finite logarithmic measure
such that for all we r € (0, R) \ E, we have

k) 1
mo <r, T) =0 (logTo (r, f) + log ;) :

Lemma 3.8 Let Ay (2),A41(2),..., Ax—1(2), H (2) # 0 be meromorphic func-
tions in D (0, R) such that

max {o (Ao, 0),...,0 (Ax-1,0),0(H,0)} = a < 0.

If f(2) is meromorphic solution in D (0, R) of (3.7) with o (f,0) = oo and
o9 (f,0) = a, then f satisfies

A(f,0) = A(f,0) = p(f,0) = +00, Xo(f,0) = Xa(f,0) = pa(f,0) = c.
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Proof. From (3.7), we can write

1 1 (k) (k=1)
(f— + Ar1 /

f f

If f has a zero at zy € D (0, R) of order a > k, then H has a zero at z, of
order o« — k. Hence,

1 1 1y &
ng (r, ?> < kny <r, ?) + ng (r, E) + Zno (r, Aj)

f H

+ ... +A0) : (3.16)

7=0
and then
1 1 1y &
Ng(?“,})Sk’NQ(T,})—f-No(T,ﬁ)—f-jz:;No(T,Aj). (317)
By (3.16), we have
1 k f(]) k—1 1
mo (r, ?) < Zmo (7“, T) + Zmo (r,A;) +mg (r, E) +0(1). (3.18)
j=1 Jj=0

By Lemma 3.7, we have

U 1 .
mo <r, 7) =0 (logTo (r, f) + log ;) (j=1,..,k—1) (3.19)

holds for all » € (0, R) \ E where E is of finite logarithmic measure. By (3.17),
(3.18) and (3.19), we get

To(r,f) = Tp (r,%) +0(1)

S ]{)NO (7’,%) +ZT0(7",A]')+TO<T,H)+
j=0

1
ofmneniml)res o
T
By (3.20) and by taking account that O (log Ty (r, f) +log 1) < 1Tq (r, f), we

obtain
k—1

%Tg (T, f) S kNO (T’, %) + Z TO (7’, Aj) + TO (7”, H) . (321)
7=0

By (3.21), we have
o, (f,0) <max {X, (f,0),0,(4;,0),0,(H,0)} (n=12).
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Since

max {0, (H,0),0,(A4,,0);j=0,1,...,k — 1} <0, (f,0),
we get o, (f,0) < A (f,0) (n=1,2). Therefore X (f,0) = A(f,0) = o (f,0) =
+o00 and /\2 (f, 0) = /\2 (f, 0) = 09 (f, 0) = Q.

Lemma 3.9 [6] Let P(z) = ap,z" + ... + ag with a, # 0 be a polynomial
and A(z) = P (%) Then, for every e > 0, there exists ro > 0 such that for all
0 < r =|z| <ro, the inequalities

hold.

4 Proof of theorems

Proof of Theorem 2.1. It is clear that all solutions of (2.1) are analytic in
D(0, R). First we prove that every solution f of (2.3) satisfies o (f,0) > n. We
assume that o (f,0) < n, and we prove that is failing. By Lemma 3.4, we have
o(f,0)=0c(f",0)=0(f,0) <n.From (2.1) we have

Amaam{g}f+AM@@m{§}f:Fu»—ﬂ, (4.1)

By the properties of the order of growth, we have
ay b
o Al(z)exp{—}f + Ao (z)exps — ¢ f,0) =n
z" "

o (F(2) - f',0) < n;

contradiction with (4.1). So o (f,0) > n. Now, we prove that o (f,0) = +oc.
We assume to the contrary that o (f,0) < +o0. Since o (F,0) = o« < n then
for any given ¢ such that 0 < 2¢ < n — « and r small enough, we have

|NM§m{QJ. (42)

Since a # b, it is clear that the set E; of § = arg(z) € [0,27) such that
9a (0) = 0,0, (#) = 0 and 9, (0) = 6, () is of linear measure zero, where 4§, (6)
is defined in Lemma 3.2. By Lemma 3.1, there exists a set Ey € [0, 27) of linear
measure zero such that if 0 € [0,27) \ Es, then there is a constant 7o () < R’
such that for all z satisfying arg (z) = 6 and |z| < ry (f), we have

Mm@
9 (2)

and

1 ‘
< o 07 <k<2). (4.3)
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Set 07 = max{d, (0), (0)} and d, = min {J, (0),d ()} . For any fixed 0 €
[0,27) \ (E) U Es) there exist three cases:
Case 1. §; = 0, (#) > 0. By Lemma 3.2, for any given £ > 0, we get

‘A(z)exp{;n}‘ Zexp{m} (4.4)

rerL

Now we prove that |22F¢|log™ |f’(2)| is bounded on the ray arg(z) = 0.
We assume to the contrary that |22¢|log™ |f’(2)| is unbounded on the ray
arg (z) = 0 and we prove that this leads to a contradiction. Then by Lemma
3.3, there is a sequence of points z,, = 7, (m > 1), r,, — 0, such that

rtlog™ | f' (2m)| — +o00 (4.5)
and
J{,(ém)) < M, (M, >0), (4.6)

as m — +o0. From (4.5) for any ¢ > 1 we have
T logT [ f (zm)| > ¢

then

|f (zm)] > exp {r‘if} , M — +00. (4.7)

m

From (4.2), and (4.7), we obtain

?/EZ ; <e p{;i}—)O,m%—l—oo. (4.8)
From (2.1), we can write
4@ e {2}] < J} ‘B<z>exP{ZﬁnH fi +‘ijf)‘. (4.9)

Since 6y, (0) = 03 < 9y and o(B,0) < n, for 0 < 2e < min{l, 1-— g—f} , we have

‘B(z)exp{;n}‘gexp{w}, r— 0. (4.10)

Using (4.4), (4.6), (4.8), (4.3) and (4.10) into (4.9), we obtain

1— M 1-—-2
exp{( Tn8)51}§T2041r3eXp{( rne)&}’
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as v — 0, where M; > 0 is a constant, and then

5
72738 exp {Q} < M. (4.11)
rn

m

A contradiction in (4.11) as m — +o00. So |22*¢|log™ | f (2)| is bounded on the
ray arg (z) = 0 and we get

1f" (2)] < exp{ @ } Cy > 0. (4.12)

7"C|l+€

By integration along the line segment |z, z], where argz, = argz = 0 and
0 < |z| < |20], we obtain

F(2) =1 (20) + / 7' (u) du; (4.13)

and by using (4.12), we get

FEISI Gl +alew {610 (4.14)

By (4.14), as r — 0 with arg z = 6 € [0,27) \ (E1 U E3), we obtain

!

|/ (2)] SeXp{ G } Cy > Ch. (4.15)

ra+€

Case 2. §; = 0, (6) > 0. By Lemma 3.2, for any given ¢ > 0, we have

o {1 e {120 s

Tn

Now we prove that |z°*¢|log™ |f (2)| is bounded on the ray arg (z) = 6. We
assume that |z2+¢|log™ | f (2)] is unbounded on the ray arg (2) = 6; then, there
is a sequence of points z,, = 7, (m > 1), r,, — 0, such that

rtelogt | f (zm)| — +oo. (4.17)
which implies that for any ¢ > 1 we have
T Slog" | (zm)| > ¢

and then

£ (o)l > exp {2} = +oo. (418)

m
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From (4.2) and (4.18), we get

7 (Z)) < exp {%} — 0, m — +o0. (4.19)
From (2.1), we can write
{58 e (2] o

Since 6§, (0) = 09 < 6§y, for 0 < 2e < min{ 1-— —} we have

‘exp{;in}’ gexp{ (1=2)9 } (4.21)

Combining (4.16), (4.3), (4.19) and (4.21) with (4.20), we obtain

1-— M. 1-2
exp{( rn€)51}gr20igexp{( rne)&}’

m

as r — 0, where My > 0 is a constant, and then

55 Mg
exp{ } < 5ot (4.22)

Tn

(4.22) leads to a contradiction as m — +00. So |247¢|log™ | f (2)] is bounded on
the ray arg (z) = 0 and then, when r — 0 with arg z = 6 € [0,27) \ (E;, U Ey) ,
we have

!f<>|<exp{ < } Cy > 0. (4.23)
Case 3. 6; < 0. From (2.1), we can write
| < ‘A ex p{ H ;,l/(é)) +‘B( ) ex p{ b }' J{,,<(Z>) + Ji((?) . (4.24)
By Lemma 3.2, for any given 0 < £ < 1, we have
R TP (IEETA G
" ‘eXp {i}‘ < exp {ﬂ} . (4.26)
" rn

Now we prove that [2%7¢|log™ |f” (2)| is bounded on the ray arg (z) = 6. We
assume that [2%7¢|log™ |f” (2)| is unbounded on the ray arg (z) = 6; then by
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0

Lemma 3.3, there is a sequence of points z,, = r,e? (m > 1), r,, — 0, such

that
T log™ [ f" (2m)| — +o0, (4.27)
and .
J
Lo < a2 0) (5=0.1), (429

as m — +o00. From (4.27), for any ¢ > 1 we have

ro - logT [ (2m)| > ¢

and then )
lf" (zm)] > exp{ — } , M — +00. (4.29)
roTe
From (4.2) and (4.29), we obtain
F (zn) -1
o) < exp {T%Jrg} — 0, m — +oo. (4.30)
By combining (4.3), (4.25), (4.26), (4.28) and (4.30) with (4.24), we obtain
1—¢)d -1
1§2Mgexp{¢}+exp{—+}—>0, m — +00; (4.31)
n ree

a contradiction; then |22*¢|log™ | f” (2)] is bounded on the ray arg (z) = 6. As
above when r — 0 with argz = 6 € [0,27) \ (Ey U E3), we obtain

|f (2)] < exp {%} , C3 > 0. (4.32)

Now, we proved (4.32) on any ray argz = 0 € [0,27)\ (E1 U E») as |z| =1 — 0.
By Lemma 3.5, we obtain ¢ (f,0) < «; which is a contradiction with a < n
and o (f,0) > n; so we conclude that every solution f of (2.1) is of infinite
order. Now, we have

max {0 <Aexp{;in}, o) o (B(z) exp{z%}, o) o (F(z) exp{%}, o)} —n;

and by applying Lemma 3.6, we get o9 (f,0) < n. Since F(z) #Z 0, by Lemma
3.8, we obtain

/_\<f70) :/\(f,O) :U(f,O)=+OO, 5‘2(f70):/\2(f70) :UQ(faO) Sn

Proof of Theorem 2.2. First, we prove that every solution f of (2.2)
satisfies o (f,0) > n. We assume that o (f,0) < n, and we prove that is failing.
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By Lemma 3.4, we have o (f',0) = o (f”,0) = o (f,0) < n. From (2.2) we can
write

A exp { L) 4B (e {i} f = F ()" A0 (2) f~Bo(2) f (433)

By the properties of the order of growth and since a # b, we have
ay b B
o (A(z)exp{zn}f +B(z)exp{zn}f,0> =n

o (F(2) = f" = Ao (2) ' = Bo (2) f,0) <m;
a contradiction in (4.33). So o (f,0) > n. Now, we prove that o (f,0) = +o0.
We suppose to the contrary that o (f,0) < +00. Since o (By,0) = 0 (A4y,0) =
a < n then for any given e such that 0 < 2¢ < n — « and r small enough, we
have

and

w40 ()] B0 () < exp {2} (431)

It is clear that the set E5 of @ = arg (z) € [0, 27) such that d, (#) = 0,8, (0) =0
is of linear measure zero. For any fixed 6 € [0,27) \ (F3 U E5) there exist two
cases:

Case 1. § = §, () > 0. We will prove that |22*¢|log™ |f’ (2)| is bounded
on the ray arg(z) = 6. We assume to the contrary that |22*¢|log™ |f’(2)] is
unbounded on the ray arg (z) = 6. Then by Lemma 3.3, there is a sequence of
points z,, = r,me? (m > 1), 7, — 0, such that we have (4.5) and (4.6); and
then, we have (4.8). From (2.2), we can write

a " b f F(z)
< | - S
’A(z)exp{zn}‘ < |7 + Ao (2) + ‘B(z)exp{zn} + By (z)' 7 ’ 7
(4.35)
Since 6, (0) = %(5 < 0 and o(B,0) < n, by Lemma 3.2, for any € > 0, we have
1 15
'B(z)exp{%}’ﬁexp{%}, r — 0. (4.36)
Using (4.4), (4.6), (4.8), (4.3), (4.36) and (4.34) into (4.35), we obtain
1—¢)d M (1+¢)is
exp {( T?n) } < T%?Jlr?) exp {—r% }, (4.37)

as r — 0, where M; > 0 is a constant; a contradiction by taking 0 < e < 1:
the right side of (4.37) tends to 0 as m — +oo while the left side tends to +o00.
So |z2*¢|log™ |’ (2)| is bounded on the ray arg (2) = 0 and we get

|f’(z)|§exp{ i }, C, > 0;

T.aJrs
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and then, as above in the proof of Theorem 2.1, we get

f ()|<exp{ ¢ } C > 0. (4.38)

Case 2. 8, (0) = 16 > 0; (in this case § < 0). We prove that |z*¢|log™ |f (2)]
is bounded on the ray arg(z) = 0. We assume that |2*¢|log™ |f (2)| is un-
bounded on the ray arg (z) = 0. From (2.2), we can write

e {2} < |6 £ ()

f(z f(2)
By Lemma 3.2, for any given ¢ > 0, we have

st}
e { 1) o {0229, ”
(4.40

Combining (4.3), (4.19), (4.34),

1—-¢)is
exp {%} < ri\fi‘ exp {@} , (4.42)

m T?’TL

F(z)

+(A exp{ b+ Ao (2 ))

+Bo (2 —I—'

and

0) and (4.41) with (4.20), we obtain

as 7 — 0, where M, > 0 is a constant. Also (4.42) leads to a contradiction as
m — +00. So [22¢|log® |f (2)| is bounded on the ray arg(z) = 6 and then,
when r — 0 with argz =0 € [0,27) \ (E5 U Es), we have

f ()I<exp{ ¢ } C > 0. (4.43)

We proved (4.43) on any ray argz =6 € [0,27) \ (E3 U Es) as |z| =r — 0.
By Lemma 3.5, we obtain o (f,0) < «; which is a contradiction with a@ < n
and o (f,0) > n; so we conclude that every solution f of (2.2) is of infinite
order. Now, by applying Lemma 3.6 to the equation (2.2), we get o9 (f,0) < n.
Furthermore, since F(z) # 0, by Lemma 3.8, we obtain

E\(f70) :)‘<f70> :U(f,O):+OO, E\Z(fvo):)Q(f?O) :a2<f70> Sn

Proof of Theorem 2.3. We prove the results for the solutions of (2.3)
and we can use the same method for (2.4). First, we prove that every solution
f of (2.3) satisfies o (f,0) > n. We assume that o (f,0) < n, and we prove
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that is failing. By Lemma 3.4, we have o (f',0) = o (f”,0) = o (f,0) < n.
From (2.3) we can write

exp{;—f}fuB(z)exp{b;a}f:F(z)_PG> £ (444

By the properties of the order of growth and since —a # b — a, we have

U(exp{;—:}f”—i-B(z)exp{b;a}f,0> —n
%F@)-P(%) f’,O) <n;

a contradiction with (4.44). So o (f,0) > n. Now, we prove that o (f,0) = +o0.
We suppose to the contrary that o (f,0) < 4o00. Since o (F,0) = a < n then
for any given ¢ such that 0 < 2¢e < n — « and r small enough, we have

and

Fel<en{oz). (4.45)

Since —a # b — a, it is clear that the set E; of § = arg (z) € [0,27) such that
d_a(0) = 0,00 (0) = 0 and 6_, (0) = 0p—q (0) is of linear measure zero. By
Lemma 3.1, there exists a set Fy € [0,27) of linear measure zero such that
if 6 € [0,27) \ Es, then there is a constant 7o (6) < R’ such that for all z
satisfying arg (z) = 0 and |z| < 1o (), we have

¥ ()
M@@)
Set 61 = max {d_, (0), 0 (0)} and 9 = min{d_, (), (0)} . For any fixed

0 € [0,27) \ (E1 U Ey) there exist three cases:
Case 1. §; = 0_, () > 0. By Lemma 3.2, for any given £ > 0, we get

expd “0V > ep U201 (4.47)
{2 en{

Now we prove that [2%7¢|log™ |f” ()| is bounded on the ray arg(z) = #.
We assume to the contrary that |22¢|log™ | f” (z)| is unbounded on the ray
arg (z) = 0 and we prove that this leads to a contradiction. Then by Lemma
3.3, there is a sequence of points z,, = 7, (m > 1), r,, — 0, such that

0<j<k<2). (4.46)

e log® | f” (2m)] — 400 (4.48)
and )
];TZT)) <My, (My > 0) (j=0,1), (4.49)
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as m — +o0. From (4.48) for any ¢ > 1 we have

ro - logT [ (2m)| > ¢

then
If" (zm)| > exp {TO“JFE} , M — +00. (4.50)
From (4.45) and (4.50), we obtain
;/(émz < exp {7";}5} , M — 400. (4.51)
From (2.3), we can write
~a |7 ) b—a\||f()] | F(2)
= <l OllFal o v=ilmel|mal

(4.52)
Since 6y (0) = 02 < 61 and 0(B,0) < n, for 0 < 2e < min{l,l — g—f , We

have ‘B(z)exp{bz_—na}‘ . exp{w}y . 0. (4.53)

Tn
By Lemma 3.9, there exists A > 0 such that for » small enough, we have

1 A
T'm

z

Using (4.47), (4.49), (4.51), (4.53) and (4.54) into (4.52), we obtain
11— 1-2
exp{ﬂ} < Mlidexp{ﬂ},
ry re

m T
as r — 0; and then
)
r exp {E—nl} < M. (4.55)

m

A contradiction in (4.55) as m — +o00. So |22*¢|1log™ | f” (2)| is bounded on
the ray arg (z) = 6 and we get

/" (2)] < exp {i} , Cy > 0. (4.56)

7*0(‘1'6

By two-fold iterated integration, along the line segment [zg, z], where arg zy =
arg z = 6 and 0 < |z] < |20/, we obtain

F(2) = F(20) + f (20) (= — z0) + / / [ (w)dudw;  (457)

20 20
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and then

£EI <1 Gl +1E ol =l + [ [ 1 wldudw. (458)

20 20

From (4.56) and (4.58), we get

2
FEISI Gl + 1 Gl + B e { LY ai>0 s

By (4.59), as r — 0 with argz = 0 € [0,27) \ (Ey U E3), we obtain

!

£ ()] < exp {i} oo (4.60)

ra-{—a

Case 2. §; = 0p_, (0) > 0. By Lemma 3.2, for any given ¢ > 0, we have

‘B(z)exp{b;a}' Zexp{m}. (4.61)

rn

Now we prove that [z7¢|log™® |f (2)| is bounded on the ray arg(z) = 6. We
assume that |z+¢|log™ | f (2)] is unbounded on the ray arg (z) = 0; then, there
is a sequence of points z,, = 7, (m > 1), r,, — 0, such that

e log™ | f (2m)] — +o00. (4.62)
which implies that for any ¢ > 1 we have

r e log " |f (zm)] >

and then
2
|f (zm)] >exp{m}, m — 400. (4.63)

From (4.45) and (4.63), we get

‘?((Z)) < exp {7“;,#1} . m — +oo. (4.64)
From (2.3), we can write
poe {250 < e { S |5+ | G751+ 75

2)
(4.65)
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Since 0_, (0) = 5 < dy, for 0 < 2e < min{l, 1— g—f} , we have

exp{;—f}‘gexp{w}, r— 0. (4.66)

T-n

Combining (4.61), (4.46), (4.64) and (4.66) with (4.65), we obtain

(1 —6) (51 M2 (1 —25) (51
exXp { rn < prd+20+3 exXp rn )

as r — 0, where My > 0 is a constant, and then

m

5
P27+ exp {5—;} < M,. (4.67)

(4.67) leads to a contradiction as m — +o00. So |2°*¢|log™ | f (2)| is bounded
on the ray arg (z) = 6 and we get

C
rEl<en{ .t} o

and then, when r — 0 with argz = 6 € [0,27) \ (E1 U E»), we have

!

/() < exp{ & } s (468)

ra+6

Case 3. §; < 0. From (2.3), we can write

)]s 5 e 52

[ (2)
By Lemma 3.2, for any given € > (0, we have

‘B(z)exp{b;a}‘ Sexp{ﬂ} (4.70)

,r.n

exp{;—:}lgexp{#}. (4.71)

By Lemma 3.9, there exists X' > 0 such that for r small enough, we have

id/ < ‘P (1)' (4.72)

Tm z

f(z)
/' (z)

Now we prove that |22*¢|log™ | f/ (2)| is bounded on the ray arg(z) = 6. We
assume that |z*¢|log™ |’ (z)| is unbounded on the ray arg(z) = 6; then by
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0

Lemma 3.3, there is a sequence of points z,, = r,e? (m > 1), r,, — 0, such

that

r®*tlog™ | f' (2m)| — +o0, (4.73)
and

J{,((Z)) < My, (My>0). (4.74)

as m — +o0. From (4.73), for any ¢ > 1 we have

T log ™ | f (zm)| > ¢

and then )
|f' (zm)] > exp {m} , M — +00. (4.75)
From (4.45) and (4.75), we obtain
F(zn) -1
o) exp {T%%} , m — 400. (4.76)
By combining (4.46), (4.70), (4.71), (4.72), (4.74) and (4.76) with (4.69), we
obtain
N (1—¢)d 1 -1
@ < eXp{ o 1} <r72n"+3 + M2> + exp {r%{ﬁ?} . (4.77)

Since the right side of (4.77) tends to zero as m — 400, a contradiction follows
and then |2*¢|log™ | f’ (2)| is bounded on the ray arg(z) = 0. As above, as
r — 0 with argz =60 € [0,27) \ (E, U Ey), we have

1f(2)] < exp{ G } , C3 > 0. (4.78)

,,anrE

In all cases we proved

\f(z)|§exp{%}, C>0

on any ray argz = 6 € [0,27) \ (E1 U Ey) as |z| = r — 0. By Lemma 3.5,
we obtain o (f,0) < a; which is a contradiction with o < n and o (f,0) > n;
so we conclude that every solution f of (2.3) is of infinite order. Now, the
maximum of the order of growth near 0 of the three terms:

P G) exp {;in} , B(2) exp {z%} , F(z) exp {;in} ;

is equal to n; and by applying Lemma 3.6, we get 03 (f,0) < n. Since F(z) # 0,
by Lemma 3.8, we obtain

S\(f,O):)\(f,O):U(f,O)I—l—OO, 5\2(f70) :>\2(f70>:‘72(f70) <n
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5 Open Problem

In this work, the following questions remain open:

1) How about the case when o (F,0) > n?

2) How about the case when the coefficients are meromorphic in D (0, R)?

3) Can we generalize these results to the higher order linear differential equa-
tions?
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