Int. J. Open Problems Complex Analysis, Vol. 14, No. 1, June 2022 ISSN 2074-2827; Copyright ©ICSRS Publication, 2022 www.i-csrs.org

Coefficient estimates for a new subclass of bi-close-to-convex functions associated with the Horadam polynomials

Adnan Ghazy Al Amoush*, Abbas Kareem Wanas

Faculty of Science, Taibah University, Saudi Arabia e-mail: adnan_omoush@yahoo.com Department of Mathematics, Faculty of Science, University of Al-Qadisiya, Iraq e-mail:abbas.kareem.w@qu.edu.iq

Received 21 February 2022; Accepted 5 June 2022

Abstract

In the present article, we introduce a new subclass of biclose-to-convex functions in the open unit disk U defined by means of the Horadam polynomials. Estimates upper bounds for the coefficients $|a_2|$ and $|a_3|$ for functions belonging to this subclass are derived. Also, Fekete-Szegö inequalities of functions belonging to this subclass are also discussed. Further, several new special cases of our results are pointed out.

Keywords: Analytic function, Univalent and bi-univalent functions, biclose-to-convex functions, Fekete-Szegö problem, Horadam polynomials, Coefficient bounds, Subordination.

1 Introduction and Preliminaries

Let \mathcal{A} denote the class of all functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit open disk $U = \{z : z \in C, |z| < 1\}$. Also, let \mathcal{S} be the subclass of all functions in \mathcal{A} which are univalent and normalized by the conditions

$$f(0) = 0 = f'(0) - 1$$

in U.

If f_1 and f_2 are analytic in U, then we call that f_1 is subordinate to f_2 , denoted by $f_1 \prec f_2$, if there exists Schwarz function

$$\varpi(z) = \sum_{n=1}^{\infty} \mathbf{c}_n z^n \quad (\varpi(0) = 0, |\varpi(z)| < 1), \qquad (2)$$

analytic in U such that

$$f_1(z) = f_2(\varpi(z)) \quad (z \in U). \tag{3}$$

It is known that $|\mathbf{c}_n| \leq 1$ (see [20]) for $\varpi(z)$.

Beside, it is known that

$$f(z) \prec g(z) \ (z \in U) \Leftrightarrow f(0) = g(0) \ and \ f(U) \subset g(U).$$

It is well known that every univalent function f has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z \quad (z \in U),$$

and

$$f^{-1}(f(w)) = w \ (|w| < r_0(f); r_0(f) \ge \frac{1}{4}),$$

where

$$f^{-1}(w) = w + a_2 w^2 + (2a_2^2 - 3a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
 (4)

If f and f^{-1} are univalent in U, then a function $f \in \mathcal{A}$ is called *bi-univalent*.

In 1967, the class Σ of bi-univalent functions was first discussed by Lewin [28] and that the bound $|a_2| < 1.51$ was obtained for f(z). Brannan and Taha [19] also considered certain subclasses of bi-univalent functions, and derived estimates for the initial coefficients. In 2010, the work of Srivastava et al. [32] have actually revived the investigation of holomorphic and bi-univalent functions in recent year. Also, many researchers investigated and studied various subclasses of analytic and bi-univalent functions, one can refer to the works of [1], [2], [3], [4], [5], [6], [7], [8], [9], [12], [33], [34], [35], and [36].

By $S^*(\phi)$ and $C(\phi)$ we denote the following classes of functions

$$S^*(\phi) = \left\{ f : \ f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \prec \phi(z) \right\}, \ z \in U,$$

and

$$C(\phi) = \left\{ f : \ f \in \mathcal{A}, \ 1 + \frac{zf''(z)}{f'(z)} \prec \phi(z) \right\}, \ z \in U,$$

where $S^*(\phi)$ and $C(\phi)$ are the class of starlike and convex functions, respectively, were investigated by Ma and Minda [30]. So, if $f(z) \in C(\phi)$, then $zf'(z) \in S^*(\phi)$.

A function $f \in \mathcal{A}$ belongs to K, the class of close-to-convex domain, if, and only if, there exist $0 \le \delta \le \pi$ and $g \in S^*$ such that for $z \in U$,

$$\Re\left(e^{i\delta}\frac{zf'(z)}{g(z)}\right) > 0 \quad z \in U.$$

The class K was defined and studied by Kaplan [25]. Note that, $C \subset S^* \subset K \subset S$.

Next, by follows the definition of Kaplan, Ozaki [31] considered functions in \mathcal{A} satisfying the following condition

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > -\frac{1}{2} \ z \in U,$$

whose members are known to be close-to-convex, and therefore univalent. Recently, Kargar and Ebadian [26] considered the generalization of Ozaki's condition as the following.

Definition 1.1 Let $f \in \mathcal{A}$ be locally univalent for $z \in U$ and let $-\frac{1}{2} \leq \lambda \leq 1$. Then $f \in F(\lambda)$ if and only if

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \frac{1}{2} - \lambda \quad z \in U,$$

where $F(\lambda)$ is the class of locally univalent normalized analytic functions f in the unit disk U. It is clear that, for $-\frac{1}{2} \le \lambda \le \frac{1}{2}$, we have $F(\lambda) \subset K \subset S^*$.

By extending the class $F(\lambda)$, Allu et al. [11] defined new class $F(\lambda, \alpha)$ for strongly Ozaki-close-to-convex as follows.

Definition 1.2 Let $f \in A$. Then f is called strongly Ozaki-close-to-convex if and only if

$$\left| \arg \left(\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{zf''(z)}{f'(z)} \right) \right) \right| < \frac{\alpha\pi}{2} \ (z \in U, \ \frac{1}{2} \le \lambda \le 1, \ 0 < \alpha \le 1).$$

The Horadam polynomials $h_n(x)$ are given by the following recurrence relation (see [23])

$$h_n(x) = pxh_{n-1}(x) + qh_{n-2}(x), \quad (n \in N > 2), \tag{5}$$

with $h_1(x) = a$, $h_2 = bx$, and $h_3 = pbx^2 + aq$ where a, b, p, q are some real constants.

The characteristic equation of recurrence relation (5) is

$$t^2 - pxt - q = 0. ag{6}$$

This equation has two real roots;

$$\alpha = \frac{px + \sqrt{p^2x^2 + 4q}}{2},$$

and

$$\beta = \frac{px - \sqrt{p^2x^2 + 4q}}{2}.$$

Some particular cases regarding of Horadam polynomials sequence can be found in [12]. For more information related to Horadam polynomials see ([21], [22], [27], [29]).

Remark 1.3 [22] The generating function of the Horadam polynomials $\Omega(x,z)$ is given by

$$\Omega(x,z) = \frac{a + (b - ap)xt}{1 - pxt - qt^2} = \sum_{n=1}^{\infty} h_n(x)z^{n-1}.$$
 (7)

In this paper, we introduce a new subclass of bi-close-to-convex functions by using the Horadam polynomials $h_n(x)$ and the generating function $\Omega(x,z)$. Moreover, we find the initial coefficients and the Fekete-Szegö inequality for functions belonging to the class $F(\lambda, \alpha, x)$. Several special cases were obtained to our results.

2 Coefficient Bounds for the Function Class $F(\lambda, \alpha, x)$

Definition 2.1 A function $f \in \Sigma$ given by (1) is said to be in the class $F(\lambda, \alpha, x)$, if the following conditions are satisfied:

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec \Omega(x, z) + 1 - \alpha \tag{8}$$

and

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{wg''(w)}{g'(w)} \right) \prec \Omega(x, w) + 1 - \alpha \tag{9}$$

where the real constants a, b and q are as in (5) and $g(w) = f^{-1}(z)$ is given by (4).

We first state and prove the following result.

Theorem 2.2 Let the function $f \in \Sigma$ given by (1) be in the class $F(\lambda, \alpha, x)$. Then

$$|a_2| \le \frac{(2\lambda + 1)|bx|\sqrt{bx}}{\sqrt{|2[[(2\lambda + 1)b - 4p]bx^2 - 4aq]|}}$$
(10)

$$|a_3| \le \frac{(2\lambda+1)|bx|}{12} + \frac{[(2\lambda+1)bx]^2}{16},$$
 (11)

and for some $\eta \in R$,

$$|a_3 - \eta a_2^2| = \begin{cases} \frac{(2\lambda + 1)|bx|}{12} &, |\eta - 1| \le \frac{1}{24} \\ \frac{(2\lambda + 1)^2|bx|^3|1 - \eta|}{|4(2\lambda + 1)][h_2(x)]^2 - 16h_3(x)|} &, |\eta - 1| \ge \frac{1}{24}. \end{cases}$$
(12)

Proof. Let $f \in \Sigma$ be given by the Taylor-Maclaurin expansion (1). Then, for some analytic functions Ψ and Φ such that $\Psi(0) = \Phi(0) = 0$, $|\psi(z)| < 1$ and $|\Phi(w)| < 1$, $z, w \in U$ and using Definition 2.1, we can write

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{zf''(z)}{f'(z)} \right) = \omega(x, \Phi(z)) + 1 - \alpha$$

and

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{wg''(w)}{g'(w)} \right) = \omega(x, \psi(w)) + 1 - \alpha$$

or, equivalently,

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{zf''(z)}{f'(z)} \right) = 1 + h_1(x) - a + h_2(x)\Phi(z) + h_3(x)[\Phi(z)]^3 + \cdots$$
(13)

and

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{wg''(w)}{g'(w)} \right) = 1 + h_1(x) - a + h_2(x)\psi(w) + h_3(x)[\psi(w)]^3 + \cdots$$
(14)

From (13) and (14), we obtain

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{zf''(z)}{f'(z)} \right) = 1 + h_2(x)p_1 z + [h_2(x)p_2 + h_3(x)p_1^2]z^2 + \cdots$$
 (15)

and

$$\frac{2\lambda - 1}{2\lambda + 1} + \frac{2}{2\lambda + 1} \left(1 + \frac{wg''(w)}{g'(w)} \right) = 1 + h_2(x)p_1w + [h_2(x)q_2 + h_3(x)q_1^2]w^2 + \cdots$$
(16)

Notice that if

$$|\Phi(z)| = |p_1 z + p_2 z^2 + p_3 z^3 + \dots| < 1 \quad (z \in U)$$

and

$$|\psi(w)| = |q_1w + q_2w^2 + q_3w^3 + \dots| < 1 \quad (w \in U),$$

then

$$|p_i| \le 1$$
 and $|q_i| \le 1$ $(i \in N)$.

Thus, upon comparing the corresponding coefficients in (15) and (16), we have

$$\frac{4}{2\lambda + 1}a_2 = h_2(x)p_1,\tag{17}$$

$$\frac{12}{2\lambda+1}a_3 - \frac{8}{2\lambda+1}a_2^2 = h_2(x)p_2 + h_3(x)p_1^2,\tag{18}$$

$$-\frac{4}{2\lambda + 1}a_2 = h_2(x)q_1\tag{19}$$

and

$$\frac{16}{2\lambda+1}a_2^2 - \frac{12}{2\lambda+1}a_3 = h_2(x)q_2 + h_3(x)q_1^2.$$
 (20)

From (17) and (19), we find that

$$p_1 = -q_1 \tag{21}$$

and

$$\frac{32}{(2\lambda+1)^2}a_2^2 = h_2^2(x)(p_1^2+q_1^2). \tag{22}$$

Also, by using (20) and (18), we obtain

$$\frac{8}{2\lambda+1}a_2^2 = h_2(x)(p_2+q_2) + h_3(x)(p_1^2+q_1^2).$$
 (23)

By using (22) in (23), we get

$$\left[\frac{8}{2\lambda+1} - \frac{32h_3(x)}{(2\lambda+1)^2[h_2(x)]^2}\right]a_2^2 = h_2(x)(p_2+q_2). \tag{24}$$

From (5), and (23), we have the desired inequality (10).

Next, in order to find the bound on $|a_3|$, by subtracting (20) from (18) and using (21) and (22), we get

$$a_3 = \frac{h_2(x)(p_2 - q_2)(2\lambda + 1)}{24} + \frac{h_2(x)(p_1^2 + q_1^2)(2\lambda + 1)^2}{32}.$$
 (25)

Hence using (21) and applying (5), we get desired inequality (12). Now, by using (23) and (25) for some $\eta \in R$, we get

$$a_3 - \eta a_2^2 = \frac{(2\lambda + 1)^2 [h_2(x)]^3 (1 - \eta)(p_2 + q_2)}{8(2\lambda + 1)][h_2(x)]^2 - 32h_3(x)} + \frac{(2\lambda + 1)h_2(x)(p_2 - q_2)}{24}$$
$$= (2\lambda + 1)h_2(x) \left[\left(\Theta(\eta, x) + \frac{1}{24} \right) p_2 + \left(\Theta(\eta, x) - \frac{1}{24} \right) q_2 \right],$$

where

$$\Theta(\eta, x) = \frac{(2\lambda + 1)[h_2(x)]^2(1 - \eta)}{8(2\lambda + 1)[h_2(x)]^2 - 32h_3(x)}.$$

So, we conclude that

$$|a_3 - \eta a_2^2| = \begin{cases} \frac{(2\lambda + 1)h_2(x)}{12} &, |\Theta(\eta, x)| \le \frac{1}{24} \\ 2(2\lambda + 1)|h_2(x)||\Theta(\eta, x)| &, |\Theta(\eta, x)| \ge \frac{1}{24}. \end{cases}$$

This proves Theorem 2.2. For $\lambda = \frac{1}{2}$ the class $F(\lambda, \alpha, x)$ reduced to the class $F(\frac{1}{2}, \alpha, x)$ as follows.

Corollary 2.3 Let the function $f \in \Sigma$ given by (1) be in the class $F(\frac{1}{2}, \alpha, x)$. Then

$$|a_2| \le \frac{|bx|\sqrt{bx}}{\sqrt{|2(b-2p)bx^2 - 4aq|}},$$
 (26)

$$|a_3| \le \frac{|bx|}{6} + \frac{[bx]^2}{4},\tag{27}$$

and for some $\eta \in R$,

$$|a_3 - \eta a_2^2| = \begin{cases} \frac{|bx|}{6} &, |\eta - 1| \le \frac{1}{24} \\ \frac{|bx|^3|1 - \eta|}{2([h_2(x)]^2 - 2h_3(x))|} &, |\eta - 1| \ge \frac{1}{24}. \end{cases}$$
 (28)

For $\lambda = 1$ the class $F(\lambda, \alpha, x)$ reduced to the class $F(1, \alpha, x)$ as follows.

Corollary 2.4 Let the function $f \in \Sigma$ given by (1) be in the class $F(1, \alpha, x)$. Then

$$|a_2| \le \frac{3|bx|\sqrt{bx}}{\sqrt{|2[(3b-4p)bx^2-4aq]|}},$$
 (29)

$$|a_3| \le \frac{|bx|}{4} + \frac{9[bx]^2}{16},\tag{30}$$

and for some $\eta \in R$,

$$|a_3 - \eta a_2^2| = \begin{cases} \frac{|bx|}{4} &, |\eta - 1| \le \frac{1}{24} \\ \frac{9|bx|^3|1 - \eta|}{4(3[h_2(x)]^2 - 4h_3(x))|} &, |\eta - 1| \ge \frac{1}{24}. \end{cases}$$
(31)

3 Conclusion and open problems

This research paper has introduced a new subclass of bi-close-to-convex functions associated with the Horadam Polynomials. For this subclass, coefficient bounds and Fekete-Szegö inequalities have been investigated. More investigation can be made on other types of polynomials, see [37],[16],[24],[13],[14],[10],[15],[17], and [18].

Acknowledgments

The authors would like to thank the referees for their valuable careful reading, helpful comments and for supporting of this research.

References

- [1] Amourah A. Alamoush A., and Al-Kaseasbeh M. (2021). Gegenbauer Polynomials and Bi-univalent Functions. Palestine Journal of Mathematics, 10(2), 625–632.
- [2] Alamoush A. (2019). Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials. Malaya Journal of Matematik, 7, 618–624.
- [3] Alamoush A. (2019). Coefficient estimates for a new subclasses of lambdapseudo bi-univalent functions with respect to symmetrical points associated with the Horadam Polynomials, Turkish Journal of Mathematics, 3, 2865–2875.
- [4] Alamoush A. (2019). Coefficient estimates for certain subclass of bi-Bazilevic functions associated with Chebyshev polynomials. Acta Universitatis Apulensis, 60, 53–59.
- [5] Alamoush A. (2020). On a subclass of bi-univalent functions associated to Horadam polynomials. Int. J. Open Problems Complex Analysis, 12(1), 58–66.
- [6] Alamoush A. (2021). On subclass of analytic bi-close-to-convex functions. Int. J. Open Problems Complex Analysis, 13(1), 10–18.
- [7] Alamoush A. and Darus D.(2014). Coefficient bounds for new subclasses of bi-univalent functions using Hadamard product. Acta Universitatis Apulensis, 38, 153–161.

- [8] Alamoush A. and Darus M. (2014). Coefficients estimates for bi-univalent of fox-wright functions. Far East Journal of Mathematical Sciences, 89(2), 249–262.
- [9] Alamoush A. and Darus M. (2014). On coefficient estimates for new generalized subclasses of bi-univalent functions. AIP Conference Proceedings, 1614, 844–805.
- [10] Al-Hawary, T., Amourah, A., and Frasin, B. A. (2021). Fekete–Szegö inequality for bi-univalent functions by means of Horadam polynomials. Boletin de la Sociedad Matematica Mexicana, 27(3), 1-12.
- [11] Allu V., Thomas D., and Tuneski N. (2019). On Ozaki close-to-convex functions. Bulletin of the Australian Mathematical Society, 99, 89–100. doi: 10.1017/S0004972718000989
- [12] Ş. Altinkaya and S. Yalçin. (2015). Coefficient estimates for two new subclasses of bi univalent functions with respect to symmetric points. Journal of Function Spaces, Art. ID 145242, 1-5. doi.org/10.1155/2015/145242.
- [13] Amourah, A., Frasin, B. A., Ahmad, M., and Yousef, F. (2022). Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry, 14(1), 147, 1-8.
- [14] Amourah, A., Abdelkarim, H., and AL-Elaumi, A. (2022). (p,q)-Chebyshev polynomials and their applications to bi-univalent functions. TWMS Journal of Applied and Engineering Mathematics, 12(2), 481-486.
- [15] Amourah, A., Al-Hawary, T., and Frasin, B. A. (2021). Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order $\alpha + i\beta$. Afrika Matematika, 32(5), 1059-1066.
- [16] Amourah, A., Alomari, M., Yousef, F., and Alsoboh, A. (2022). Consolidation of a certain discrete probability distribution with a subclass of bi-univalent functions involving Gegenbauer polynomials. Mathematical Problems in Engineering, 2022.
- [17] Amourah, A., Frasin, B. A., and Abdeljawad, T. (2021). Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials. Journal of Function Spaces, 2021, Article ID 5574673, 1-7.
- [18] Amourah, A., Frasin, B. A., Murugusundaramoorthy, G., and Al-Hawary, T. (2021). Bi-Bazilevic functions of order $\theta + i\delta$ associated with (p,q)-Lucas polynomials. AIMS Math, 6(5), 4296-4305.

- [19] Brannan D. and Taha T. (1985). On some classes of bi-unvalent functions. In Mathematical Analysis and its Applications (Kuwait, February 18–21,1985), KFAS Proceedings Series, 3, 70–77.
- [20] Duren P. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [21] Horadam A. (1997). Jacobsthal representation polynomials. The Fibonacci Quarterly, 35, 137–148.
- [22] Horadam A. and Mahon J. (1985). Pell and Pell-Lucas polynomials. The Fibonacci Quarterly, 23, 7–20.
- [23] Hörçum T. and Koçer E. (2009). On some properties of Horadam polynomials. International Mathematical Forum, 4, 1243–1252.
- [24] Illafe, M., Amourah, A., and Haji Mohd, M. (2022). Coefficient estimates and Fekete–Szegő functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms, 11(4), 147, 1-8.
- [25] Kaplan W. (1952). Close-to-convex schlicht functions. Michigan Math Journal, 1(2), 169–185.
- [26] Kargar R. and. Ebadian A. (2017). Ozaki's conditions for general integral operator. Sahand Communications in Mathematical Analysis, 5(1), 61–67.
- [27] Koshy T. Fibonacci and Lucas Numbers with Applications. A Wiley Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 2001.
- [28] Lewin M. (1967). On a coefficient problem for bi-univalent functions. Proceeding of the Amarican Mathematical Society, 18, 63–68.
- [29] Lupas A. (1999). A guide of Fibonacci and Lucas polynomials. Octagon Mathematics Magazine, 7, 2–12.
- [30] Ma W. and Minda D. (1992). A unified treatment of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis. Nankai Institute of Mathematics, 157–169.
- [31] Ozaki S. (1935). On the theory of multivalent functions. Science Reports of the Tokyo Bunrika Daigaku Section A., 2(40), 167–188.
- [32] Srivastava H., Mishra A., and Gochhayat P. (2010). Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett., 23, 1188–1192.

- [33] Srivastava H., Wanas A., and Murugusundaramoorthy G. (2021). A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surveys Math. Appl., 16, 193–205.
- [34] Wanas A. (2021). Horadam polynomials for a new family of λ -pseudo bi-univalent functions associated with Sakaguchi type functions. Afrika Matematika, 32, 879–889. doi.org/10.1007/s13370-020-00867-1.
- [35] Wanas A. and Choi J. (2021). Certain new families for bi-univalent functions defined by a known operator. East Asian Math. Journal, 37(3), 319–331.
- [36] Wanas A. and Yalçin S. (2021). Horadam polynomials and their applications to new family of bi-univalent functions with respect to symmetric conjugate points. Proyecciones (Antofagasta, On line), 40(1)(2021), 107–116.
- [37] Yousef, F., Amourah, A., Frasin, B. A., and Bulboacă, T. (2022). An Avant-garde construction for subclasses of analytic bi-univalent functions. Axioms, 11(6), 267.