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Abstract

In the present paper, we aim at proving such results as inclusion
relationships and convolution properties for the class S

(j)
p,µ(a, c;α;φ).
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we investigate majorization properties for subclass of analytic func-
tions defined by differ-integral operator.
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1 Introduction

Let Ap be the class of analytic and p−valent functions in the open unit disc
4 = {z : z ∈ C and |z| < 1} which denote by

f(z) = zp +
∞∑
k=1

ak+pz
k+p (p ∈ N = {1, 2, ...}). (1.1)

We note that, A1 = A is the class of univalent and analytic functions in 4.
Also, let P denote the class of functions of the form:

P(z) = 1 +
∞∑
k=1

Pkzk, (z ∈ 4),
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which are analytic and convex in 4 and satisfy the following inequality:

Re{P(z)} > 0.

Let f, g ∈ Ap, where f is given by (1.1) and g is defined by

g(z) = zp +
∞∑
k=1

bk+pz
k+p,

then Hadmard product (or convolution) of the functions f and g is defined by

(f ∗ g)(z) = zp +
∞∑
k=1

ak+pbk+pz
k+p = (g ∗ f)(z).

Definition 1.1 [6] For two functions f and g, analytic in 4, we say that the
function f is subordinate to g in 4, written f ≺ g, if there exists a Schwarz
function ω(z) which is analytic in 4, satisfying the following conditions:

ω(0) = 0 and |ω(z)| < 1, (z ∈ 4),

such that
f(z) = g(ω(z)), (z ∈ 4).

In particular, if the function g is univalent in 4, we have the following equiv-
alence:

f(z) ≺ g(z) (z ∈ 4) ⇐⇒ f(0) = g(0) and f(4) ⊂ g(4).

Definition 1.2 [15] For two functions f and g, analytic in 4, we say that
the function f is majorized by g in 4, written f << g (z ∈ 4), if there exists
a function ϕ(z) which is analytic in 4, such that

|ϕ(z)| < 1 and f(z) = ϕ(z)g(z); (z ∈ 4), (1.2)

Taking µ > 0, a, c ∈ C such that Re(c− a) ≥ 0,Re(a) ≥ −µp (p ∈ N) and
f(z) ∈ Ap is given by (1.1), El-Ashwah and Drbuk [9, with m = 0] introduced
the differ-integral operator da,cp,µ : Ap → Ap as follows:

• For Re(c− a) > 0 by

da,cp,µf(z) =
Γ(c+ µp)

Γ(a+ µp)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1f(ztµ)dt; (1.3)

• For a = c by
da,ap,µf(z) = f(z). (1.4)
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• For a = γ, c = γ + 1 and µ = 1, we obtain a familiar integral operator
Hγ,p defined by [22] as follows

Hγ,pf(z) =
p+ γ

zγ

∫ z

0

tγ−1f(t)dt (γ > −p, p ∈ N)

= zp +
∞∑
k=1

(
p+ γ

p+ k + γ

)
ak+pz

k+p,
(1.5)

It is readily verified from (1.5) that

z
[
da,cp,µHγ,pf(z)

]′
= (γ + p)da,cp,µf(z)− γda,cp,µHγ,pf(z). (1.6)

Using (1.3), the operator da,cp,µf(z) can be expressed as follows:

da,cp,µf(z) = zp +
Γ(c+ µp)

Γ(a+ µp)

∞∑
k=1

Γ(a+ µ(k + p))

Γ(c+ µ(k + p))
ak+pz

k+p, (1.7)

where µ > 0, a, c ∈ C,Re(c− a) ≥ 0,Re(a) ≥ −µp (p ∈ N).
It is readily verified from (1.7) that

z(da,cp,µf)′(z) =

(
a+ µp

µ

)(
da+1,c
p,µ f

)
(z)−

(
a

µ

)(
da,cp,µf

)
(z). (1.8)

We also note that the operator da,cp,µf(z) generalizes several previously stud-
ied familiar operators, and we will mention some of the interesting particular
cases as follows:

(i) For a = β, c = α+ β − γ + 1 and µ = 1, we obtain the operator Rα,γ
β,pf(z)

(γ > 0; α ≥ γ − 1; β > −p) which studied by Aouf et al. [1];

(ii) For a = β, c = α + β and µ = 1, we obtain the operator Qα
β,pf(z)

(α ≥ 0; β > −p) which studied by Liu and Owa [13];

(iii) For p = 1, we obtain the operator Ǐa,cµ f(z) which studied by Raina and
Sharma [20];

(iv) For p = 1, a = β, c = α + β and µ = 1, we obtain the operator Qα
βf(z)

(α ≥ 0, β > −1) which studied by Jung et al. [11];

(v) For p = 1, a = α − 1, c = β − 1 and µ = 1, we obtain the operator
L(α, β)f(z) (α, β ∈ C\Z0, Z0 = {0,−1,−2, ...}) which studied by Carl-
son and Shaffer [3];

(vi) For p = 1, a = ν − 1, c = v and µ = 1, we obtain the operator Iν,vf(z)
(ν > 0; v > −1) which studied by Choi et al. [5];
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(vii) For p = 1, a = α, c = 0 and µ = 1, we obtain the operator Dαf(z)
(α > −1) which studied by Ruscheweyh [21];

(viii) For p = 1, a = 1, c = n and µ = 1, we obtain the operator Inf(z)
(n ∈ N) which studied by Noor [17];

(ix) For p = 1, a = β, c = β + 1, and µ = 1, we obtain the integral operator
Jβ which studied by Bernardi [2];

(x) For p = 1, a = 1, c = 2, and µ = 1, we obtain the integral operator J
which studied by Libera [12] and Livingston [14].

Note that

f (j)(z) = δ(p, j)z(p−j) +
∞∑
k=1

δ(k + p, j)ak+pz
k+p−j,

where
δ(p, j) = p(p− 1)(p− 2)...(p− j + 1).

By making use of the operator da,cp,µ and the above mentioned principle of
subordination between analytic functions, we introduce and investigate the
following subclass of the class Ap as follows:

Definition 1.3 A function f ∈ Ap is said to be in the class S
(j)
p,µ(a, c;α;φ) if

it satisfies the following subordination condition:

z[(1− α)(da,cp,µf)(j+1)(z) + α(da+1,c
p,µ f)(j+1)]

(1− α)(da,cp,µf)(j)(z) + α(da+1,c
p,µ f)(j)

≺ (p− j)φ(z) (z ∈ 4), (1.9)

for some α (α ≥ 0) and j (j ∈ {0, 1, ..., p− 1}) where φ ∈ P .
For simplicity, we write

S(j)
p,µ(a, c; 0;φ) = S(j)

p,µ(a, c;φ),

S(j)
p,µ

(
a, c; 0;

1 + Az

1 +Bz

)
= S(j)

p,µ(a, c;A,B) (−1 ≤ B < A ≤ 1),

and

S(j)
p,µ

(
a, c; 0;

1 + (1− 2τ)z

1− z

)
= S(j)

p,µ(a, c; τ), (0 ≤ τ < 1).

Remark 1.4 (i) Putting a = c, α = 0, µ = 1 and φ = 1+(1−2τ)z
1−z , (0 ≤ τ <

p− j), the class S
(j)
p,µ(a, c;α;φ) reduces to the class S(p, j, τ) which studied by

Chen et al. [4];
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(ii) Putting a = c, µ = 1, α = j = 0 and φ = 1+(1−2τ)z
1−z , (0 ≤ τ < p), the class

S
(j)
p,µ(a, c;α;φ) reduces to the class Sp(τ) which studied by Patel and Thakare

[19];

(iii) Putting a = c = j = 0, µ = α = 1 and φ = 1+(1−2τ)z
1−z , (0 ≤ τ < p), the

class S
(j)
p,µ(a, c;α;φ) reduces to the class Kp(τ) which studied by Owa [18].

In order to establish our main results, we shall also make use of the following
lemmas:

Lemma 1.5 [7] Let β, δ ∈ C. Suppose that φ(z) is convex and univalent in 4
with

φ(0) = 1 and Re(βφ(z) + δ) > 0 (z ∈ 4).

If P(z) is analytic in 4 with P(0) = 1, then the following subordination:

P(z) +
zP ′(z)

βP(z) + δ
≺ φ(z) (z ∈ 4)

implies that
P(z) ≺ φ(z) (z ∈ 4).

Lemma 1.6 [10] Let w(z) is analytic function in U, with w(0) = 0. If |w(z)|
attains its maximum value on the circle |z| = r < 1 at a point z0 ∈ U, then
z0w

′(z0) = ζw(z0), where ζ is a real number and ζ ≥ 1.

In the present paper, we aim at proving such results as inclusion relation-
ships and convolution properties for the class S

(j)
p,µ(a, c;α;φ). Then we study

the integral properties for the class S
(j)
p,µ(a, c; τ). Also, we investigate ma-

jorization properties for subclass of analytic functions defined by differ-integral
operator.

Unless otherwise mentioned, we shall assume throughout the paper that
µ > 0, a, c ∈ R such that (c− a) ≥ 0, a ≥ −µp (p ∈ N), −1 ≤ B < A ≤ 1 and
α ≥ 0.

2 A set of inclusion relationships

We prove some inclusion relationships for the class S
(j)
p,µ(a, c;α;φ), which was

given in the previous section.

Theorem 2.1 Let φ ∈ P with

Re

(
(p− j)φ(z) +

a+ µp

αµ
− p+ j

)
> 0 (α > 0; j ∈ {0, 1, ..., p−1}; z ∈ 4),

then
S(j)
p,µ(a, c;α;φ) ⊂ S(j)

p,µ(a, c;φ).
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Proof. Let f ∈ S
(j)
p,µ(a, c;α;φ) and suppose that

η(z) =
z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
(z ∈ 4). (2.1)

The function η is analytic in 4 and η(0) = 1. By using (1.8), we obtain

z(da,cp,µf)(j+1)(z) =

(
a+ µp

µ

)(
da+1,c
p,µ f

)(j)
(z)−

(
a

µ
+ j

)(
da,cp,µf

)(j)
(z)

(j ∈ {0, 1, ..., p− 1}).
(2.2)

It follows from (2.2) and (2.1) that

a

µ
+ j + (p− j)η(z) =

(
a+ µp

µ

)
(da+1,c
p,µ f)(j)(z)

(da,cp,µf)(j)(z)
. (2.3)

From (2.1) and (2.3), we can find that

z(da+1,c
p,µ f)(j+1)(z)

=
µ(p− j)
a+ µp

[
zη′(z) +

{
a

µ
+ j + (p− j)η(z)

}
η(z)

]
(da,cp,µf)(j)(z).

(2.4)

It now follows from (2.2), (2.1), (2.3) and (2.4) that

z
[
(1− α)(da,cp,µf)(j+1)(z) + α(da+1,c

p,µ f)(j+1)(z)
]

(p− j)
[
(1− α)(da,cp,µf)(j)(z) + α(da+1,c

p,µ f)(j)(z)
]

=
(1− α)η(z) + αµ

a+µp

[
zη′(z) +

{
a
µ

+ j + (p− j)η(z)
}
η(z)

]
(1− α) + αµ

a+µp

[
a
µ

+ j + (p− j)η(z)
]

=

αµ
a+µp

zη′(z) +
[
(1− α) + αµ

a+µp

{
a
µ

+ j + (p− j)η(z)
}]

η(z)

(1− α) + αµ
a+µp

[
a
µ

+ j + (p− j)η(z)
]

= η(z) +
zη′(z)

a+µp
αµ
− p+ j + (p− j)η(z)

≺ φ(z) (z ∈ 4). (2.5)

Moreover, since

Re

(
(p− j)φ(z) +

a+ µp

αµ
− p+ j

)
> 0 (α > 0; j ∈ {0, 1, ..., p−1}; z ∈ 4),

by Lemma 1.5 and (2.5), we have

η(z) =
z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
≺ φ(z),
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that is, f ∈ S
(j)
p,µ(a, c;φ). This implies that

S(j)
p,µ(a, c;α;φ) ⊂ S(j)

p,µ(a, c;φ).

The proof of Theorem 2.1 is completed.

Theorem 2.2 Let φ ∈ P with

Re

(
(p− j)φ(z) +

a

µ
+ j

)
> 0 (j ∈ {0, 1, ..., p− 1}; z ∈ 4),

then
S(j)
p,µ(a+ 1, c;φ) ⊂ S(j)

p,µ(a, c;φ).

Proof. Let f ∈ S
(j)
p,µ(a+ 1, c;φ), then we obtain

z(da+1,c
p,µ f)(j+1)(z)

(p− j)(da+1,c
p,µ f)(j)(z)

≺ φ(z) (z ∈ 4). (2.6)

Differentiating both sides of (2.3) with respect to z logarithmically and using
(2.1), we obtain

η(z) +
zη′(z)

a
µ

+ j + (p− j)η(z)
=

z(da+1,c
p,µ f)(j+1)(z)

(p− j)(da+1,c
p,µ f)(j)(z)

(z ∈ 4). (2.7)

From (2.6) and (2.7), we have

η(z) +
zη′(z)

a
µ

+ j + (p− j)η(z)
≺ φ(z) (z ∈ 4). (2.8)

Moreover, since

Re

(
(p− j)φ(z) +

a

µ
+ j

)
> 0 (z ∈ 4),

by Lemma 1.5 and (2.8), we know that

η(z) =
z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
≺ φ(z),

that is, f ∈ S
(j)
p,µ(a, c;φ). This implies that

S(j)
p,µ(a+ 1, c;φ) ⊂ S(j)

p,µ(a, c;φ).

The proof of Theorem 2.2 is completed.
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3 Convolution properties

In this section, we introduce some convolution properties for the class S
(j)
p,µ(a, c;φ).

Theorem 3.1 Let f ∈ S
(j)
p,µ(a, c;φ). Then

f (j)(z) =

(
zp−jexp

(
(p− j)

∫ z

0

φ(ω(z))− 1

ζ
dζ

))
∗

(
∞∑
k=0

Γ(a+ µp)Γ(c+ µ(k + p))

Γ(c+ µp)Γ(a+ µ(k + p))
zk+p−j

)
(j ∈ {0, 1, ..., p− 1}; z ∈ 4),

(3.1)

where ω is analytic in 4 with ω(0) = 0 and |ω(z)| < 1.

Proof. Suppose that f ∈ S
(j)
p,µ(a, c;φ) and from (1.9) with (α = 0) we have

z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
= φ(ω(z)) (z ∈ 4), (3.2)

where ω is analytic in 4 with ω(0) = 0 and |ω(z)| < 1. We can easily find that

(da,cp,µf)(j+1)(z)

(da,cp,µf)(j)(z)
− p− j

z
= (p− j)φ(ω(z))− 1

z
(z ∈ 4), (3.3)

upon integrating (3.3), we have

(da,cp,µf)(j)(z) = zp−j.exp

(
(p− j)

∫ z

0

φ(ω(ζ))− 1

ζ
dζ

)
. (3.4)

On the other hand, we know from (1.7) that

(da,cp,µf)(j)(z) =

(
∞∑
k=0

Γ(c+ µp)Γ(a+ µ(k + p))

Γ(a+ µp)Γ(c+ µ(k + p))
zk+p−j

)
∗ f (j)(z). (3.5)

The assertion (3.1) of Theorem 3.1 can now easily be derived from (3.4) and
(3.5).

Theorem 3.2 The function f ∈ S
(j)
p,µ(a, c;φ) if and only if

1

zp−j

[
f (j)(z) ∗

(
∞∑
k=0

Γ(c+ µp)Γ(a+ µ(k + p))

Γ(a+ µp)Γ(c+ µ(k + p))
(k + p− j − (p− j)φ(eiθ))zk+p−j

)]
6= 0

(j ∈ {0, 1, ..., p− 1}; z ∈ 4; 0 ≤ θ < 2π).

(3.6)
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Proof. Suppose that f ∈ S
(j)
p,µ(a, c;φ) and from (1.9) with (α = 0) we have

z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
≺ φ(z) (z ∈ 4), (3.7)

is equivalent to

z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
6= φ(eiθ) (z ∈ 4; 0 ≤ θ < 2π). (3.8)

The condition (3.8) can be written as follows:

1

zp−j
[
z(da,cp,µf)(j+1)(z)− (p− j)(da,cp,µf)(j)(z)φ(eiθ)

]
6= 0 (z ∈ 4; 0 ≤ θ < 2π).

(3.9)
On the other hand, we know that

z(da,cp,µf)(j+1)(z) =

(
∞∑
k=0

Γ(c+ µp)Γ(a+ µ(k + p))

Γ(a+ µp)Γ(c+ µ(k + p))
(k + p− j)zk+p−j

)
∗ f (j)(z).

(3.10)
Upon substituting (3.5) and (3.10) into (3.9), we can easily get the convolution
property (3.6). The proof of Theorem 3.2 is completed.

4 A set of integral preserving properties

In this section, obtain integral preserving properties involving the integral
operator Hγ,p which given by (1.5). It is readily verified from (1.6) that

z
[
da,cp,µHγ,pf

](j+1)
(z) = (γ + p)(da,cp,µf)(j)(z)− (γ + j)(da,cp,µHγ,pf)(j)(z). (4.1)

Theorem 4.1 If f ∈ S
(j)
p,µ(a, c; τ), thenHγ,pf(z) ∈ S

(j)
p,µ(a, c; τ), whereHγ,pf(z)

is defined by (1.5).

Proof. Suppose that f ∈ S
(j)
p,µ(a, c; τ) and set

z(da,cp,µHγ,pf)(j+1)(z)

(p− j)(da,cp,µHγ,pf)(j)(z)
=

1 + (1− 2τ)w(z)

1− w(z)
, (4.2)

where w(0) = 0. Then, by using (4.1) in (4.2), we obtain

(da,cp,µf)(j)(z)

(p− j)(da,cp,µHγ,pf)(j)(z)
=

(γ + p) + [(p− j)(1− 2τ)− (γ + j)]w(z)

(p− j)(γ + p)(1− w(z))
. (4.3)
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Differentiating (4.3) with respect to z, we obtain

z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
=

1 + (1− 2τ)w(z)

1− w(z)

+
[(p− j)(1− 2τ)− (γ + j)]zw′(z)

(p− j) [(γ + p) + [(p− j)(1− 2τ)− (γ + j)]w(z)]
+

zw′(z)

(p− j)(1− w(z))
.

So that

z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
− τ = (1− τ)

1 + w(z)

1− w(z)

+
[(p− j)(1− 2τ)− (γ + j)]zw′(z)

(p− j) [(γ + p) + [(p− j)(1− 2τ)− (γ + j)]w(z)]
+

zw′(z)

(p− j)(1− w(z))
.

Now, assuming that max|z|≤|z0| |w(z)| = |w(z0)| = 1 and applying Jack’s
lemma, we obtain

z0w
′(z0) = ζw(z0) (ζ ∈ R, ζ ≥ 1). (4.4)

If we set w(z0) = eiθ (θ ∈ R) in (4.4) and observe that

Re

(
(1− τ)

1 + w(z0)

1− w(z0)

)
= 0,

then we have

Re

(
z(da,cp,µf)(j+1)(z)

(p− j)(da,cp,µf)(j)(z)
− τ

)

=
1

p− j
Re

(
[(p− j)(1− 2τ)− (γ + j)]z0w

′(z0)

(γ + p) + [(p− j)(1− 2τ)− (γ + j)]w(z0)
+

z0w
′(z0)

1− w(z0)

)
=

1

p− j
Re

(
[(p− j)(1− 2τ)− (γ + j)]ζeiθ

(γ + p) + [(p− j)(1− 2τ)− (γ + j)]eiθ
+

ζeiθ

1− eiθ

)
=

−ζ
2(p− j)

τ(p− j) + (γ + j)

(p− j)(1− τ)
< 0,

which obviously contradicts the hypothesis f belongs to S
(j)
p,µ(a, c; τ). The proof

of Theorem 4.1 is completed.

5 Majorization properties for subclass of ana-

lytic functions

In this section, we investigate the majorization properties of subclass of ana-
lytic p−valent functions defined by differ-integral operator.
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Theorem 5.1 Let f ∈ Ap and suppose that g ∈ S
(j)
p,µ(a, c;A,B) and |a+µp

µ
| >

|(A−B) + (a+µp
µ

)B|. If (da,cp,µf)(j)(z) is majorized by (da,cp,µg)(j)(z) in 4, then∣∣(da+1,c
p,µ f)(j)(z)

∣∣ ≤ ∣∣(da+1,c
p,µ g)(j)(z)

∣∣ for |z| ≤ r0, (5.1)

where r0 = r0(a, c, A,B, µ, p) is the smallest positive real root of the equation∣∣∣∣(A−B) + (
a+ µp

µ
)B

∣∣∣∣ r3 −
(∣∣∣∣a+ µp

µ

∣∣∣∣+ 2|B|
)
r2

−
(∣∣∣∣(A−B) +

(
a+ µp

µ

)
B

∣∣∣∣+ 2

)
r +

∣∣∣∣a+ µp

µ

∣∣∣∣ = 0.

(5.2)

Proof. Since g ∈ S
(j)
p,µ(a, c;A,B), we have

1 +
z(da,cp,µg)(j+1)(z)

(da,cp,µg)(j)(z)
− (p− j) =

1 + Aw(z)

1 +Bw(z)
, (5.3)

where w(z) is analytic in 4 with w(0) = 0 and |w(z)| < |z|(z ∈ 4). From
(5.3) and using (2.2), we get

|(da,cp,µg)(j)(z)| ≤
(1 + |B||z|)

∣∣∣a+µpµ

∣∣∣∣∣∣a+µpµ

∣∣∣− ∣∣∣(a+µpµ

)
B + (A−B)

∣∣∣ |z|
∣∣(da+1,c

p,µ g)(j)(z)
∣∣ . (5.4)

Next, since (da,cp,µf)(j)(z) is majorized by (da,cp,µg)(j)(z) in 4, we have

(da,cp,µf)(j)(z) = ϕ(z)(da,cp,µg)(j)(z).

Differentiating it with respect to z and multiplying by z, we get

z(da,cp,µf)(j+1)(z) = zϕ′(z)(da,cp,µg)(j)(z) + zϕ(z)(da,cp,µg)(j+1)(z).

Using (2.2) in the last equation, it yields

(da+1,c
p,µ f)(j)(z) =

(
µ

a+ µp

)
zϕ′(z)(da,cp,µg)(j)(z) + ϕ(z)(da+1,c

p,µ g)(j)(z). (5.5)

Thus, noting that ϕ(z) ∈ P satisfies the inequality (see [16])

|ϕ′(z)| ≤ 1− |ϕ(z)|2

1− |z|2
(z ∈ 4), (5.6)
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and making use of (5.4) and (5.6) in (5.5), we get

|(da+1,c
p,µ f)(j)(z)| ≤

|ϕ(z)|+
(

1− |ϕ(z)|2

1− |z|2

) (1 + |B||z|)|z|∣∣∣a+µpµ

∣∣∣− ∣∣∣(a+µpµ

)
B + (A−B)

∣∣∣ |z|


∣∣(da+1,c
p,µ g)(j)(z)

∣∣ .
(5.7)

which upon putting |z| = r and |ϕ(z)| = % (0 ≤ % ≤ 1) leads to the inequality

|(da+1,c
p,µ f)(j)(z)| ≤ Υ(r, %)

∣∣(da+1,c
p,µ g)(j)(z)

∣∣ ,
where

Υ(r, %) =
−r(1 + |B|r)%2 + (1− r2)

(∣∣∣a+µpµ

∣∣∣− ∣∣∣(a+µpµ

)
B + (A−B)

∣∣∣ r) %+ r(1 + |B|r)

(1− r2)
(∣∣∣a+µpµ

∣∣∣− ∣∣∣(a+µpµ

)
B + (A−B)

∣∣∣ r) .

In order to determine r0, we note that

r0 = max{r ∈ [0, 1] : Υ(r, %) ≤ 1 ∀% ∈ [0, 1]}
= max{r ∈ [0, 1] : Ψ(r, %) ≥ 0 ∀% ∈ [0, 1]},

where

Ψ(r, %) = (1− r2)
(∣∣∣∣a+ µp

µ

∣∣∣∣− ∣∣∣∣(a+ µp

µ

)
B + (A−B)

∣∣∣∣ r)
− (1− r2)%

[∣∣∣∣a+ µp

µ

∣∣∣∣− ∣∣∣∣(a+ µp

µ

)
B + (A−B)

∣∣∣∣ r]− (1− %2)r(1 + |B|r).

A simple calculation shows that the inequality Ψ(r, %) ≥ 0 is equivalent to

v(r, %) = (1−r2)
(∣∣∣∣a+ µp

µ

∣∣∣∣− ∣∣∣∣(a+ µp

µ

)
B + (A−B)

∣∣∣∣ r)−(1+%)r(1+|B|r) ≥ 0.

Obviously the function v(r, %) takes its minimum value at % = 1, we conclude
that (5.1) holds true for |z| ≤ r0 = r0(a, c, A,B, µ, p) where r0(a, c, A,B, µ, p) is
the smallest positive real root of (5.2). The proof of Theorem 5.1 is completed.

Setting A = 1− 2τ and B = −1 in Theorem 5.1, we will get the following
result:
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Corollary 5.2 Let f ∈ Ap and suppose that g ∈ S
(j)
p,µ(a, c; 1 − 2τ,−1). If

(da,cp,µf)(j)(z) is majorized by (da,cp,µg)(j)(z) in 4, then∣∣(da+1,c
p,µ f)(j)(z)

∣∣ ≤ ∣∣(da+1,c
p,µ g)(j)(z)

∣∣ for |z| ≤ r1,

where r1 = r1(a, c, 1 − 2τ,−1, µ, p) is the smallest positive real root of the
equation∣∣∣∣−(a+ µp

µ

)
+ 2(1− τ)

∣∣∣∣ r3 − (∣∣∣∣a+ µp

µ

∣∣∣∣+ 2

)
r2 −

(∣∣∣∣−(a+ µp

µ

)
+ 2(1− τ)

∣∣∣∣+ 2

)
r

+

∣∣∣∣a+ µp

µ

∣∣∣∣ = 0.

Setting τ = 0 in Corollary 5.2, we will get the following result:

Corollary 5.3 Let f ∈ Ap and suppose that g ∈ S
(j)
p,µ(a, c; 1,−1). If (da,cp,µf)(j)(z)

is majorized by (da,cp,µg)(j)(z) in 4, then∣∣(da+1,c
p,µ f)(j)(z)

∣∣ ≤ ∣∣(da+1,c
p,µ g)(j)(z)

∣∣ for |z| ≤ r2,

where r2 = r2(a, c, µ, p) is the smallest positive real root of the equation

r2(a, c, µ, p) =
κ−

√
κ2 − 4|ν||2− ν|
2|2− ν|

,

where ν = a+µp
µ
, κ = |2 + ν|+ |2− ν|, p ∈ N.

Remark 5.4

• Putting a = c = 0, µ = 1 and j = 0 in Corollary 5.3, we obtain the
results which obtained by El-Ashwah and Aouf. [8, Corollary 2.4 with
γ = 1];

• Putting a = c = 0, µ = 1, j = 0 and p = 1 in Corollary 5.3, we obtain
the results which obtained by MacGregor [15].

6 Open problem

Discussing some results as inclusion relationships and convolution properties
for the class S

(j)
p,µ(a, c;α;A,B), (−1 ≤ B < A ≤ 1, j ∈ {0, 1, ..., p − 1}, α ≥

0, µ > 0, a, c ∈ R, (c− a) ≥ 0, a ≥ −µp, p ∈ N).



14 Kota and El-Ashwah

References

[1] M. K. Aouf, R. M. El-Ashwah and A. M. Abd-Eltawab, Some inclusion
relationships of certain subclasses of p-valent functions associated with
a family of integral operators, ISRN Math. Anal., Article ID. 384170,
(2013), 8 pages.

[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer.
Math. Soc., 135 (1969), 429-446.

[3] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike Hypergeometric
functions, SIAM J. Math. Anal., 15 (1984), no. 4, 737-745.

[4] M. C. Chen, H. Irmak and H. M. Srivastava, Some multivalent func-
tions with negative coefficients defined by using a differential operator,
Panamerican Math. J., 6 (1996), no. 2, 55-64.

[5] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of
a certain family of integral operators, J. Math. Anal. Appl., 276 (2002),
432-445.

[6] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wis-
senschaften, Band 259 springer-Verlag, NewYork, Berlin, Heidelberg and
Tokyo, 1983.

[7] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-
Bouquet differential subordination, in General Mathematics 3, Interna-
tional Series of Numerical Mathematics, Vol. 64, Birkhäuser Verlag, Basel,
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