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Abstract

In the present paper, we aim at proving such results as inclusion
relationships and convolution properties for the class 6pu(a ca; ).

Then we study the integral properties for the class GPL(a c; 7). Also,
we tnvestigate majorization properties for subclass of analytic func-
tions defined by differ-integral operator.
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1 Introduction

Let A, be the class of analytic and p—valent functions in the open unit disc
A ={z:z¢€ Cand |z| < 1} which denote by

2)=2"+> a7 (peN={12.1}) (1.1)
k=1

We note that, A; = A is the class of univalent and analytic functions in A.
Also, let P denote the class of functions of the form:

) =1+) Pk, (ze D),
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which are analytic and convex in A and satisfy the following inequality:
Re{P(2)} > 0.

Let f,g € A,, where f is given by (1.1) and ¢ is defined by
g(z) = 2"+ Z D212,
k=1
then Hadmard product (or convolution) of the functions f and g is defined by

(F*9)(2) = 27+ 3 arapber?* = (g% £)(2).

k=1

Definition 1.1 [6] For two functions f and g, analytic in A\, we say that the
function f is subordinate to g in A\, written f < g, if there exists a Schwarz
function w(z) which is analytic in A\, satisfying the following conditions:

w(0)=0 and lw(z)| <1, (z€A),

such that

f(z) =gw(z)), (z2€d).
In particular, if the function g is univalent in /\, we have the following equiv-
alence:

f(z) <g(z) (zeld) < [f(0)=g(0) and f(A)Cg(A).

Definition 1.2 [15] For two functions f and g, analytic in A, we say that
the function f is majorized by g in A, written f << g (z € A), if there exists
a function @(z) which is analytic in /\, such that

p(2)] <1 and — f(z) = ¢(2)g(2); (2 €A), (1.2)

Taking p > 0, a, ¢ € C such that Re(c —a) > 0,Re(a) > —up (p € N) and
f(z) € A, is given by (1.1), El-Ashwah and Drbuk [9, with m = 0] introduced
the differ-integral operator 25 : A, — A, as follows:

e For Re(c—a) > 0 by

a,c _ P(C+Mp> ! a—1 c—a—1 n .
one (z)—r(a+ﬂp)r(c_a)/0t (1= el f(adt: (1.3)

e For a = c by
0,0 f(2) = f(2). (1.4)
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e For a =7, c=v+1and u = 1, we obtain a familiar integral operator
H,p defined by [22] as follows

Hopf(z) = 20 / AW (7> —pypEN)

27
- (1.5)
—2+ Y (pi}ily) Q2P

It is readily verified from (1.5) that

2 [0y f(2)] = (v + P)Ogs f(2) = 705 o f (2). (1.6)

Using (1.3), the operator 25 f(2) can be expressed as follows:

(¢ + up) s~ Ta+ p(k + p) -
00¢ f(z) = 2P + Qpipz P, 1.7
Ds ( ) a—l—up kz:; C—I—,u p) k+p ( )

~— | —

where p > 0, a, ¢ € C,Re(c —a) > 0,Re(a) > —up (p € N).
It is readily verified from (1.7) that

e = () epen) - (8) e @ )

We also note that the operator 97 f(2) generalizes several previously stud-
ied familiar operators, and we will mention some of the interesting particular
cases as follows:

(i) Fora= 3, c=a+ —~v+1and u =1, we obtain the operator Ry f(2)
(v >0; « >~ —1; 8> —p) which studied by Aouf et al. [1];

(ii) For a = B, ¢ = a+ B and u = 1, we obtain the operator QF  f(2)
(v > 0; > —p) which studied by Liu and Owa [13];

(iii) For p = 1, we obtain the operator fz’c f(2) which studied by Raina and
Sharma [20];

(iv) Forp=1,a= 3, c=a+ f and p = 1, we obtain the operator Q3 f(2)
(>0, > —1) which studied by Jung et al. [11];

(v) Forp=1,a=a—-1,¢= -1 and p = 1, we obtain the operator
L(a, B)f(2) (e, p € C\Zg, Zo = {0,—1,—2,...}) which studied by Carl-
son and Shaffer [3];

(vi) Forp=1,a=v—1,¢c=v and g = 1, we obtain the operator I, ,f(2)
(v > 0; v > —1) which studied by Choi et al. [5];
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(vii) For p =1, a = a, ¢ = 0 and p = 1, we obtain the operator D*f(z)
(av > —1) which studied by Ruscheweyh [21];

(viii) For p = 1, a = 1, ¢ = n and p = 1, we obtain the operator I, f(z)
(n € N) which studied by Noor [17];

(ix) Forp=1,a=0,c=p+1, and u = 1, we obtain the integral operator
Jz which studied by Bernardi [2];

(x) Forp=1,a =1, c =2, and u = 1, we obtain the integral operator .J
which studied by Libera [12] and Livingston [14].

Note that

fO2) = 8(p, )29+ 6k +p, ar,z" 777,
k=1

where
o(p,j) =plp—1)(p—2)..(p—j+1).
By making use of the operator 2,7, and the above mentioned principle of

subordination between analytic functions, we introduce and investigate the
following subclass of the class A, as follows:

Definition 1.3 A function f € A, is said to be in the class GL{L(a,c;a; o) if
it satisfies the following subordination condition:
A1~ @)(5N)I() + a(0gs <))
(1= a)@35.N)9(2) + a(@p )

for some a (o > 0) and j (j € {0,1,...,p — 1}) where ¢ € P.
For simplicity, we write

< (p—i)¢(z) (z€b), (19)

&Y (a,c;0;¢) = &Y (a,c;0),

. 1+ A -
Sl (001 ) = SflacaB) ((1=B<A<,

—_

and

p, Y

, 1+ (1-2 ;
G(JL <a,c; 0; M) =&Y (a,¢;7), (0<T<1).

Remark 1.4 (i) Puttinga =c¢, a0 =0, u =1 and ¢ = %:ZQT)Z, 0<71<

p—17), the class GI(J{ZL(OL, c; a; @) reduces to the class S(p, j, 7) which studied by
Chen et al. [4];
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(ii) Puttinga=c, p =1, a=7=0 and ¢ = %:ST)Z, (0 <7 < p), the class

6§{L(a,c;a; ¢) reduces to the class S,(T) which studied by Patel and Thakare
[19];

(iii) Putﬁnga:c:jzo,u:ozzl andgb:%, (0 < 7 < p), the
class G£{L(a, c; ;@) reduces to the class IC,(T) which studied by Owa [18].

In order to establish our main results, we shall also make use of the following
lemmas:

Lemma 1.5 [7] Let 5,6 € C. Suppose that ¢(z) is convexr and univalent in A\
with

#(0)=1 and Re(Bo(z)+9d) >0 (z e ).
If P(z) is analytic in A\ with P(0) = 1, then the following subordination:

2P'(z2)

PE* Bpe) +

< ¢(z) (z € D)
implies that
P(z) < ¢(2) (z € A).

Lemma 1.6 [10] Let w(z) is analytic function in U, with w(0) = 0. If |w(z)|
attains its maximum value on the circle |z2| = r < 1 at a point zy € U, then
zow'(z0) = Cw(zp), where ¢ is a real number and ¢ > 1.

In the present paper, we aim at proving such results as inclusion relation-
ships and convolution properties for the class (‘55,], L(a, c;a;¢). Then we study
the integral properties for the class Gé{L(a,c; 7). Also, we investigate ma-
jorization properties for subclass of analytic functions defined by differ-integral
operator.

Unless otherwise mentioned, we shall assume throughout the paper that
>0, a, ce€Rsuchthat (c—a) >0,a> —up(peN), -1 < B<A<1and
a > 0.

2 A set of inclusion relationships

We prove some inclusion relationships for the class 61(3{ L(a7 ¢; a; @), which was
given in the previous section.

Theorem 2.1 Let ¢ € P with

. + . .
Re (<p—y>¢<z> et —p+j) >0 (@> 05 € {0.Lp-1kiz € A),

then ' .
&Y (a,c;a;0) C &Y (a,c;0).
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Proof. Let f € Gé{L(a,c;a; ¢) and suppose that

205500 (2)
(p = ) @)V (2)
The function 7 is analytic in A and 7(0) = 1. By using (1.8), we obtain

Z(ﬁ;:;f)(]"rl)(z) = (#) (0;,—;170]6) () (Z)- (% +]> (o;:Zf> (4) (2)

n(z) = (z € D). (2.1)

(2.2)
(7 €40,1,....,p—1}).
It follows from (2.2) and (2.1) that
a . ~ (a+pp\ @3NV (2)
it = (S2) s 2
From (2.1) and (2.3), we can find that
20 NI (2)
=D af )4 {4 = o) b | @D )
(2.4)
It now follows from (2.2), (2.1), (2.3) and (2.4) that
2 [(1 = a)(05e UV (2) + a(@gt e /)UH(2)]
(p—J) [(1 = ) @55V (2) + (05 ))D(2)]
—am(a) + g2 [ )+ {E i+ =) (=)
O—a%hmw[+3+@ ﬁ(@}
() + [<1—a>+;,%p{ +5+ (= (=)} n(2)
(L= )+ 22 245+ (p— jn(2)]
— 9(2) + G 2'(2) < 6(2) (ze ). (2.5)

—p+ji+@—Jnz)

Moreover, since

| + | |
Re ((p=)6) + 2 <) >0 (@200 € 0 1p-1hiz € ),
by Lemma 1.5 and (2.5), we have

2(0%< f)UT(2)
(p— 7)(Opf)D(z)

n(z) = < ¢(2),
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that is, f € Gé{L(CL, ¢; ). This implies that
& (a, ;5 9) C &) (a,¢; ).
The proof of Theorem 2.1 is completed. m

Theorem 2.2 Let ¢ € P with

Re ((p—j)qb(z)—l—;#—j) >0 (1 €{0,1,....,p—1};z € A),

then A .
GP{L(CL +1,¢0) C GI(J{L(@,C; ).
Proof. Let f € Gé{L(a +1,¢;¢), then we obtain
2(ogthe U (z)
(p = 3) (@5 F)V(2)

Differentiating both sides of (2.3) with respect to z logarithmically and using
(2.1), we obtain

< ¢(2) (z € A). (2.6)

o) Aepiti)
R e R EIC R
From (2.6) and (2.7), we have
n(z) + 2 (2) < 6(2) (z€ D). (2.8)

a4+ @—in(z)
Moreover, since
. a .
Re((p-J)o() + 2 41) >0 (e d)
by Lemma 1.5 and (2.8), we know that

205V (2)
(P = 7)@pkf)(2)

that is, f € GL{L(CL, ¢; ). This implies that

n(z) =

< ¢(2),

(4) . (4 .
&l (a+1,¢09)C prl(a,c, ).

The proof of Theorem 2.2 is completed. m
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3 Convolution properties

In this section, we introduce some convolution properties for the class Gg L(a, e o).
Theorem 3.1 Let [ € 6,%(@, c;¢). Then

ey (s teap (tp 3y [ A =1V ($3 D0 et s 1)
f()(z)—<2 %P((p J)/O ¢ dC)) (;F(c+ﬂp)r(a+ﬂ(k+p>> N >

(] € {07 17 P = 1}1'2 € A):

(3.1)
where w is analytic in A with w(0) =0 and |w(z)| < 1.

Proof. Suppose that f € &) (a, ¢; ¢) and from (1.9) with (o = 0) we have

2@ )V (=)
(p = 7) @)V (2)
where w is analytic in A with w(0) = 0 and |w(z)| < 1. We can easily find that
U NI(E)  po
@Opuf)V(2) z

upon integrating (3.3), we have

=ow(z)  (z2€d), (3-2)

—p- )L ey @y

(057 ) 7 (2) = 2 .eap ((p —J) /0 Z —gb(“(?) - 1d<) . (3.4)

On the other hand, we know from (1.7) that

oo

ae YOy — Lt mwp)l(a+ ulk +p)) papi ), 1),
(ap,uf)( )(Z) = (g F(a+up)r(c+u(k+p))z ) f( )( )- (3.5)

The assertion (3.1) of Theorem 3.1 can now easily be derived from (3.4) and
(3.5). m

Theorem 3.2 The function [ € 6;%(61, c; @) if and only if

1 () % OO [(c+ pup)l'(a+ pu(k +p)) i (p— D)) i
pors [f () <; Tlat gp)T(c plhtp) F TP =7 = (P =3)6() )] 70

(7€4{0,1,...,p—1}z€ N;0<0 < 27).

(3.6)
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Proof. Suppose that f € GIS,{L(CL, ¢; ¢) and from (1.9) with (o = 0) we have

2(035.1) 5 (2)
(v~ )EENO()

< ¢(2) (z € D), (3.7)

is equivalent to

2055 )V (2)

(P = ) @pkf)V(2)

The condition (3.8) can be written as follows:

£ ¢(e?) (z € ;0 <0< 2m). (3.8)

ﬁ:kwmn“m@%wp—ﬁmmﬁ@@w@%}#0 (2 € A0 <0 < 2m).
(3.9)
On the other hand, we know that
we mGin [ ~=Tle+up)T(a+ pulk+p)) I N
e = (% ['(a+ up)T(c+ u(k +p)) (ktp =)™ |« JP(E).
(3.10)

Upon substituting (3.5) and (3.10) into (3.9), we can easily get the convolution
property (3.6). The proof of Theorem 3.2 is completed. =

4 A set of integral preserving properties

In this section, obtain integral preserving properties involving the integral
operator H,, which given by (1.5). It is readily verified from (1.6) that

2[00t 19 (2) = (7 + p) 5D (2) = (v + 5 OLEH, , )D(2). (41)

Theorem 4.1 If f € 6,(9{,)1(@, c;T), thenM,,f(2) € Gé{,a(a, ¢;7), where Ho pf(2)
is defined by (1.5).

Proof. Suppose that f € 6;{;{(@,0; 7) and set

200 Hyp /)T (2) 14 (1 - 27)w(z)

P N@HL O | ) 2
where w(0) = 0. Then, by using (4.1) in (4.2), we obtain
(20 )9 (2) _ 0+l =)0 =20) = v+ lwlz) g

(P — ) @OpH, )V (2) (p—7)(v+p) (1 —w(2))
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Differentiating (4.3) with respect to z, we obtain

2000 U (2) 14+ (1-2n)w(2)
(p=7)@p)D(z) 1 w(z)
[(p—J)(1 —27) — (v + j)]2w'(z) N 2w (2) |
P =) (v+p) + =L =27) = (v+D)w(z)]  (p— )1 —w))
So that

2050 V() 14 w(z)
(p = 7)(Opf)9)(2) w(z)
[(p—j)A=27) - (v + J)] w'(2) n zw'(z)
=0 (y+p) +p=)1=27) = (y+Dw)]  (p—)1—w)

Now, assuming that max.<|., |w(z)| = |w(z)| = 1 and applying Jack’s
lemma, we obtain

:(1—7')

20w’ () = Cw(z)  (CER,(>1). (4.4)
If we set w(zp) = € (§ € R) in (4.4) and observe that

Re <<1 - T)i—m) o,

then we have

205NV
fe (<p—j><az:z 01(2) )
B e [(p — J)(1 —27) — (v + j)]20w'(20) zow' (o)
Ty <(’v+p) =)0 =27 — (7 + )wiz) | 1 —w(z0)>
_ 1 p [(p— 7)1 —27) — (v + j)IGe” (el
T ((7+p) T p-NA-20)—(y+ P 1 —ei‘g)
L =i+ (+))
2p—j) (—j)1-7)

which obviously contradicts the hypothesis f belongs to Gg L(a, ¢; 7). The proof
of Theorem 4.1 is completed. m

< 0,

5 Majorization properties for subclass of ana-
lytic functions

In this section, we investigate the majorization properties of subclass of ana-
lytic p—valent functions defined by differ-integral operator.
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Theorem 5.1 Let f € A, and suppose that g € Gé{L(a, c; A, B) and \%\ >
|(A— B) + (%@)J_ﬂ If (00 f)9)(2) is majorized by (0%69)9(2) in A, then

@502 C)] < |05 )] for el < o 6.1)

where o = ro(a, ¢, A, B, u,p) is the smallest positive real Toot of the equation

(A— B) + (2|3 —<"+’”‘p’+2|3|> 2
1

1
- (‘(A—B)Jr (H“p) B‘+2>r+‘ +“p‘ 0.
fu u
(5.2)
Proof. Since g € G](f,‘,)i(a, ¢; A, B), we have
(aacg)(j+1)<z) . 1+ Aw(z
14+ 201Dy L Au) (53)

(0p9)9(2) 1+ Buw(z)

where w(z) is analytic in A with w(0) = 0 and |w(z)| < |z|(z € A). From
(5.3) and using (2.2), we get

(1+[B|z])

a+pp
w

|(atleg)I(2)] . (5.4)

ae ()
[(09) ()] < g

a+up
1

~|(=22) B+ (A~ B)|I4
Next, since (D;Z;f)(j)(z) is majorized by (Dg:;g)(j)(z) in A, we have
550 (2) = (=) (055.9)Y(2).
Differentiating it with respect to z and multiplying by z, we get
205519V (2) = 29 (2)(055.9) YV (2) + 20(2) (055.9) TV (2).

Using (2.2) in the last equation, it yields

(055 HV(2) =< . > 2 (2) (@597 (2) + 0(2) (05 9) P (2).  (5.5)

a+ pp

Thus, noting that ¢(z) € P satisfies the inequality (see [16])

() < 1Pl (= € ), (5.6)

R s
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and making use of (5.4) and (5.6) in (5.5), we get

s o (SR (ot

I
(@559 V()]

(5.7)

which upon putting |z| = r and |p(2)| = ¢ (0 < o < 1) leads to the inequality

(051 HV ()] < X, 0) [(051 ) ()]

—r(1+ |Blr)e* + (1= %)
(1= (

atpp|
I

(wp) B+ (A- B)‘ 7~> o+r(1+|Blr)
( ; >B+(A—B)‘r) '

a

In order to determine ry, we note that

ro = max{r €0,1]: T(r,0) <1Voe[0,1]}
= max{r € [0,1] : U(r,0) > 0 Vo € [0,1]},

)

} (L= AL+ |Blr).

where

v = (1) (
—(1-7%)0 [

ft ft

“Wp’_’(““p)BHA_B)
p p

cr| (g

A simple calculation shows that the inequality W(r, o) > 0 is equivalent to

)B+(A—B)

v(r, 0) = (1-1?) ( r) —(14+0)r(1+|BJr) > 0

a+up‘_‘(a+up
u 1t

Obviously the function v(r, ¢) takes its minimum value at ¢ = 1, we conclude
that (5.1) holds true for |z| < ro = 1¢9(a,c, A, B, u, p) where ro(a, ¢, A, B, u, p) is
the smallest positive real root of (5.2). The proof of Theorem 5.1 is completed.
]

Setting A =1 — 27 and B = —1 in Theorem 5.1, we will get the following
result:
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Corollary 5.2 Let f € A, and suppose that g € 650{21(@7@1 — 27, —1). If
(d2e )9)(2) is majorized by (0%:9)9)(2) in A, then

@5 (2)] < (55 9) V) (2)] for |2] <,
where r1 = ri(a,c,1 — 21, —1,p,p) is the smallest positive real root of the
equation
’— <a+“p> +o(1—7)|r® - ( a+Mp‘+2>r2— <‘— (a+“p) +2(1-7) +2)r
1 t 1
a+ pp

+

o
0

Setting 7 = 0 in Corollary 5.2, we will get the following result:

Corollary 5.3 Let f € A, and suppose that g € Gé{,l(a, e 1, =1). If (055 )0)(2)
is magorized by (Dg:;g)(J (2) in A, then

(@212 £)) ()| < [(@2412g) D) (2)| for |2] < 7,

where ro = 19(a, ¢, u, p) is the smallest positive real root of the equation

K — /K2 — 4|2 — v
2|2 — v ’

ro(a, ¢, ju,p) =
whereuz%, k=12+v|+|2—v|,peN.
Remark 5.4

e Puttinga = c =0, =1 and j = 0 in Corollary 5.3, we obtain the
results which obtained by El-Ashwah and Aouf. [8, Corollary 2.4 with

v=1];

e Puttinga=c=0,u=1,5 =0 and p =1 in Corollary 5.3, we obtain
the results which obtained by MacGregor [15].

6 Open problem
Discussing some results as inclusion relationships and convolution properties

for the class 65,{,)‘(&, c;a;A)B), (1< B<A<1,j€{0,1,..,p—1},a >
07u>07aacER7 (C—CL>ZO,GZ—/JJp,pEN)-
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