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Abstract
Using Chebyshev polynomials and q—differential operator, we
define a new class of bi-univalent functions defined in the open
unit disk. Initial coefficient bounds and Fekete-Szego inequalities
for this functions class are obtained.
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1 Introduction

Let A be the class of functions of the form
f2)= +> ", (1.1)
k=2

defined in D = {z € C: |z| < 1} and S C A consisting of univalent functions
in D. For every f € S J an inverse function f~! which is defined in some
neighbourhood of the origin satisfying

fHf(R) =2 (2€D),
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and

),

A,

W) =w, (wl <ro(f); ro(f) =

where
fHw) = w—agw? + (245 — az)w® + ... (1.2)

A function f € A is called bi-univalent in D if both f and f~! are univalent
in D. Denote the class of bi-univalent functions by o.

A function f € A is said to be in the class Cy(a) of close-to-convex of
order «v ( [21]), if there exist a function R € S* such that

/

?R{Zf(z)}>oz, 0<a<l; zeD), (1.3)
9(2)

where S* the class of starlike functions (see [18] and [4]).

It is known that the calculus without the notion of limits is called g—calculus
which has influenced many scientific fields due to its important applications.The
generalization of derivative in g—calculus that is g—derivative was defined and
studied by Jackson [20]. He defined the g—difference (derivative) operator V,
for f € A, 0 <q <1, by (see also [3], [5-7], [10], [17], [25-27]);

f(zi:g(gz) 20

v = {0

that is o
Vof(z) =1+ [Klyarz*, (1.4)
k=2
where . ;
: —q
ile=7=¢ =0 (L5)

Asq— 17, [jl, =7 and V,f(2) = f (2).

The orthogonal polynomials are important for the contemporary mathe-
matics. These polynomials play an essential role of complex functions theory
and it occur in the theory of differential and integral equations (see [11,14]).

A special case of orthogonal polynomials are Chebyshev polynomials.

The significance of Chebyshev polynomial in numerical analysis is increased
in both theoretical and practical points of view. For a brief history of Cheby-
shev polynomials of the second kind Ug(r) and applications one can refer
[13,15,22]. The Chebyshev polynomials of the its second kinds is well known
and they defined by

_sin(k+1)0

Uk(t) sin 6

(—1<.< 1), (1.6)

where k£ denotes the polynomial degree and ¢ = cos 6.
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We note that if ¢ = cos o, where o € (—7/3,7/3), then

1 L sin(k 4+ Da
0(z:0) + ; sna

1 —2cosaz + 22

Thus
$(z,1) =1+ 2cosaz + (3cos’ a —sin® a)z? + ...

From [29], we can write
o(z,0) =1+ U ()2 +Us(1)2? + ... (ve(—1,1)),

where
sin(k cos™1 1)

V1—12

are the Chebyshev polynomials of the second kind,
Uk(t) = 20Ux—1(t) — Ug—2(1),

Uk—l — (k € N)=

and
Ui(t) =2, Up(r) = 4> —1, Us(t) = 83 —4u, Uy(t) = 1604 12241, ... (1.7)

Now for f € A, we define g—differential operator D
0<q<1, by

quoréz,uzo,

Diugf(2) = f(2),
D ugf(2) = Dopaf(2) = (1= )’ f(2) + (1= (1= )°)2V, f(2),
Dg,u,qf(z) = DéaﬂvQ(Dé,u,qf(z))’
and
D5, 0f (2) = Dopua(Ds 0 f(2), C€N={1,2,3,.. }.
For f(z) given by (1.1), we have

D¢, f(z —2+Z 1) ()] ar, CeNg=NU{0}, (1.8)

where

— Z ( > 17+ . (1.9)

Note that:

(1) limgyy— D(;Mf(z) = nguf(z) (see Frasin [16]);

(3) D () = DEF(2) oo 1], 5] S

(iii) D 1uq f(z) =D, f(2) (see Aouf et al. [9] );

(iv) limg 1 quf( z) = D5, f(z) (see Al-Oboudi [1] ).
(v) limgyy— DY, f(2) = DS f(2) (see Salagean [24]).
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Definition 1. ([12]) For f and g, analytic in D, the function f is subordinate
to g in D written f(2) < g(2), if there exists a Schwarz function w(z), analytic
in D, with w(0) =0 and |w(z)| <1 such that f(z) = g(w(z)) for all z € D.

Definition 2. For 0 < A <1,d>p>0,0<g<1,( €Ny and. € (—1,1),
f € o given by (1.1) for z € D, we say that f € BS (8, 1, X; ¢(2,10)) if

and

¢ z
1= 0 2esl® o 8, 12 < oz, (1.10)
DR
(1-=X) - + AV, (D Mq%(w)) < P(w, 1), (1.11)

R(w) = f1(w) is defined by (1.2).

For A =1, Bg’q(é, i, A; ¢(z, 1)) reduces to the following class.

Definition 3. A function f € o given by (1.1), we say that f € Bg,q(c?,,u; (z,1))

of

Vo(D i/ (2)) < 6(z,0),

and

V(D5 R(w)) < d(w, 1),

where z,w € D and R(w) = f~H(w) is defined by (1.2).

Note that:

Rl e { %ﬁj)) <(11— AA;D: ; S :Z Epija;(aj)) iq;(zwb)o }
o~ )t S )
i B %“’25?5 ?_‘ s “Eiii;;iw?; o

w):(1— A)D“’““ + ADR(w))’

( < ¢(w
| | _] F@ =N ear <¢w
(V) N1 B3y (8, 11, X5 6(2, 1)) = ) (1= 22 g (w) < 6w, 1) }

In the following obtain coefficient bounds for the functlon class 15’< (0, 1 A (2, 1)

(1-
L
(iv) limgy1- BS (1,1, X5 (2, 1)) = { f(2)

and some of its special classes.

(
(1= NELE L ADEF(2)) < (z,0) }

>};
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2 Main Results

Unless indicated, we assume that 0 < A< 1,0 >pu>0,0<qg <1, (€ Ny,
L€ (—1,1) and f(z) € o given by (1.1).

Theorem 2.1. Let fe BS (8, 1, \; ¢(z,1)) and v € (0,1). Then

oo < S
2| <
{10+ (Bl = D S00] 1+ Al = D] = [1+acd(w)] ™ (1+Ag)* f 422
+ [1 + qcf-(,u)]2C (1+ )\q)2
(2.1)
and
41 20
|az| < P 2C s T 5 ¢ ’
[L+acf(W)]” A+ A" [1+([Blg = 1) ()] [1+ A([3], — 1)2 |
2.2
where ¢ # 1//2.
Proof. Let BS (0, jt, \; ¢(2,1)) and R = f~'. Considering (1.10) and (1.11),
we have )
D
(1~ A)—f” +AV,(D5,,f(2) = 6(z,0), (23)
Dg R(w) ¢
(1— )\)% + )\Vq(D&MER(w)) = o(w, 1), (2.4)
for some analytic functions
p(2) =criz+ 2 + 32’ + ... (z€D), (2.5)
and
qw) = diw + dow® + dzw® + ... (w € D), (2.6)
such that [p(z)] <1 (2 € D) and |g(w)| < 1 (w € D), hence
lc;l <1and |d;| <1 forall jeN. (2.7)
From (2.3), (2.4), (2.5) and (2.6), we have
D
(1— A)‘S”‘%ﬂz) FAV (DS, f(2) = L+ Ui(Derz+ [Ui(t)es + Uz ()c] 22 + .
(2.8)
and
S ual
(1—)\)M+Avq(l)§%q%(w)) = 1+U1(L>d1w+ [Ul(b>d2 + UQ(L)dﬂ w2+....

(2.9)

Y
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Equating the coefficients in (2.8) and (2.9), we get

[1+ qcf-(,u)}C (14 Ag) ag = Uy (t)cq, (2.10)
[1+ (8l = D ()] [L+ A8l — D] as = Ui (0)es + Ua()e,  (2.11)
—[1+ qc?(#)]c (L +Ag) ag = Ur(v)dy, (2.12)

and
[+ (1Bl = D ()] [1 4+ A([8]y = 1)] (203 — a5) = Ui(1)da + Ua(). (2.13)
From (2.10) and (2.12), we obtain
C1 = _d17 (214)

and
2[1+ ()] ™ (1+ Ag) a3 = UR(0) (& + ). (2.15)
Also, by using (2.11) and (2.13), we obtain
2[1+ ([ = D W] 1+ M[Bly — D] 6§ = Ui(1)(e2 + da) + Vs (1)(} + &),

(2.16)
By using (2.15) in (2.16), we get

{20 @l - 0] 1 A3 - 0 - T2 [+ ] 14 20 f
= Ui(t)(ca + do). (2.17)
From (1.7), (2.7) and (2.17), we have (2.1).
Next, by subtracting (2.13) from (2.11), we have
2[1+ (3~ 1) %o]c (14 M3y = D] as =2 [L4+ (B = D ()] [+ A3, — ] a3
= Ul(L)(CQ — dg) =+ UQ(L)( ) (218)
Further, in view of (2.14), we obtain
2 Ui ()
as = as + cy — do). (2.19)
21+ ([8l, — 1) ()] [1+ (3, —1)](
);

Hence using (2.15) and applying (1.7), we get (2.2).
Theorem 2.2. Let fe BS (6, 1, \; ¢(z,1)) and n € R. Then

4u[h(n)] [h(n)] =

2 1
. ;0 < [h(n)] <
—nad| < { [14+(181g—1)e (1) [14A([3],—1)] [1+([3]q—1)61‘5(u)]C[1+>\([3}q—1)]

2[1+([8]g~1)ed ()] 1+ A(Blg— 1))
(2.20)
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Proof. —By using (2.17) and (2.19) for some 1 € R, we get

UP (1) (co + da)

az—mna; = (1—n) URT: -
) { (14 (8, = ) ()]’ [1+ A, = DIUE) }
—[1+ad(w)]™ (14 20)* V(1)
n Ur(¢)(c2 — do)
2[1+ (13l = 1) ()] [1+ (3], = 1)]
— U() <h<”> ! 2[1+<[31q—1>c§-<;>]c[1+A<[31q—1>1> ol e
* (h(n) a 2[1+([3]q1>c§(;>]<[1+x([3]q1>1) a2
where
h(ﬁ) _ U12<L)(1 — 77) )
2{ [1+ (3g = D (W] [1+ A1)y = DIUZ() = [1+ e ()] ™ (1+ 2 Ua(0) |
(2.22)
So, we conclude (2.20).
For n =1, we have
Corollary 2.1. If f€ BS (8, 11, X; ¢(2, 1)), then
2
|ag — a3| < (2.23)

[1+ (81, = 1) ()] [1+ A([3), — 1))
Corollary 2.2. If f€ B, (6,115 ¢(2,1)), then

4L h ) h > '
|h(n)] [h(n)] = 2[3]q[1+([3}q—1>6§-(W]C

2L 1
,0 < [h(n)] <
las — nal| < { Bl [14+([Blg— Dl ()] 2[3]q[1+(3lg— el ()] (2.24)

where
2413, [1+ (18l = D ()] UF) = [1+ qed()] ™ (1 + 0 V() }
(2.25)
Corollary 2.3. If f€ B2 (6,115 ¢(2, 1)), then
" o 0 S O] < e
jas = nas | < { Wil ) 2 e (229
where
Ut (1)1 —n)
h = . 2.27
Y (TS Ve I2p BT AR PR
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3 Open Problem

The authors suggest finding the hankel determinant for the class

¢ z
R {(1 - A)D‘*%f() - wq(pg%qﬂz))} >0, (3.1)
where
ngqf(z) =z+ Z [1 + ([k];— 1) c?(u)}cakzk, (eNy=NuU{0}, (3.2

(1) = Z ( ’ ) (1) (3.3)

is the g—differential operator in [16]. Also, further investigation of other classes
of orthogonal polynomials are suggested (see [2]).

4 Conclusion

By means of Chebyshev polynomials and ¢— differential operator in [16], in
this paper, we defined a class of bi-univalent functions and its special classes
and obtained coefficient bounds for it.

Acknowledgement. The authors wishes to thank Prof. Dr. M. K. Aouf
for his kind encouragement and help in the preparation of this paper.
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