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Abstract
In this paper using a g—analogue operator, we define class of uniformly
analytic functions and find coefficient bounds, radius of convexity, closure the-
orems and other properties for functions in this class.

Keywords: Analytic function, univalent functions, coefficient estimates, ra-
dius of convexity, closure theorems, q—analogue operator.

2020 Mathematical Subject Classification: 30C45.

1 Introduction

Let S denote the class of functions of the form
Flz) =2+ ap?, (1)
k=2

which are analytic univalent in D = {z € C : |2]| < 1} normalized by f(0) =
f/(0)—1 = 0. Tt is known that the calculus without the notion of limits is called
g—calculus which has influenced many scientific fields due to its important
applications.The generalization of derivative in g—calculus that is ¢g—derivative
was defined and studied by Jackson [12]. He defined the ¢g—derivative operator
V,for FeT, 0<q<1,by (see also[3, 4, 5, 6] [10],[16], [20, 21]);
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F2)=F(g2) 240

v = {07

that is
= Z qakz ) (2)
k=2
where
e
7y = 1= [0l =0. 3)

/

Asq— 17, [jly=7 and V, F(z) =F (2).
Using the g—derivative operator V,, Mostafa and Saleh [14] defined the

g operator for A > 11> 0,0 < ¢ <1, by

H)\uqf( ):‘F(Z)a
H}\’u,q}*(z) =My pgF (2) = (L= A+ p)F(2)+ (A — )2V F(z) + /\MZ2V2]:(Z),
H)\,uqF(Z> = H)MNQ(H ‘F( ))

Ang
and
Kfu,q‘F(z) = HA,M Q(H;\nu (IJ‘F( ))
= Z- ngfk()vﬂ)akzk,m €N,
k=2
(4)
where
X 1) = [1 = A+ p+ [k (A — p+ Aplk — 1] )]™. (5)
Note that:

(i) llmq_>1 HY, J(2)= Hi\’fu}"(z) (see [1]);

(i) #ioq 7 (2) = Dy F(2) (see [11], [22) and [8] )

(iil) HYp F(2) = D"fq]:(z) (see Aouf et al. [9] );

(iv) limg,;— HY . F(2) = DYF(2) (see Al-Oboudi [2] );
(v) limg - H ,F (2) = D™F(z) (Salagean ([15])).

Definition 1.1. For 0 < ( <1, A>p>0,0<g<1l,me Ny, 0<8<
L,k >0 and F € S, such that HY', ,F(z) # 0 for z € D/{0}, we say that F €
Gy (A, B, 5, Q) if

R g o) 2

2V ,G(2)
G(2)

—1 ) (6)
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where,

G(z) = (1_C)Hq/\u ()‘I‘sz Hqu‘F(>

- z—zqum 1+ (K], — Dl anst, ™

Note that: For different values of ¢, A\, i, 8, k, ¢, we have:
) limg 1o GO, 8,5, Q) = GO, B, Q) = { F(2) s Re {55 = 8} > v |29 1|}
i) G1(0,0, 8,%,0) = Gy (8, 8) = { F(2) : Re {2 — g} > e |07l 1|

(i
(
(iii) G7*(0,0, B, K, 1) = C;™(B, k) = {.7—"( ): Re {%‘1@()) — 5} > g |YaleVel(2) 1‘}
(
(

V4¢F(2)
iv) limg ;- GJ'(A, 0, 8,K,0) = S™(A, B, k), (see Aouf and mostafa [7]);

v) Gy(1,0,5,0,0) = S;(B) = {}_( ) : Re{zv f(z))} > 6} (Seoudy and
Aouf [17]);

(vi) G;*(0,0,8,0,1) = K (8) = {.7-"(2) : Re {% - ﬂ} > O} , (Seoudy
and Aouf [17]).

In the rest of the paper, we find coefficient bounds, radius of convexity, clo-
sure theorems and other properties for functions in the class G;™ (A, i, 8, %, ().

2 Main Results

Unless indicated, we assume that 0 < ( < 1, A > pu>0,0< g <1, m €
Np,0< 8 <1,k>0,and z € D.

Theorem 2.1. Let F € S given by (1). Then F € GJ'(A, u, B, K, C) if

> K — (K + B+ C([Fg = DIxge A p) lar] <1 =5 (8)

k=2
Proof. Let (8) holds. Then it suffices to show that

—1}§1—ﬁ.
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We have
qug(z)_ — Re qug('z)_

"1Tem ! R{ G(2) 1}
< (40| TGE2 |

(U4 ) S5 ([Kly — D) [+ C([Klg — D] X0 ) Jag] |14

1= >, [+ Gkl — DO o) a2

() S (kg — 1) [ Gl — D] XA p) o
= L= S+ C(Fly = Db ) fan]

From ( 8) the last expression is bounded above by (1— /). Hence F(z) satisfies
the condition (6).

Corollary 2.1. Let F € GJ*(\, i1, 8, K, (). Then

1-5
[0+ ) — s+ AT+ GO, — Dl =2 )

The result is sharp for

ap <

1-p

[K]y(L+r) — (5 + B)] L+ C([Klg — DX () (k=>2). (10)

F(z)=z+

Let
2)=z+ iak,jzk, (ak; >0, j=1,2,...,n), (11)
Theorem 2.2. Let F;(z) € GJ'(A, i, 8,K,C), 5 =1,2,...,n. Then
D=YAFE) (@0 (12
j=1
is also in the class GJ'(\, p, B, k, C), where
idj:L (13)
j=1

Proof. According to (12), we can write

2)=z+ Z (Z djak,j> o (14)
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Further, since F(z) € GJ*(\, p1, B, K, (), we get

SR+ 7)) = (5 + B [+ Gl — DIk, <1 - 6. (15)

k=2

Hence

Z[[k]q(1+/<¢)—(/<;+,6)] [1+ C([Flg = DI xgr(A 1) (Zd akg>
= Zd [Z o1+ 5) = (k+ B [1 + (([Kg = 1)] X?k(A7M>ak,j]

< (Z dj> 1-8)=(1-5), (16)

which implies that g(z) € GJ'(A, i1, B, &, (). Thus we have the theorem.

Theorem 2.3. The class G;”()\, i, B, K, C) is closed under convez linear comp-
mation.

Proof. Let F;(z) € GJ'(A\, 1, 8,5, (), j = 1,2 and
9(2) = CF(2) + (1= OF(2) (0<C<T). (17)

Then by, taking n = 2, dy = ¢ and do = 1 — ¢ in Theorem 2, we have
9(2) € GJ(A\, p, B, K, Q).

Theorem 2.4. Let Fi(z) = z and

(1-5)
[Kla(1 + %) = (5 + B [1 + C([K]g — DIxGi(X, 1)
(18)

Then F(z) € GJY(\, p, B, K, Q) if and only if it can be expressed in the form

Fr(z) =2+ 2 (k> 2).

2) = mFu(2), (19)

where i >0 (k> 1) and

> =1 (20)
k=1
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Proof. Suppose that

= (1-2) k
Z>—;’7kfk —”Z ST+ 8) = (4 B[+ C(Rlg — DO ) ™

Then it follows that

o1 +5) — (5 + B 1+ C([Kly — DIxgh(d 1)

MM8

(1-5)
(1-5) .
[K]o(1+ k) = (5 + B [T+ C([Kly — DI )
= > m=1-m <1 (21)
k=2

So by Theorem 1, F(2) € GJ*(A, i, B, K, C).
Conversely, assume that F(z) € G'(A, i1, B8, &, (). Then

(1-5)
(K1 + &) = (5 + B[+ C([K]g = DI xgi (X, 1)

ap < (k> 2). (22)

Setting

(Ko + 5) = (5 + B)] [+ (Kl — D] 1)
T (1-5)

ar (k> 2), (23)

and
o0
= I- Z Mk,
k=2
we see that F(z) can be expressed in the form (19). This completes the proof.

Corollary 2.2. The extreme points of GJ'(\, i1, B, K, C) are Fi(2) (k > 2) given
by Theorem 4.

Theorem 2.5. Let F(z) € GJ'(A, i1, B, k,¢). Then for 0 < p <1, k>2, F(z)
18

(1) close -to- convex of order p in |z| < 11, where

(&1 :Tl(m,)\7ﬂ76,/€,g7,0) = Hgf [k;]q(]_ _B)
(24)

(1= p) [[Klg(1 +r) = (s + B) 1+ C([Klg = DI xgie (A ) 157
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(1) starlike of order p in |z| < re, where

T = p) [+ k) = (5 + B)] [1+ C([Kly — D] (A, )]0
o=l o B op) = i | T~ 7)1 B) |

(25)

(i7i) convex of order p in |z| < r3, where

1—p) [Klg(1+ &) = (v + B)] [+ C([Klg = DI xgr (A, u)] = |

[
r3 = 7a2<m7)\7,u75757<-710) = H’if { [k]q([k]q +1— ,0)(1 — 5)

(26)
The results are sharp, for F(z) given by (10).
Proof. To prove (i) we must show that
‘]—'/(z) - 1] <1-p, (2] <m).
From (2), we have
7 () = 1] < D llgar |2
k=2
thus
).7:/(2) - 1‘ <1-—p,
if .
Z My a 2" < 1. (27)
I—p
k=2
But, by Theorem 1, (27) will be true if
[k]q 2T < [K]q(1 + %) = (5 + B)] [T + C([k]g — D] xgw(X 1)
1—0p - 1-3 ’
that is, if
1— p) [[kly(1 + k) — 1+ ¢k, — D)™\ )7
SR LRV CHIES BRSO RRRDRS) V) LA
[Klq(1 = 5)
which gives (24).
To prove (i7) and (4i7) it is suffices to show
2F (2)
1l < 1=
Tt <1-p (el<r, 29
2F' (2
o =ie (< (29)
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respectively, by using arguments as in proving (i), we have the results.
For F(z) € S, given by 1, the sequence of partial sums is given by

2)=z+> az" (neN\{1}). (30)

Now we will follow the work of [19] and also the works cited in [13, 18] on
partial sums of analytic functions, to obtain the results. Let

(A, B, k) = [[k]g(1+ k) — (5 + B)] [L + C([k]g = D] xgr(Xp). (31)

Theorem 2.6. If F(z) € S, satisfies the condition (8), then

om 1+
Re (f(z)) > —entl 4 (32)
Fn(2) (an—i-l
where
m B, if k=2,3,...,n
(I)q’k‘z{q)glnﬂ, ifk=n+1n+2 ... ° (33)

The result (32) is sharp for

1 —
./T"(Z) =z + m—ﬁzn—i-l. (34)
(IDQ,n-H
Proof. Let
1+ w(2) _ Dt {]:(Z) Doy — 1 "’B]
1 —w(z) 1 -8 | Fulz) cI)an

1+Zk QQka 1+< qn+1>zk n+1&/€2k 1
L+, apzkt '

It suffices to show that |w(z)| < 1. Now from (35) we have

@m
“gntl oo k—1
( 1-5 )Zk n+1 A=
-1 g,n+1 k—1 ’
2+22k o ax2" +< >Zk nt1 AkZ

Hence we obtain

o 00
(Lﬂ> Zk—nJrl ak
EOES .
QZk o @k — ( B >Zk n+1 Uk
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Now |w(z)| <1 if and only if

( q”“) Z ap <2-2) a,

k=n+1 k=2

or, equivalently

From (8), it is sufficient to show that

S £ ()£ (%)

k=n+1 =

which is equivalent to

Z <<I>Z?k1—_15+ [J’) a + Z (%) ap > 0. (36)
k

k=2 =n-+1
For z = re™/™ we have
F 1— o 1+
(Z)_1+ mﬁ UL mﬁk q+1m ﬁwherer—)l_,
Fn(2) (I)q n+1 q)q n+1 q)q n—+1

which shows that F(z) given by (34) gives the sharpness.
Theorem 2.7. If F(z) € S, satisfies the condition (8), then

]:n<Z) cbgln-i-l
v (F3) 2w o

where @7, ., is defined by (31) and satisfies (33) and F(z) given by (34) gives

the sharpness.

Proof. The proof follows by defining

1+ w(z) _ i +1 -6 {fn(z) Ds (38)
1 —w(z) 1-5 Flz) o9, +1-p
The reminder part is as in Theorem 6. So, we omit it.
Theorem 2.8. If F(z) € S, satisfies the condition (8), then
' " . —(n+1)(1—
Re (]:,(Z)> Z q,n+1 (m )( 5)’ (39)
Fo(2) (I)q n—+1
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and

/

Fn(2) cbgjn—i-l
e <f'(2)) = or L+ (n+1)(1—p) (40)

where @ | > (n+1)(1 - ) and

(bm

[Klo(=27), if k=n+1n+2, ..

F(z) given by (34) gives the sharpness.
Proof. We write
Ltw) _  Pan V’@) (@;”nﬂ (n+1)(1 - ﬁ))}
L-w(z)  (n+1)(1-=p) [F(2) o ’

where

q,n+1

<n+in+1 )Zk n+1[ ]qakzk_l
2423 olklgans 1 + ( n+i sl > > reni [Klgarzh !

Now |w(z)| < 1 if and only if

n (I)mn+1 0o
Z[k]qak + <(n_|_ 1q),(1 — 5)) kZ [klqar < 1,

k=2 =n+1

w(z) =

From (8), it is sufficient to show that

2 (i) 2 e = 2 (755

which is equivalent to

$- (2 —1[%1—m>ak+ 5 (<n+<173i27f)(—1 [ﬁlf)’%ﬂ)akzo.

k=2 k=n+1

To prove the result (40), define the function w(z) by

1+ w(z) _ (n+1)(1-p)+ Qi [-7:;1(2) B Qi1 ]
1—w(z) (n+1)(1-p) Fiz)  (n+1)(1-08)+ 2,4

and by similar arguments in first part we get desired result.

Remark 2.1. Putting k = 0 and letting ¢ — 1= in Theorems 7, § and 9,
respectively, we obtain partial sum results for the class G™(\, u, 5, ().

Remark 2.2. For different values of k,(, A\, 1, q and B in our results, we have
results for the special classes defined in the introduction.



On a Class of Uniformly Analytic Functions... 11

3 Conclusions

Using the operator HY', | (A>p>0,0< q<1) defined by the authors in
[14], we defined the class G™(\, p, 8, ¢) of uniformly analytic functions and find
coefficient bounds, radius of convexity, closure theorems and other properties
for functions in this class.

4 Open Problem

The authors suggest studying other properties such that neighborhood and
Hadamard for the class G'(A, i1, 3, ¢) when f(z) has the form

Flz)=2z— Zakzk.
k=2

Acknowledgment. The authors thanks the referees of the paper for their
valuable comments.
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