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Abstract

In this paper we obtain sufficient condition for univalence of
analytic functions defined by differential operator.
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1 Introduction

Let A denote the class of functions f of the form
f(z) :z+Zanz" (1)
n=2

which are analytic in the open unit disk £ = {z € C: |z| < 1}.
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Let S denote the subclass of A, which consists of functions of the form (1)
that are univalent and normalized by the conditions f(0) = 0 and f/(0) =1 in
E.

In geometric function theory, the univalence of complex functions is an
important property, but it is difficult, and in many cases impossible, to show
directly that a certain complex function is univalent. For this reason, many
authors found different types of sufficient conditions of univalence. One of
the most important of these conditions of univalence in the domains E and
the exterior of a closed unit disk is the well-known criterion of Becker [5].
Becker’s work depends upon a clever use of the theory of Loewner chains and
the generalized Loewner differential equation. Extensions of this criterion were
given by Deniz and Orhan [7], Ali et al. [1] and Nehari [9].

Let f be a function in the class A. We define the following differential
operator introduced by Raducanu and Orhan [12]

DY, f() = f(2)
D} f(2) = Aazf"(2) + (A = )z f'(2) + (1 = A — ) f(2)

Dy, f(z) = D(DY, f(2)), (2)

where 0 < p<A<landme N ={1,2,---}.
If f is given by (1) then by the definition of the operator Dy, f if is easy
to see that

DY f(z) =2+ Y [+ Apun+ A= p)(n —1)]"a,2"

n=2

=z+ Z Bn(\, p,m)a, 2" (3)
n=2

when A = 1 and p = 0, we get the Salagean differential operator [13] and when
p = 0, we obtain the differential operator defined by Al-Oboudi [4]. Further
study on generalized differential operators can be found in the literature( see
for instant [2, 3]).

In this paper we derive sufficient conditions of univalence for the generalized
operator DY, f(z). Also, a number of known univalent conditions would follow
upon specializing the parameters involved. In order to prove our results we
need the following Lemmas.

Lemma 1.1 /5] Let f € A. If for all z € E

2f"(2)
f'(2)

(1 =12 <1 (4)
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then the function f is univalent in E.

Lemma 1.2 [10] Let f € A. If for all z € E
2 f'(2)
f*(2)

then the function f is univalent in E.

—1‘ <1, (5)

Lemma 1.3 [1/] Let p1 be a real number > 3 and f € A. If for all z € E

2f"(2)
f'(2)

then the function f is univalent in E.

(L= [=[*)

Lemma 1.4 [8] If f € S ( the class of univalent functions ) and

T =14 b (7)
n=1

fz)
then > (n — 1)[b,|* < 1.
n=1
Lemma 1.5 [11] Let v € C,Re{v} >0 and f € A. If for all z € E
2f"(2)
. e(v -, ~ S 1, 8
: ‘Rf(]j)U f'(z) ®)

then the function

1s univalent in E.

2 Main Results

In this section, we establish the sufficient conditions to obtain a univalence for
analytic functions involving the differential operator.

Theorem 2.1 Let f € A. If forall z € E
> Bu(Apm)[n(2n = 1)]ja,| < 1, (9)
n=1

then DY), f(2) is univalent in E.
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Proof. Let f € A. Then for all z € E, we have

2D F(2))” N0k
=D Dy | < U ED [Top iy
25 n(n — 1) Ba(A, 1y m)|an]
<=2
1-— n;Zan()\, ,m)|ay|

the last inequality is less than 1 if the assertion (9) is hold. Thus in view of
Lemma 1.1, DY, f(z) is univalent in E.
Theorem 2.2 Let f € A. If forall z € E
1
B\ pu,m)|a,| < —, 10
(A, 1, m) || N (10)

then DY), f(z) is univalent in E.

Let f € A. It suffices to show that

2Dy f(2))
25,17 | =
Now
(D)) e |
PRI 21— 2 53 B, (0 s m))) ] = (55 Bulhostsm)anf?)

The last inequality is less than 1 if the assertion (10) is hold. Thus in view of
Lemma 1.2, DY, f(z) is univalent in E.

Theorem 2.3 Let f € A. If forall z € E

o0

Sonf2(n— 1)+ 2= DB ol <21, p> 5 (1)

n=1

then DY, f(z) is univalent in E.

Proof. Let f € A. Then for all z € FE, we have

e ooy |
2 3% Bu i m) (o — 1)]al
S n=2 ) + |1 - M|

1 - Z nBy (A, 1, m)|ay|

n=2
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the last inequality is less than pu if the assertion (11) is hold. Thus in view of
Lemma 1.3, DY}, f(z) is univalent in F.

As applications of Theorems 2.1, 2.2 and 2.3, we have the following Theo-
rem.

Theorem 2.4 Let f € A. If for all z € E one of the inequality (9-11) holds

then
> (n=1)b)> <1, (12)
n=1

where DI = 1+ nZ::1 by 2",

Proof. Let f € A. Then in view of Theorems 2.1, 2.2 or 2.3, DY} f(2) is
univalent in F.
Hence by Lemma 1.4, we obtain the result.

Theorem 2.5 Let f € A. If forall z € E

n[2(n — 1) + Re(v)| By (A, p, m)|a,| < Re(v), Re(v) >0, (13)

NE

n=1

then

1s univalent in E.

Let f € A. Then for all z € F,

1 — |22R0) | 2D f(2))"| 1+ |22Be0) | 2(D3, f(2))”
Re(v) | (D5,/(2)) Re(v) | (D, /(2))
25 n(n — 1)Ba(\, sty m)an]
S n=2 -
1= 3 nBo(A uym)|an|
n=2

the last inequality is less than 1 if the assertion (13) is hold. Thus in view of
Lemma 1.5, G,(2) is univalent in E.
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3 Open problems

Problem: One can define another class by using another linear operator or
an integral operator the same way as in this paper and hence new results can
be obtained.
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