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Abstract

Making use of Salagean operator, we introduce a new sub-
classes of univalent functions with positive coefficients. We
obtain coefficient bounds, distortion inequalities, extreme points
and convolution property are studied. Further, we discuss in-
tegral mean property and some neighborhoods results.
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1 Introduction

Let A denote the class of functions of the form
f(z) :z—i—Zakzk (1)
k=2

which are analytic in the open unit disc U ={z:2 € C and |z| < 1} and S
denote the subclass of A that are univalent in U.
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Salagean [13] introduced the following operator which is popularly know as
the Salagean derivative operator as follows:

D°f(2) = [ (2)
D'f(2) =Df (2) = 2f' ()

and in general,
D"f(z)=D (D" 'f(z)) (n€Ny=NU{0}, N={1,2,3.}).

We easily find from (1) that
D'f(z) =2+ kK'az¥  (fe€SneN) (2)
k=2

In 1999, Kanas and Wisniowaska [8], (see also [7]) studied the class of
a—uniformly convex analytic functions, denoted by « —UCV (0 < a < 00) so
that f € a — UCYV, if and only if

Re{l+(z—()f//(z>}20, (3)

f(2)
For ¢ € R and ¢ = —aze™, the condition (3) can be written as

Re<1l+ (1+ e >0, 4

{14 racn L o

and a — UCV (p) denote the subclass of S, satisfying
"
Re{l%—(l—l—aew) ZJ{,((?}ZP, (0<p<l). (5)
z

Further, the class o — S* (p) denote the subclass of S, satisfying

ip Zf/(z)_aeup
Re{(l—i—ae ) e }Z,O, 0<p<1) (6)

Also, let V be the subclass of S consisting of functions of the form

F2)=2+4) |al 2", (7)

Now, we will define a new subclass of S as follows:
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Definition 1.1 A function f € S is said to be in the class o — S’ (v, B) if the
following condition

(1—B) D" f (2) + BD"2f (2)
(1 =p)Dnf(2) + BD+f(2)

Re {(1 + ae’?) - aew} <7, (8

1s satisfied, wherel<7§%,0§6§1,¢€Rand0§a<oo.

Also,
a—PS (v,8) =a—5, (.8 NV (9)

Remark

(i) Putting 8 = 0, we obtain a — S;; (7,0) = a— Sy, (v) and a — PS; (v,0) =
a — PSy . (v) which were studied by Dixit and Dixit [3];

(ii) Putting 8 = 0 and n = 0, we obtain a — S; (v,0) = a — S;; () which was
studied by Porwal and Dixit [11];

(iii) Putting =1 and n = 0, we obtain a — 5§ (v,1) = a — UCV™* () which
was studied by Porwal and Dixit [11];

(iv) Putting 5 = 0, n = 0 and a = 0, we obtain 0 — S (7,0) = L (v) and
0— PS*(~,8) = U () which were studied by Uralegaddi et al. [14];

0 and o = 0, we obtain 0 — S§ (v,1) = M (v) and

(v) Putting 6 = 1,n =
= V () which were studied by Uralegaddi et al. [14];

0—P5S; (v,1)

(vi) Putting a = 0, we obtain 0 — PSS’ (v, 8) = A (n,~, ) which was studied
by Dixit et al. ([4] with g(2) = %);

(vii) Putting a = 0 and 8 = 0,we obtain 0 — PSS’ (v,0) = A* (n,~y)which was
studied by Dixit and Chandra [2].

Several authors such as [7, 8, 9] studied the classes of a—uniformly convex
and starlike functions. In the present paper, using Salagean derivative opera-
tor, an attempt has been made to have unified study of mentioned classes of
functions with positive coefficients. Further, we discuss integral mean property
and some neighborhoods results.
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2 Coefficient inequalities

Unless otherwise mentioned, we assume in the reminder of this paper that
0<a<oo,l<y<HE2 0<B<1,ne Ny =NU{0}. The following
theorems lay the foundation of our systematic study of the class a — PS (v, )
defined in the preceding section.

Theorem 2.1 Let f(z) € S be given by (1) be in S if
Y EI4+BE=Dk(1+a)—a—q]lal < (y-1), (10)
k=2

then f € a— Sk (v, B).

Proof. Suppose that (10) is true for z € U. It suffices to show that

i (1=8)D" ! f(2)+BD™ 2 f(2) i
(1+ae’) [ B D7F () +BD T (2) ] o —1

; 1-B)Dn+1f(z Dnt2f(z i
(1 -+ aee) | (oS | —ace — (2y = 1)

<1.  (11)

Then, L. H. S. of (11)

(1+ae®) [[(1 = ) D" f (2) + BD"2f ()] — [(1 — B) D"f (2) + D" f (2)]]
(14 ae®)[(1 = B) D" f (2) + D2 f (2)] —
[(1+ ae™) + (27 = 2)] [(1 = B) D" f (2) + D" f (2)]

(1 + ac®) ki KL+ B (k= D] [k — 1] apzt

(1 + ae) Li K1+ B (k— 1] [k — 1] akzk}

-1 20— 1) [ékn[wﬂk—l)}akzk}

The last assertion is bounded above by (1) if

DKL Bk =Dk +a)—a—]lal < (v-1),

which completes the proof. m
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Theorem 2.2 Let f(2) be given by (7), then f(z) € o — PS} (v, B) if and
only if

DKL Bk =Dk +a)—a—]|a] < (v —1). (12)

The result is sharp.

Proof. The if part follows from Theorem 2.1. To prove the only if part, let
fea—PS:(v,B), then by (9), we have

(1—B) D" f (2) + BD"2f (2)
(1=8)Dnf(2) + 5D+ f (2)

Re {(1 + ozei“’) — ozew} <.

which is equivalent to
(1-0) (z + > k”“akzk) + B (z + > k”“akzk)
fe=2 =2
(1-7) (z + > k"akzk> + 5 (z + > k"“akzk>
=2 =2

—ae¥ <.

Re (1 + ozew)

The above condition must hold for all values of z, |z| = r < 1, upon choosing
the values of z on positive real axis, where 0 < z =r < 1 and

Re (—ozew) > — ‘aew’ = —q,

the above inequality reduces to

(1-5) (r + ik”“ |a| r’“) + (r + ik”“ || r’f)]
k=2 k=2
—a [(1 - B) (T + Zk” |ar| rk> + 6 (r + Zk;"“ |a| rk>]
k=2 k=2
< 5 [(1 — B) <T+Zk"|ak|rk> +8 <T+an+1 |ak|7‘k>]
k=2 k=2

Letting » — 17, we have

(14 «)

DKL Bk =Dk +a)—a—]|a] < (v =1).

The proof is completed.
We note that the assertion (12) of Theorem 2.2 is sharp, the extremal function
being

— (7_1) Sk
fz) = TGk F(lta) —a=a]"" (k=2).
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Remark

(i) Putting =0 in Theorem 2.2 we obtain the result obtained by Dixit and
Dixit [3, Theorem 2.2];

1) Putting o = 0 and n = 1, we obtain the result obtained by Porwal an
ii) Putting 8 = 0 and 1 btain th It obtained by P 1 and
Dixit [11, Theorem 2.3];

(iii) Putting 8 = 0 and n = 0, we obtain the result obtained by Porwal and
Dixit [11, Theorem 2.4];

(iv) Putting o = 0, we obtain the result obtained by Dixit et al. ([11] with g (z) = %) ;

1—z
(v) Putting a = 8 = n = 0, we obtain the result obtained by Uralegaddi et
al. [14].

Corollary 2.3 Let the function f(z) be defined by (7) belong to the class
a—PS(v,B). Then

(v—1)
R Y 3 7 e e (13)

3 Distortion Bounds

In this section, we shall prove distortion theorems for the functions belonging
to the class a — PS} (v, 5) .

Theorem 3.1 Let the function f(z) € o — PS’ (v, 8) then, for |z| =r < 1,
we have ( )
v 2
14
1+8)2+a—1] (14)

< g

and

(v—1) 2
P2 - s (15)

with equality for

— (v—-1) 52
FO =t e aRra—" 1o

Proof. Since f(z) € a — PS} (v,5), then Theorem 2.2 gives

2"(1+B)2+a =9 fal <D K [A+BKk=D]k1+a)—a—|al < (v-1).

k=2 k=2
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Thus, we have

S (7_1) 2
;W > (1+pR+a—

From (2) and (17) we obtain

F @< el 12 )
k=2

(v—1) 2
1+8)2+a—9]

r+ on
The proof of assertion (15) is similar, so we omit it. m

Theorem 3.2 Let the function f(z) € a — PS} (v, ) then, for |z| =r < 1,
we have
(r=1

2 T(1+B)R2+a-1]

1 (z) <1+ (18)

and

(v—1) .
1+8)24+a—9]
The equalities in (18) and (19) are attained for the function f(z) given by

(16).

Proof. We have

() 2 1= g (19)

<14+ kol |57 <140 k.
k=2 f—2
Since f (z) € o« — PS? (v, 3), we have
(14 B) 2+ =) kla <Y K [1+B(k-D]k(1+a)—a—q]la| < (v —1).
k=2 k=2

Thus, we have

S (v—1)
2 Ml S T e

hence
(y—1) .
11+ B)2+a—9]

The proof of assertion (19) is similar, so we omit it. m

If () <1+
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4  Extreme Points

Theorem 4.1 Let fi(z) =z and

— (v=1) Sk
()| Ty Ry R e

then f(z) € a— PS} (v, B) if and only if it can be expressed in the form
F) =D Mhi(2),
k=1

where A, > 0 and >0 Ay = 1.
Proof. Suppose that

& S (y—1) k
f(z)—;Akfk(z)—Z+;)‘kkn[1+ﬁ(k—1)][k(1+a)—Oé—’V]Z .

Then, from Theorem 2.2, we have

oo

P+ Bk =D][FA+a)—a—1] (=1

(]

(y—1) e+ Bk -1)][k(1+a)—a—1]

bl
||
N

)\k:(l—/\1)<1.

I
NE

b
I|

2
Then f (z) € a— PS (v, ) . Conversely, suppose that f (z) € a« — PS? (v, 8),
then, since
-1
o] < (=1

T+ Bk-1][k(1+a)—a—17]

we may set

k' [L+ B (k= D]k (1+a) = a—19]|al
(v=1)

A =1-— i/\k.
k=2

Thus clearly, from (20), we have

A =

and

f(z)= Z)\kfk (2).

This completes the proof of the theorem. m
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Corollary 4.2 The extreme points of the class « — PS¥ (v, 8) are given by

fi(z) ==z

and

— (v-1) Sk
A T T | Ty e AR

Theorem 4.3 The class a — PS} (v, ) is conver set.

Proof. Suppose that each of the functions f; (z), (i = 1,2) given by
fi(z) =2+ Zak,izk> ((axi >0)
k=2

is in the class a— PSS} (7, 5) . It sufficient to show that the function g (z) define
by

g() =nfiz)+ A =n)f2(2), (0<n<1)

is also in the class o — PSS} (v, 3) . Since

g(z) = n <z + Z ak,lzk> +(1—mn) (2 + Z akgzk)

= z+ Z mags + (1 —n) aps) 2*
k=2

with the aid of Theorem 2.2, we have

SR+ B (k=] k(1 +a) —a—] ags + (1= n) ax]

e}

= ) K +BKk-DIE1+a)—a—q]a,

—i—(l—n)Zk"[l—l—ﬁ(/@—1)][k(1+04)—a—’y]am
< ny-D+A=-nhH-H=H-1).

which completes the proof of the theorem. m



10 El-Ashwah et al.

5 Theorems involving Hadamard product
Let f (z) be defined by (7) and let
g(2) :z—l—ibkzk, (br, > 0). (21)
k=2
The Hadamard product of f (z) and g (z) is defined by
(f*g)@)zz—kiiaﬂm%l (22)
k=2

The following result present an interesting property of Hadamard product.

Theorem 5.1 Let fi(z), f2(2),..., fp (2) be defined as follows
fs(z)=2z+ Z ars?”, (s >0) (23)
k=2

be in the class o — PSk (75, 0), (s =1,2,...,p) and (0 < a < 1), then
fix fax..x [ € a—PS;(7,8), (24)
where v = max {vys, s =1,2,...,p}.

Proof. Since f;(2) € a — PS} (vs,3), (s =1,2,...,p), by using Theorem 2.2
we have, for v = max {v;, s =1,2,...,p}

DR L+ Bk =] [k(1+0a)—a—1aks < (3 — 1) (25)
and . : )
s — 1
;|ak’s|§k"[1+6(k;—1)][kz(1+a)—a—7]’ (26)

for each s =1,2,...,p. Using (25) for any s and (26) for the rest, we have

S kL4 Bk — D]k (1+a) —a— 7] [J ars

s=1
p

1 -
< 1o [errpa—mrara—a

s=1

< [[on-D<(y-1y

< (y-1) since v, > 1 for s =1,2,3,...,p

Consequently, we have the assertion (24) with the aid of Theorem 2.2. The
proof of Theorem 5.1 is completed. m
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Theorem 5.2 Let the function f(z) be defined by (7) and g (z) defined by
(21) be in the classes « — PS} (71, 5) and o — PS}: (72, B) respectively. Then
the Hadamard product

(f*9)(z) €a=PS; (((y =1 +1).8), (27)
where v = max {7y1,Y2} -

Proof. Since f(z) € a« — PSk (m,pB) and g(z) € a — PSk (72, ) in view of
Theorem 2.2 we have

DRI+ B (k=] [k(1+a) — a— ] apbs

Y ! (v2—1)
< ;k [1+5(k_1>Hk(1+a)_a_7]|ak|k”[1+5(k—1)][k(1+@)_a_,y]
= kn[l‘*‘ﬁ(kf—(lﬁﬁ[;(ll)—i—a)—a_fy]Zk"[lJrﬁ(k‘—1)][k(l+a)—a_7]|ak|
< (e =1 (n—1)

Frll+8k—D]k(14+a) —a—1]

< (y—-17= (v —2v+2) - 1.
Since 1 < v < A‘JFT“ therefor 1 < 2 — 2y +2 < ‘”TO‘. Hence by Theorem 2.2 the
Hadamard product (f x g) (z) € a — PS:(y* —2y+2,3). m
6 Integral Mean inequality
Definition 6.1 For f,g € A we say that the function f is subordinate to g,
if there exists a Schwarz function w, with w(0) = 0 and |w(z)| < 1; z € U;
such that f(z) = g(w(z)) for all z € U. This subordination is usually denoted
by f(2) < g(2). It is well-known that, if the function g is univalent in U, then
f(z) < g(2) is equivalent to f(0) = g(0) and f(U) C g(U).

In 1925 Littlewood prove the following subordination theorem.

Theorem 6.2 [10] If f and g are analytic in U with f < g, then

27 27
/|f(z)|“d9§/|g(z)|“d9. (u>0z=re? 0<r<1).
0 0

We will make use of Theorem 6.2 to prove the following theorem:
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Theorem 6.3 Let f (z) € a—PS} (v, 3) and fy (z) is defined by (20) . If there
exist an analytic function w (z) given by

o1 KL+ BR-1D]k(1+a)—a—9 a1
[w (=) = o Zk :

then, for z=re"? (0 <r < 1),

/\f(rei9)|“d9§/|fk(z)|“d9. (p>0).

Proof. We must show that

2
/ 1+ Z CLka_l
0 k=2

By applying Littlewood’s subordition theorem, it would suffice to show that

E=D]k(1+a)—a—19]

/’L 271'

(7—1) k—lu
< [ 11+ de.
—/‘ 1+ B ( :

0

. k—1 (7_1) -
1+k2;ak2 <1+k:n[1+ﬁ(k—1)][k(1+a)_a_7]2 .
By setting
3 = (y—1) k—1
1+k§:;akzk 1_1+k”[1+6(k¢—1)][k(1+a)—a—7] [w ()],
we find that

kfl_k”[l—l—ﬁ(k—l)][k(l—ka)—a—’y] - -1
w ()" = — I

which readily yields w (0) = 0.
Furthermore using (10) we obtain

k—1 1+ B(k=D]k(+a)—a—19] = k—1
lw (2)] < =1 ;akz’

KL+ B (k—D][k(1+a) —a—7y -
= (v=1) Zak|z |

< | <1

This completes the proof of the theorem. m
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7 Neighborhoods for the class a — PS;, (v, 8)

Let V' (m) denote the subclass of V' consisting of a function of the form

R =24 ) lalz* (28)

k=m+1

and a — PS}, (7, 8) a subclass of @ — PS;; (v, 8) which is consisting of the
functions given by (28).

Following the earlier investigations by Goodman [6], Ruscheweyh [12], Alt-
intas and Owa [1] and El-Ashwah [5], we define (m, §)-neighborhood of f(z) €
V(m) by

Nis (f) = {g cgeV(im), g(z) =2+ Z brz* and Z klag — b < 5.}
k=m+1 k=m+1
(29)
In particular, if
e(z) =z,

we immediately have

Nm75(e):{g:g€V(m), g(2) =2+ Z byz* and Z k]bklgé.}

(30)

Lemma 7.1 Let the function f (z) € V(m) be defined by (28). Then f (z) is
in the class o — PS;; | (7, B) if and only if

SR HBE-DE(1+a)—a—q]la] < (y—1). (31)
Theorem 7.2 Let

(m+1)"" (1+mp) m(1+a) = (v = 1)]
Then
o= PS:,m (/yvﬁ) - Nm,é (6) :

Proof. Let the function f(z) € a — PS; . (v,8). Then, in view of (31), we
have

(m+ 1" (L +mB)[m(1+a)=(v=1] > |a (33)

k=m+1

< S RRABk-DkA+a)—a-llal< (-1, (34)

k=m+1
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which readily yields

3 (=1
k;ﬂ x| < (m+1D" (1 +mB)m(l+a)—(y—1) (35)

Making use of (31) again, in conjunction with (35), we get

(m+1)"(1+mp)(L+a) > klal

(v=1(14+a)(m+1)
[m(1+a)—(y—1)]

< y—1+m+1)" (14 8m)(a+7)Y |ax| <
k=2

(v—1)
ka =9
2 kS T ) (5 @) = (= D) (58)

The proof is completed. =
We will determine the neighborhood for the class o — PSa) (v, 8) which
define as follows.

Definition 7.3 A function f(z) € V (m) is said to be in the class o —
PS; . (v,B) if there exist a function g (z) € a — PS;; . (7, B) such that

’f (2)
9(2)

—1‘<1—p (zeU, 0<p<1). (37)

Theorem 7.4 If g(z) € a — PS;,(&) (v, B) and

p—1_ S(m+1D)"(14+mpB)[m(1+a)—(y—1)] (38)
(m+ )" (L +mB)[m(1+a) = (y=1D] = (m+1)(y = 1)’

then
Nms(9) Ca—PS; ., (7,5) (39)

where
6 < (m+1){1= (=) {m+1)" (1 +mB)m(1+a)— (-} }.

Proof. Suppose that f(z) € N5 (g). We find from (29) that

> klax— bl <6, (40)

k=m+1
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which ready implies that

N 5
|ak_bk| < — (41)
k;—i—l m+1
NeXt) since 9 (Z) ca— PS’Z,m (’Ya 6) , We have
3 (v=1)
k:ZW1 b, < (m+1)"A+mB)[m(l+a)—(y—1) (42)
so that
i |ax, — by
g(Z) 1 - Z by
S (me) (1 +m)m+a)—(y=1)
m+1m+1)"A+mB)m(l+a)—(y—1D]—(y—1)
- (44)

Thus by above definition g (2) € a — P (v, ) for p given by (38). m

8 Open problem

In the present paper, some geometric properties have been discussed, the dif-
ferential subordination results still open,e.g. factor sequence.
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