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Abstract

In this paper, we introduce the type of entire and meromorphic
function in the complex plane related to the ϕ-order concept given
by Chyzhykov-Semochko in [8]. We establish some estimates in-
volving those new concepts of the sum, product and the derivative
of entire or meromorphic functions in the complex plane. Many
previous results due to Latreuch-Beläıdi, Tu-Zeng-Xu, Chyzhykov-
Semochko, will be revisited and extended.
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1 Introduction and definitions

The determination of the order and the type of entire (respectively meromor-
phic) functions plays a crucial role in the study of properties of solutions of
linear differential equations of the form

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = 0, (1.1)

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = F (z), (1.2)
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where k ≥ 2, A0 6≡ 0, F 6≡ 0, the coefficients Aj (j = 0, . . . , k − 1) and F are
entire functions or meromorphic functions in the plane or in the unit disc.
Through this paper, we assume familiarity of the reader with the standard
notations of Nevanlinna value distribution theory of meromorphic functions
(see [9, 11, 13, 18]). In addition, we mean by a meromorphic function a function
which is meromorphic in the whole complex plane. To study the growth of
functions, we recall the following definitions.

Definition 1.1 The order of a meromorphic function f is defined as

ρ(f) = lim sup
r→+∞

log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f . For 0 < ρ(f) <
+∞, we define the type of f by

τ(f) = lim sup
r→+∞

T (r, f)

rρ(f)
.

Definition 1.2 The order of an entire function f is defined as

ρ̃(f) = lim sup
r→+∞

log logM(r, f)

log r
,

where M(r, f) = max{|f(z)| : |z| = r} is the maximum modulus of f . For
0 < ρ̃(f) < +∞, we define the type of f by

τ̃(f) = lim sup
r→+∞

logM(r, f)

rρ̃(f)
.

Remark 1.3 Note that if f is an entire function, then ρ̃(f) = ρ(f), but τ̃(f) =
τ(f) is not always satisfied. From Goldberg and Ostrovskii ([9]), the following
estimates hold {

τ̃(f) ≤ πρ(f)
sin(πρ(f))

τ(f) if 0 < ρ(f) ≤ 1
2
,

τ̃(f) ≤ π ρ(f) τ(f) if 1
2
≤ ρ(f) < +∞.

We state here two classical results investigated the order and the type
of f1 + f2 and f1 f2, where f1 and f2 are entire (respectively meromorphic)
functions.

Theorem 1.4 ([15]) Let f1 and f2 be two entire functions. Then we have

ρ(f1 + f2) ≤ max{ρ(f1), ρ(f2)},
ρ(f1 f2) ≤ max{ρ(f1), ρ(f2)}

and

τ̃(f1 + f2) ≤ max{τ̃(f1), τ̃(f2)},
τ̃(f1 f2) ≤ τ̃(f1) + τ̃(f2).
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Theorem 1.5 ([9]) Let f1 and f2 be two meromorphic functions. If ρ(f1) <
ρ(f2), then

ρ(f1 + f2) = ρ(f1 f2) = ρ(f2).

In ([14]), Latreuch and Beläıdi established new estimates for the order
and type of meromorphic functions and obtained the following results which
improved the above two theorems.

Theorem 1.6 ([14]) Let f1 and f2 be two meromorphic functions.

(i) If 0 < ρ(f1) < ρ(f2) < +∞, then τ(f1 + f2) = τ(f1 f2) = τ(f2).

(ii) If 0 < ρ(f1) = ρ(f2) = ρ(f1 + f2) = ρ(f1 f2) < +∞, then

|τ(f1)− τ(f2)| ≤ τ(f1 + f2) ≤ τ(f1) + τ(f2),
|τ(f1)− τ(f2)| ≤ τ(f1 f2) ≤ τ(f1) + τ(f2).

Theorem 1.7 ([14]) Let f1 and f2 be two meromorphic functions satisfying
0 < ρ(f1) = ρ(f2) < +∞ and τ(f1) 6= τ(f2). Then ρ(f1 + f2) = ρ(f1 f2) =
ρ(f1) = ρ(f2).

Theorem 1.8 ([14]) Let f1 and f2 be entire functions.

(i) If 0 < ρ(f1) < ρ(f2) < +∞, then τ̃(f1+f2) = τ̃(f2) and τ̃(f1 f2) ≤ τ̃(f2).

(ii) If 0 < ρ(f1) = ρ(f2) = ρ(f1 + f2) = ρ(f1 f2) < +∞, then

τ̃(f1 + f2) ≤ max{τ̃(f1), τ̃(f2)},
τ̃(f1 f2) ≤ τ̃(f1) + τ̃(f2).

Furthermore, if τ̃(f1) 6= τ̃(f2), then τ̃(f1 + f2) = max{τ̃(f1), τ̃(f2)}.

Theorem 1.9 ([14]) Let f1 and f2 be entire functions. If 0 < ρ(f1) = ρ(f2) <
+∞ and τ̃(f1) 6= τ̃(f2), then ρ(f1 + f2) = ρ(f1) = ρ(f2).

For all r ∈ R, we define exp1 r = exp r = er and expp+1 r = exp(expp r),
p ∈ N = {1, 2, 3, . . . }. Inductively, for all r large enough, we define log1 r =
log r and logp+1 r = log(logp r), p ∈ N. We also denote exp0 r = r = log0 r,
exp−1 r = log1 r and log−1 r = exp1 r.

The linear measure of a setE ⊂ (0,+∞) is defined bym(E) =
∫ +∞
0

χE(t) dt
and the logarithmic measure of a set F ⊂ (1,+∞) is defined by lm(F ) =∫ +∞
1

χF (t)
t
dt, where χG is the characteristic function of a set G.



Estimates of the ϕ-order and the ϕ-type 45

Definition 1.10 Let p ≥ 1 be an integer. The iterated p-order of a meromor-
phic function f is defined by

ρp(f) = lim sup
r→+∞

logp T (r, f)

log r
.

If f is an entire function, then

ρp(f) = lim sup
r→+∞

logp+1M(r, f)

log r
.

Definition 1.11 The iterated p-type of a meromorphic function f with iter-
ated p-order (0 < ρp(f) < +∞) is defined as

τp(f) = lim sup
r→+∞

logp−1 T (r, f)

rρp(f)
.

If f is an entire, then its iterated p-type is defined by

τ̃p(f) = lim sup
r→+∞

logpM(r, f)

rρp(f)
.

Note that ρ1(f) and τ1(f) coincide with the usual order ρ(f) and the usual
type τ(f) respectively.
Several researchers (see [2, 3, 6, 7, 10, 12]) used the concept of the iterated p-
order ρp(f) instead of the usual order ρ(f) to study the fast growing solutions
of equations (1.1) and (1.2). Tu-Zeng-Hu ([17]) generalised Theorems 1.6–1.9
from the usual order to the iterated p-order. We state here their results.

Theorem 1.12 ([17]) Let f1 and f2 be two meromorphic functions satisfying
0 < ρp(f1) = ρp(f2) < +∞ and τp(f1) < τp(f2). Then we have

(i) ρp(f1 + f2) = ρp(f1 f2) = ρp(f1) = ρp(f2).

(ii) If p > 1, then τp(f1 + f2) = τp(f1 f2) = τp(f2).

(iii) If p = 1, then α ≤ τp(f1 + f2) ≤ β and α ≤ τp(f1 f2) ≤ β, where
α = τp(f2)− τp(f1) and β = τp(f1) + τp(f2).

Theorem 1.13 ([17]) Let f1 and f2 be entire functions satisfying 0 < ρp(f1) =
ρp(f2) < +∞ and τ̃p(f1) < τ̃p(f2). Then there hold:

(i) If p ≥ 1, then ρp(f1 + f2) = ρp(f1) = ρp(f2) and τ̃p(f1 + f2) = τ̃p(f2).

(ii) If p > 1, then ρp(f1 f2) = ρp(f1) = ρp(f2) and τ̃p(f1 f2) = τ̃p(f2).
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Since ρp(f
′) = ρp(f), p ≥ 1 and for a meromorphic function f with finite iter-

ated p-order, Tu-Zeng-Hu ([17]) obtained the following result for the iterated
p-type.

Theorem 1.14 ([17]) Let p > 1 and f be meromorphic function satisfying
0 < ρp(f) < +∞. Then τp(f

′) = τp(f)

Recently, Chyzhykov and Semochko ([8]) showed that the iterated p-order
does not cover an arbitrary growth, see Example 1.4 in ([8]). To avoid this
disadvantage, they introduced the concept of the ϕ-order to measure the order
of growth of entire solutions of equation (1.1). After that, Beläıdi ([4], [5])
improved the results in ([8]) for the lower ϕ-order and the lower ϕ-type.

Definition 1.15 ([8]) Let ϕ be an increasing unbounded function on [1,+∞).
The ϕ-orders of a meromorphic function f are defined by

ρ0ϕ(f) = lim sup
r→+∞

ϕ(eT (r,f))

log r
, ρ1ϕ(f) = lim sup

r→+∞

ϕ(T (r, f))

log r
.

If f is an entire function, then the ϕ-orders are defined as

ρ̃0ϕ(f) = lim sup
r→+∞

ϕ(M(r, f))

log r
, ρ̃1ϕ(f) = lim sup

r→+∞

ϕ(logM(r, f))

log r
.

By Φ we define the class of positive unbounded increasing functions on [1,+∞)

such that ϕ(et) is slowly growing, i.e., ∀c > 0 : lim
r→+∞

ϕ(ect)

ϕ(et)
= 1. As examples,

the function ϕ(r) = logp r (p ≥ 2) belongs to the class Φ but ϕ(r) = log r 6∈ Φ.

By analogous manner, we introduce the definitions of the ϕ-types related
to the ϕ-order.

Definition 1.16 ([5]) Let ϕ be an increasing unbounded function on [1,+∞).
We define the ϕ-types of a meromorphic function f with ϕ-order ∈ (0,+∞)
by

τ 0ϕ(f) = lim sup
r→+∞

eϕ(e
T (r,f))

rρ
0
ϕ(f)

, τ 1ϕ(f) = lim sup
r→+∞

eϕ(T (r,f))

rρ
1
ϕ(f)

.

If f is an entire function, then the ϕ-types are defined as

τ̃ 0ϕ(f) = lim sup
r→+∞

eϕ(M(r,f))

rρ̃
0
ϕ(f)

, τ̃ 1ϕ(f) = lim sup
r→+∞

eϕ(logM(r,f))

rρ̃
1
ϕ(f)

.
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2 Main results

The aim of this paper is to give the counterparts of the above theorems for the
ϕ-order and the ϕ-type concepts.

Theorem 2.1 Let ϕ ∈ Φ and f1, f2 be two meromorphic functions. If ρjϕ(f1) <
ρjϕ(f2) , (j = 0, 1), then ρjϕ(f1 + f2) = ρjϕ(f1f2) = ρjϕ(f2) for j = 0, 1.

Theorem 2.2 Let ϕ ∈ Φ and f1, f2 be two meromorphic functions. Then

(i) If 0 < ρjϕ(f1) < ρjϕ(f2) < +∞ and τ jϕ(f1) < τ jϕ(f2), (j = 0, 1), then

τ jϕ(f1 + f2) = τ jϕ(f1f2) = τ jϕ(f2), j = 0, 1. (2.1)

(ii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1 + f2) < +∞, (j = 0, 1), then

τ jϕ(f1 + f2) ≤ max{τ jϕ(f1), τ
j
ϕ(f2)}.

Furthermore, if τ jϕ(f1) 6= τ jϕ(f2) , (j = 0, 1), then

τ jϕ(f1 + f2) = max{τ jϕ(f1), τ
j
ϕ(f2)}. (2.2)

(iii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1f2) < +∞, (j = 0, 1), then

τ jϕ(f1 f2) ≤ max{τ jϕ(f1), τ
j
ϕ(f2)}.

Furthermore, if τ jϕ(f1) 6= τ jϕ(f2) , (j = 0, 1), then

τ jϕ(f1 f2) = max{τ jϕ(f1), τ
j
ϕ(f2)}. (2.3)

Corollary 2.3 Let ϕ ∈ Φ and f1, f2 be two meromorphic functions.

(i) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1 + f2) < +∞, (j = 0, 1), then

τ jϕ(f1) ≤ max{τ jϕ(f1 + f2), τ
j
ϕ(f2)}, (j = 0, 1).

(ii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1f2) < +∞, (j = 0, 1), then

τ jϕ(f1) ≤ max{τ jϕ(f1f2), τ
j
ϕ(f2)}, (j = 0, 1).

Theorem 2.4 Let ϕ ∈ Φ and f1, f2 be two meromorphic functions. If 0 <
ρjϕ(f1) = ρjϕ(f2) < +∞ and τ jϕ(f1) < τ jϕ(f2), (j = 0, 1), then

ρjϕ(f1 + f2) = ρjϕ(f1 f2) = ρjϕ(f1) = ρjϕ(f2), (j = 0, 1), (2.4)

τ jϕ(f1 + f2) = τ jϕ(f1 f2) = τ jϕ(f2). (2.5)
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Theorem 2.5 Let ϕ ∈ Φ and f1, f2 be two entire functions. Then

(i) If 0 < ρjϕ(f1) < ρjϕ(f2) < +∞ and τ̃ jϕ(f1) < τ̃ jϕ(f2), (j = 0, 1), then

τ̃ jϕ(f1 + f2) = τ̃ jϕ(f2),

τ̃ jϕ(f1f2) ≤ τ̃ jϕ(f2).

(ii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1 + f2) < +∞, (j = 0, 1), then

τ̃ jϕ(f1 + f2) ≤ max{τ̃ jϕ(f1), τ̃
j
ϕ(f2)}.

Furthermore, if τ̃ jϕ(f1) 6= τ̃ jϕ(f2), then τ̃ jϕ(f1 + f2) = max{τ̃ jϕ(f1), τ̃
j
ϕ(f2)}.

(ii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1 f2) < +∞, (j = 0, 1), then

τ̃ jϕ(f1f2) ≤ max{τ̃ jϕ(f1), τ̃
j
ϕ(f2)}.

Furthermore, if τ̃ jϕ(f1) 6= τ̃ jϕ(f2), then τ̃ jϕ(f1 f2) = max{τ̃ jϕ(f1), τ̃
j
ϕ(f2)}.

Theorem 2.6 Let ϕ ∈ Φ and f1, f2 be two entire functions. If 0 < ρjϕ(f1) =
ρjϕ(f2) < +∞ and τ̃ jϕ(f1) < τ̃ jϕ(f2), (j = 0, 1), then

ρjϕ(f1 + f2) = ρjϕ(f1) = ρjϕ(f2), (2.6)

τ̃ jϕ(f1 + f2) = τ̃ jϕ(f2). (2.7)

Theorem 2.7 Let f be a meromorphic function and ϕ ∈ Φ. Then

ρjϕ(f ′) = ρjϕ(f) for j = 0, 1.

Theorem 2.8 Let f be a meromorphic function and ϕ ∈ Φ. Then

τ jϕ(f ′
)

= τ jϕ(f) for j = 0, 1.

3 Basic properties and lemmas

Proposition 3.1 ([8]) If ϕ ∈ Φ, then

∀m > 0, ∀k ≥ 0 :
ϕ−1(log xm)

xk
−→ +∞, x −→ +∞, (3.1)

∀δ > 0 :
logϕ−1((1 + δ)x)

logϕ−1(x)
−→ +∞, x −→ +∞. (3.2)

Remark 3.2 ([8]) We can see that (3.2) implies that

∀c > 0, ϕ(ct) ≤ ϕ(tc) ≤ (1 + o(1))ϕ(t), t −→ +∞. (3.3)
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Proposition 3.3 ([8]) Let ϕ ∈ Φ and f be an entire function. Then

ρjϕ(f) = ρ̃jϕ(f), j = 0, 1.

Can we obtain a counterparts results of Remark 1.3 and Proposition 3.3 for
the ϕ-types?

Proposition 3.4 Let ϕ ∈ Φ and f be an entire function. Then

τ jϕ(f) ≤ τ̃ jϕ(f), j = 0, 1,

τ̃ jϕ(f) ≤ 2ρ
j
ϕ(f)τ jϕ(f), j = 0, 1.

Proof. We denote ρ1 = ρ1ϕ(f) = ρ̃1ϕ(f). By the known double inequality ([11],
[13])

T (r, f) ≤ logM(r, f) ≤ R + r

R− r
T (R, f), 0 < r < R.

and the monotonicity of the function ϕ, we have τ 1ϕ(f) ≤ τ̃ 1ϕ(f). TakingR = 2r,
then by using (3.3), we get

eϕ(logM(r,f))

rρ1
≤ eϕ(3T (2r,f))

rρ1
≤ e(1+o(1))ϕ(T (2r,f))

(2r)ρ12−ρ1
.

By passing to the limit as r −→ +∞, we obtain τ̃ 1ϕ(f) ≤ 2ρ1τ 1ϕ(f).

Proposition 3.5 ([8]) Let ϕ ∈ Φ and f1, f2, f be three meromorphic func-
tions. Then, we have

ρjϕ(f1 + f2) ≤ max{ρjϕ(f1), ρ
j
ϕ(f2)}, j = 0, 1, (3.4)

ρjϕ(f1 f2) ≤ max{ρjϕ(f1), ρ
j
ϕ(f2)}, j = 0, 1, (3.5)

ρjϕ

(
1

f

)
= ρjϕ(f), (j = 0, 1), f 6≡ 0. (3.6)

By using a similar discussion as in the proof of Proposition 3.5 in ([8]) and by
the properties

T (r, af1) = T (r, f1) +O(1), a ∈ C∗,

T

(
r,

1

f1

)
= T (r, f1) +O(1)

one can obtain the following results.
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Proposition 3.6 Let ϕ ∈ Φ and f be a meromorphic function. For j = 0, 1,
we have

ρjϕ(af) = ρjϕ(f), a ∈ C∗,
τ jϕ(af) = τ jϕ(f), a ∈ C∗,

τ jϕ

(
1

f

)
= τ jϕ(f), f 6≡ 0.

Lemma 3.7 ([1]) Let g : (0,+∞) → R and h : (0,+∞) → R be monotone
non-decreasing functions such that g(r) ≤ h(r) outside of an exceptional set
E of finite linear measure. Then, for any α > 1, there exists r0 > 0 such that
g(r) ≤ h(αr) for all r > r0.

Lemma 3.8 ([18]) If f is a meromorphic function, then

T (r, f) < O(T (2r, f ′) + log r), r −→ +∞.

4 Proofs of the main results

Proof of Theorem 2.1

Suppose that ρjϕ(f1) < ρjϕ(f2). By (3.4), we have ρjϕ(f1+f2) ≤ ρjϕ(f2). It follows
again from (3.4) that

ρjϕ(f2) = ρjϕ(f1 + f2 − f1) ≤ max{ρjϕ(f1 + f2), ρ
j
ϕ(f1)}.

If we suppose ρjϕ(f1) > ρjϕ(f1 + f2), then

ρjϕ(f2) = ρjϕ(f1 + f2 − f1) ≤ max{ρjϕ(f1 + f2), ρ
j
ϕ(f1)} = ρjϕ(f1)

which contradicts the assumption ρjϕ(f1) < ρjϕ(f2). Hence ρjϕ(f2) ≤ ρjϕ(f1 +f2)
and therefore ρjϕ(f1 + f2) = ρjϕ(f2). Now, we prove that ρjϕ(f1 f2) = ρjϕ(f2).
Indeed, it follows from (3.5) that ρjϕ(f1 f2) ≤ ρjϕ(f2) and by (3.6), we have

ρjϕ(f2) = ρjϕ

(
f1 f2

1

f1

)
≤ max

{
ρjϕ(f1 f2), ρ

j
ϕ

(
1

f1

)}
= max{ρjϕ(f1 f2), ρ

j
ϕ(f1)}.

If we suppose ρjϕ(f1) > ρjϕ(f1 f2), then

ρjϕ(f2) = ρjϕ

(
f1 f2

1

f1

)
≤ max{ρjϕ(f1 f2), ρ

j
ϕ(f1)} = ρjϕ(f1)

which is a contradiction. Hence ρjϕ(f2) ≤ ρjϕ(f1 f2) and therefore ρjϕ(f1 f2) =
ρjϕ(f2).
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Proof of Theorem 2.2

We will prove the theorem for j = 1, the proofs for j = 0 are analogous.
(i) The definition of the τ 1ϕ-type implies that for any given ε > 0, there exists
a sequence {rn, n ≥ 1} tending to infinity such that

T (rn, f2) ≥ ϕ−1(log(τ 1ϕ(f2)− ε)r
ρ1ϕ(fi)
n )

and for sufficiently large r

T (r, f1) ≤ ϕ−1(log(τ 1ϕ(f1) + ε)rρ
1
ϕ(f1)).

We know that T (r, f1 + f2) ≥ T (r, f2)− T (r, f1)− log 2, then by using Propo-
sition 3.1

T (rn, f1 + f2) ≥ ϕ−1(log(τ 1ϕ(f2)− ε)r
ρ1ϕ(f2)
n )− ϕ−1(log(τ 1ϕ(f1) + ε)r

ρ1ϕ(f1)
n )

− log 2 ≥ ϕ−1(log(τ 1ϕ(f2)− 2ε)r
ρ1ϕ(f2)
n ) (4.1)

provided ε such that 0 < 2ε < τ 1ϕ(f2) − τ 1ϕ(f1). It follows from Theorem 2.1
that ρ1ϕ(f1 + f2) = ρ1ϕ(f2), and by the monotonicity of ϕ and (4.1), we get

eϕ(T (rn,f1+f2))

r
ρ1ϕ(f1+f2)
n

≥ τ 1ϕ(f2)− 2ε

since ε can be arbitrarily chosen such that 0 < 2ε < τ 1ϕ(f2)− τ 1ϕ(f1), thus

τ 1ϕ(f1 + f2) ≥ τ 1ϕ(f2). (4.2)

It remains to prove the converse inequality. Indeed, by applying (4.2) and
since

ρ1ϕ(f1 + f2) = ρ1ϕ(f2) > ρ1ϕ(f1) = ρ1ϕ(−f1)
we obtain

τ 1ϕ(f2) = τ 1ϕ(f1 + f2 − f1) ≥ τ 1ϕ(f1 + f2). (4.3)

We deduce from (4.2) and ( 4.3) that τ 1ϕ(f1 + f2) = τ 1ϕ(f2).
Now, we prove that τ 1ϕ(f1 f2) = τ 1ϕ(f2). By the property

T (r, f1f2) ≥ T (r, f1)− T (r, f2) +O(1) (4.4)

and a similar discussion as in the above proof, one can easily show that

τ 1ϕ(f1 f2) ≥ τ 1ϕ(f2). (4.5)

Since ρ1ϕ(f1 f2) = ρ1ϕ(f2) > ρ1ϕ(f1) = ρ1ϕ

(
1
f1

)
, then by (4.5), we get

τ 1ϕ(f2) = τ 1ϕ

(
f1 f2

1

f1

)
≥ τ 1ϕ(f1 f2)
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and therefore τ 1ϕ(f1 f2) = τ 1ϕ(f2).
(ii) The definition of the τ 1ϕ-type implies that for any given ε > 0 and for all r
sufficiently large, we have

T (r, fi) ≤ ϕ−1(log(τ 1ϕ(fi) + ε)rρ
1
ϕ(fi)), i = 1, 2. (4.6)

By the assumption 0 < ρ1ϕ(f1) = ρ1ϕ(f2) = ρ1ϕ(f1 + f2) < +∞, we get by using
Proposition 3.1

T (r, f1 + f2) ≤ T (r, f1) + T (r, f2) +O(1)

≤ ϕ−1(log(τ 1ϕ(f1) + ε)rρ
1
ϕ(f1+f2)) + ϕ−1(log(τ 1ϕ(f2) + ε)rρ

1
ϕ(f1+f2))

+O(1) ≤ ϕ−1(log(max{τ 1ϕ(f1), τ
1
ϕ(f2)}+ 3ε)rρ

1
ϕ(f1+f2))).

By the monotonicity of ϕ, we obtain

eϕ(T (r,f1+f2))

rρ
1
ϕ(f1+f2)

≤ max{τ 1ϕ(f1), τ
1
ϕ(f2)}+ 3ε.

Since ε > 0 can be chosen arbitrarily, then we get

τ 1ϕ(f1 + f2) ≤ max{τ 1ϕ(f1), τ
1
ϕ(f2)}. (4.7)

Without loss of generality, we may suppose τ 1ϕ(f1) < τ 1ϕ(f2), then by (4.7) and
since ρ1ϕ(f1 + f2) = ρ1ϕ(f1) = ρ1ϕ(−f1), it follows

τ 1ϕ(f2) = τ 1ϕ(f1 + f2 − f1) ≤ max{τ 1ϕ(f1 + f2), τ
1
ϕ(f1)} = τ 1ϕ(f1 + f2). (4.8)

We deduce from (4.7) and (4.8) that τ 1ϕ(f1 + f2) = max{τ 1ϕ(f1), τ
1
ϕ(f2)}.

(iii) By a similar discussion as in the above proof and the fact that T (r, f1 f2) ≤
T (r, f1) + T (r, f2), one can prove that

τ 1ϕ(f1 f2) ≤ max{τ 1ϕ(f1), τ
1
ϕ(f2)}. (4.9)

On the other hand, if we suppose that τ 1ϕ(f1) < τ 1ϕ(f2), then by (4.9) and since

ρ1ϕ(f1 f2) = ρ1ϕ(f1) = ρ1ϕ

(
1
f1

)
, we get

τ 1ϕ(f2) = τ 1ϕ

(
f1 f2

1

f1

)
≤ max{τ 1ϕ(f1 f2), τ

1
ϕ(f1)} = τ 1ϕ(f1 f2). (4.10)

It follows from (4.9) and (4.10) that τ 1ϕ(f1 f2) = max{τ 1ϕ(f1), τ
1
ϕ(f2)}.

Proof of Corollary 2.3

The proofs follow immediately from Theorem 2.2. Indeed, since ρjϕ(f1 + f2) =
ρjϕ(f2) = ρjϕ(−f2), then

τ jϕ(f1) = τ jϕ(f1 + f2 − f2) ≤ max{τ jϕ(f1 + f2), τ
j
ϕ(f2)}.

Similarly, since ρjϕ(f1 f2) = ρjϕ(f2) = ρjϕ

(
1
f2

)
, then

τ jϕ(f1) = τ jϕ

(
f1 f2

1

f2

)
≤ max{τ jϕ(f1 f2), τ

j
ϕ(f2)}.
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Proof of Theorem 2.4

By (3.4) and (3.5), we have

ρjϕ(f1 + f2) ≤ ρjϕ(f1) = ρjϕ(f2) and ρjϕ(f1 f2) ≤ ρjϕ(f1) = ρjϕ(f2).

By using similar reasoning as in the proofs of Theorem 2.2, it follows from
(4.1) and (4.4) that

ρjϕ(f1 + f2) ≥ ρjϕ(f2) = ρjϕ(f1) and ρjϕ(f1 f2) ≥ ρjϕ(f2) = ρjϕ(f1).

Therefore, assumption (2.4) holds. On the other hand, we can see that as-
sumption (2.5) follows immediately from (2.4) and Theorem 2.2.

Proof of Theorem 2.5

We will prove the theorem for j = 0, the proofs for j = 1 are analogous.
(i) The definition of the τ̃ 0ϕ-type implies that for any given ε > 0, there exists
a sequence {rn, n ≥ 1} tending to +∞ such that

M(rn, f2) ≥ ϕ−1(log(τ̃ 0ϕ(f2)− ε)r
ρ̃0ϕ(f2)
n ).

and for sufficiently large r, we have

M(r, f1) ≤ ϕ−1(log(τ̃ 0ϕ(f1) + ε)rρ̃
0
ϕ(f1))

In each circle |z| = rn we choose a sequence {zn, n ≥ 1} with |zn| = rn and
satisfying |f2(zn)| = M(rn, f2) such that by using Proposition 3.1, we obtain

M(rn, f1 + f2) ≥ |f1(zn) + f2(zn)| ≥ |f2(zn)| − |f1(zn)|

≥M(rn, f2)−M(rn, f1) ≥ ϕ−1(log(τ̃ 0ϕ(f2)− ε)r
ρ̃0ϕ(f2)
n )

−ϕ−1(log(τ̃ 0ϕ(f1) + ε)r
ρ̃0ϕ(f1)
n ) ≥ ϕ−1(log(τ̃ 0ϕ(f2)− 2ε)r

ρ̃0ϕ(f2)
n ) (4.11)

provided ε such that 0 < 2ε < τ̃ 0ϕ(f2) − τ̃ 0ϕ(f1) and rn −→ +∞. It follows
from Proposition 3.3 and Theorem 2.1 that ρ̃0ϕ(f1 + f2) = ρ̃0ϕ(f2). By the
monotonicity of ϕ and (4.11), we get

eϕ(M(r,f1+f2))

rρ̃
0
ϕ(f1+f2)

≥ τ̃ 0ϕ(f2)− 2ε.

Since ε can be arbitrarily chosen such that 0 < 2ε < τ̃ 0ϕ(f2)− τ̃ 0ϕ(f1), then we
obtain

τ̃ 0ϕ(f1 + f2) ≥ τ̃ 0ϕ(f2). (4.12)
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Since ρ0ϕ(f1 + f2) = ρ0ϕ(f2) > ρ0ϕ(f1) = ρ0ϕ(−f1), then we obtain by applying
(4.12 ) that

τ̃ 0ϕ(f2) = τ̃ 0ϕ(f1 + f2 − f1) ≤ τ̃ 0ϕ(f1 + f2)

and therefore τ̃ 0ϕ(f1 + f2) = τ̃ 0ϕ(f2). Now, we prove that τ 1ϕ(f1f2) ≤ τ 1ϕ(f2). We
have

M(r, f1f2) ≤ M(r, f1)M(r, f2)

≤ ϕ−1(log(τ̃ 0ϕ(f1) + ε)rρ̃
0
ϕ(f1))ϕ−1(log(τ̃ 0ϕ(f2) + ε)rρ̃

0
ϕ(f2))

≤ [ϕ−1(log(τ̃ 0ϕ(f2) + ε)rρ̃
0
ϕ(f2))]2.

By the monotonicity of ϕ and (3.3), we obtain

ϕ(M(r, f1f2)) ≤ (1 + o(1)) log(τ̃ 0ϕ(f2) + ε)rρ̃
0
ϕ(f2) ≤ log(τ̃ 0ϕ(f2) + 2ε)rρ̃

0
ϕ(f2).

Since ρ̃0ϕ(f2) = ρ̃0ϕ(f1 f2), one can deduce that τ̃ 0ϕ(f1 f2) ≤ τ̃ 0ϕ(f2).
(ii) The definition of the τ̃ 0ϕ-type implies that for any given ε > 0 and for all r
sufficiently large, we have

M(r, fi) ≤ ϕ−1(log(τ̃ 0ϕ(fi) + ε)rρ̃
0
ϕ(fi)), i = 1, 2.

By the assumption 0 < ρ0ϕ(f1) = ρ0ϕ(f2) = ρ0ϕ(f1 + f2) < +∞, we get by using
Proposition 3.1

M(r, f1 + f2) ≤ M(r, f1) +M(r, f2)

≤ ϕ−1(log(τ̃ 0ϕ(f1) + ε)rρ̃
0
ϕ(f1+f2)) + ϕ−1(log(τ̃ 0ϕ(f2) + ε)rρ̃

0
ϕ(f1+f2))

≤ ϕ−1(log(max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}+ 2ε)rρ̃

0
ϕ(f1+f2)).

From this inequality and the monotonicity of ϕ, we obtain

eϕ(M(r,f1+f2))

rρ̃
0
ϕ(f1+f2)

≤ max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}+ 2ε.

Since ε > 0 can be arbitrarily chosen, then we get

τ̃ 0ϕ(f1 + f2) ≤ max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}. (4.13)

Without loss of generality, we may suppose τ̃ 0ϕ(f1) < τ̃ 0ϕ(f2), then by (4.13)
and since ρ0ϕ(f1 + f2) = ρ0ϕ(f1) = ρ0ϕ(−f1), it follows that

τ̃ 0ϕ(f2) = τ̃ 0ϕ(f1 + f2 − f1) ≤ max{τ̃ 0ϕ(f1 + f2), τ̃
0
ϕ(f1)} = τ̃ 0ϕ(f1 + f2). (4.14)

We deduce from (4.13) and (4.14) that τ̃ 0ϕ(f1 + f2) = max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}.



Estimates of the ϕ-order and the ϕ-type 55

(iii) Since 0 < ρ0ϕ(f1) = ρ0ϕ(f2) = ρ0ϕ(f1f2) < +∞, then

M(r, f1 f2) ≤ M(r, f1)M(r, f2)

≤ ϕ−1(log(τ̃ 0ϕ(f1) + ε)rρ̃
0
ϕ(f1f2))ϕ−1(log(τ̃ 0ϕ(f2) + ε)rρ̃

0
ϕ(f1f2))

≤ [ϕ−1(log(max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}+ ε)rρ̃

0
ϕ(f1f2))]2.

By the monotonicity of ϕ and (3.3), we obtain

ϕ(M(r, f1f2)) ≤ (1 + o(1)) log(max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}+ ε)rρ̃

0
ϕ(f1f2)

≤ log(max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}+ 2ε)rρ̃

0
ϕ(f1f2).

It follows that

eϕ(M(r,f1 f2))

rρ̃
0
ϕ(f1 f2)

≤ max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}+ 2ε.

By arbitrariness of ε > 0, we deduce that

τ̃ 0ϕ(f1 f2) ≤ max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}. (4.15)

On the other hand, if we suppose τ̃ 0ϕ(f1) < τ̃ 0ϕ(f2), then by (4.15) and since

ρ0ϕ(f1 f2) = ρ0ϕ(f1) = ρ0ϕ

(
1
f1

)
, we get

τ̃ 0ϕ(f2) = τ̃ 0ϕ

(
f1 f2

1

f1

)
≤ max{τ̃ 0ϕ(f1 f2), τ̃

0
ϕ(f1)} = τ̃ 0ϕ(f1 f2). (4.16)

It follows from (4.15) and (4.16) that τ̃ 0ϕ(f1 f2) = max{τ̃ 0ϕ(f1), τ̃
0
ϕ(f2)}.

Proof of Theorem 2.6

By Proposition 3.3 and (3.4) we have ρjϕ(f1 + f2) ≤ ρjϕ(f1) = ρjϕ(f2). By
(4.11) and Proposition 3.3, we have ρjϕ(f1 + f2) ≥ ρjϕ(f2) = ρjϕ(f1). Therefore,
assumption (2.6) holds. On the other hand, we can see that assumption (2.7)
follows immediately from (2.6) and Theorem 2.5.

Proof of Theorem 2.7

The inequality ρ1ϕ(f ′) ≤ ρ1ϕ(f) was proved in [8, Proposition 3.4]. It remains
to prove the converse inequality. The definition of ρ1ϕ(f ′) := ρ′1 implies that
for any given ε > 0 and for all r sufficiently large, we have

T (r, f ′) ≤ ϕ−1(log rρ
′
1+ε).

By (3.1) and Lemma 3.8, we get that

T (r, f) < O{ϕ−1(log(2r)ρ
′
1+ε) + log r} = O{ϕ−1(log(2r)ρ

′
1+2ε)}, r −→ +∞.

In view of (3.3), we have ϕ(T (r, f)) ≤ (1 + o (1)) (ρ′1 + 2ε) log 2r ≤ (ρ′1 +
3ε) log 2r. Since ε > 0 is an arbitrary number, we obtain ρ1ϕ(f) ≤ ρ′1 := ρ1ϕ(f ′)
and therefore ρ1ϕ(f ′) = ρ1ϕ(f). Similar proof for j = 0.
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Proof of Theorem 2.8

We denote ρ1ϕ(f ′) = ρ1ϕ(f) = ρ1. The definition of the τ 1ϕ-type implies that for
any given ε > 0 and for all r sufficiently large, we have

T (r, f) ≤ ϕ−1(log(τ 1ϕ(f) + ε)rρ1).

By the lemma of logarithmic derivative ([11], [13]), we have

T (r, f ′) ≤ 2T (r, f) +O(log T (r, f) + log r), r /∈ E,

where E ⊂ [0,+∞) is a set of finite linear measure. Then, in view of (3.1), we
get

T (r, f ′) ≤ O
(
ϕ−1(log τ 1ϕ(f) + 2ε)rρ1

)
, r /∈ E.

It follows from Lemma 3.7, for any given α > 1 and sufficiently large r

T (r, f ′) ≤ O
(
ϕ−1

(
log(τ 1ϕ(f) + 2ε)(αr)ρ1

))
.

In view of (3.3), we have for sufficiently large r

ϕ(T (r, f ′)) ≤ (1 + o (1))
(
log(τ 1ϕ(f) + 2ε)(αr)ρ1

)
≤ log(τ 1ϕ(f) + 3ε)(αr)ρ1 ,

so

eϕ(T (r,f
′)) ≤ (τ 1ϕ(f) + 3ε) (αr)ρ1 .

By arbitrariness of ε > 0, we obtain τ 1ϕ(f ′) ≤ αρ1τ 1ϕ(f). On the other hand,
by the definition of the τ 1ϕ-type implies that for any given ε > 0 and for all r
sufficiently large, we have

T (r, f ′) ≤ ϕ−1(log(τ 1ϕ(f ′) + ε)rρ1).

By (3.1) and Lemma 3.8, we get that

T (r, f) < O{ϕ−1(log(τ 1ϕ(f ′) + ε) (2r)ρ1) + log r}

= O{ϕ−1(log(τ 1ϕ(f ′) + 2ε) (2r)ρ1)}, r −→ +∞.

In view of (3.3), we have for sufficiently large r

ϕ(T (r, f)) ≤ (1 + o (1))
(
log(τ 1ϕ(f) + 2ε)(2r)ρ1

)
≤ log(τ 1ϕ(f) + 3ε)(2r)ρ1 .

From this, we can easily obtain τ 1ϕ(f) ≤ 2ρ1τ 1ϕ(f ′) and hence we deduce that

1

2ρ
1
ϕ(f)

τ 1ϕ(f) ≤ τ 1ϕ(f ′) ≤ αρ
1
ϕ(f)τ 1ϕ(f) (α > 1) .
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5 Open Problem

It is interesting to study the growth of entire and meromorphic functions by
using the concept of α, β-order introduced by Sheremeta ([16]).
Acknowledgements. This paper is supported by University of Mostaganem
(UMAB) (PRFU Project Code C00L03UN270120180005).
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[4] B. Beläıdi, Growth of ρϕ-order solutions of linear differential equations
with entire coefficients. PanAmer. Math. J. 27 (2017), no. 4, 26–42.
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