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Abstract

Wavelet multipliers have a relatively recent development in pure and applied
mathematics. Motivated by Wong’s approach, we will study in this paper the two-
wavelet multipliers associated with the g-Dunkl transform. Next, under suitable
condition on the symbols and two admissible g-wavelets, the boundedness and com-
pactness of these generalized two-wavelet multipliers are presented on the spaces
L 4(Ry), 1 < p < oo
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1 Introduction

The g-theory, called also in some literature quantum calculus, began to arise. Interest in
this theory is grown at an explosive rate by both physicists and mathematicians due to
the large number of its application domains.

Very recently, many authors have been investigating the behavior of the g-theory to
several problems already studied for the Fourier Analysis; for instance, sampling theo-
rem [1], Paley-Wiener theorems [2, 3|, wavelet transform [8, 22|, uncertainty principles
9, 23], wavelet packets [10], Ramanujan master theorem [11], Sobolev spaces [19], Gabor
transform [18, 20], localization operators [20, 21, 22], wave equation [25], Fock spaces
[26] and so on.
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One of the aims of the Fourier Analysis, is the study of the theory of wavelet multi-
pliers. This theory has been initiated by He and Wong in [14], developed in the paper [7]
by Du and Wong, and detailed in the book [28] by Wong,.

As the g-harmonic analysis has known remarkable development, the natural question
to ask whether there exists the equivalent of the theory of wavelet multipliers in the
framework of the g-theory.

In our paper, we mainly concern the ¢g-Dunkl transform under the setting of g-Dunkl
operator. Our main aim in this paper is to expose and study the boundedness and
compactness of two-wavelet multiplier associated with the g-Dunkl transform.

This paper is organized as follows.

In §2 we recall the main results about the harmonic analysis associated with the g-Dunkl
operator and the Schatten-von Neumann classes. In §3, we introduce the two-wavelet
multipliers in the setting of the g-Dunkl theory, we establish their Schatten Von Neumann
properties and we show the trace and the trace class norm inequalities for trace class ¢-
Dunkl two-wavelet multipliers. Finally, in §4, we prove the LP-boundedness and the
LP-compactness of these g-Dunkl two-wavelet multipliers, under suitable conditions on
the symbols and two admissible g-wavelets.

2 Preliminaries

For the convenience of the reader, we provide in this section a summary of the mathe-
matical notations and definitions used in this paper. We refer the reader to the general
references [5, 13, 15, 16, 24, 25, 28], for the definitions, notations and properties of the g-
shifted factorials, the ¢g-hypergeometric functions, the Jackson’s g-derivative, the Jackson’s
g-integrals, ¢-Dunkl operator, g-Dunkl kernel, ¢g-Dunkl transform and the Schatten-von
Neumann class. Throughout this paper, we assume that g € (0,1).

2.1 Basic symbols

For a € C, the g-shifted factorials are defined by
n—1 00

(@;q)o =15 (a:q)n = [ [(1 —ag"), n=1, 2,5 (a;0)00 = [ [(1 - ag"), (2.1)

and

We also denote

1 _ X
Wo=1=p v eC (2:2)
and
n],! = (@0 oy
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2.2 Operators and elementary special functions

The ¢*-analogue differential operator is given by (see [24, 25]),

Fla2) + Fats) = Jla2) 7 (02) = 20(=2) .

0 z) = 2(1 —q)z )
) %éq(f)%;) (in R, aog Y

Note that if f is differentiable at z, then linq 0,()(2) = f'(2).
q—
The ¢-Gamma function is given by (see [15])
(45 4)oo -
T (x) = ~L2d% (1 _gyl=e £ —1,-9, ...,
A= (g 7Y
It satisfies the following relations

Ly(x+1) =[z],Ty(x), T,(1)=1 and lim I'y(z) =I(z), R(z) > 0.

q—1-

The g-trigonometric functions g-cosine and g-sine are defined by (see [24, 25])

o 2n
n _n(n T
cos(w; ¢°) = Y (=1)"¢g" H)W
n=0 q
and -
s ) == Y (1)
’ 2n + 1,
n=0 q

The g-analogue exponential function is given by
e(z;¢%) = cos(—iz; ¢*) +isin(—iz; ¢*). (2.4)

These three functions are absolutely convergent for all z in the plane and when ¢ tends
to 1 they tend to the corresponding classical ones pointwise and uniformly on compacts.
Note that we have for all z € R,

1 . ) 1
cos(z;q7)| < ; sin(z;q7)| < ;
|cos(z: ) (4 @)oo |sin{z: ) (4 @)oo
and 9
. 2
e(—ix;q%)| < 2.5
le( )| o~ (2.5)

Here, for a function f defined on R,. The g-Jakson integrals are defined by (see
[15, 16])

/O“f<x>dq:c=<1—q>a2f<aq”>q“, / f(2)dyz 1—q2q ~ f(ag"),
/ fada=(-q) 3 " Fa),

n=—oo

/_OO f(@)dgz = (1=q) > {f(d)q" + f(=a")q"},

n=—oo

provided the sums converge absolutely.
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2.3 Sets and spaces

By the use of the ¢*-analogue differential operator d,, we note:
e &,(R,) the space of functions f defined on R, satisfying

VneN, a>0, P,.(f) :sup{|8g’f(x)|; 0<k<n, z€ [—a,a]ﬂRq} < 00

and
hH[l)(@gf)(l’) (in R,) exists.

We provide it with the topology defined by the semi norms P, ,.
o S,(R,) the space of function f defined on R, satisfying

Vn,m €N, P, q=sup |27 f(z)] < oo

z€R,

and
lim (97 f)(x) (in R,) exists.

z—0

e D,(R,) the subspace of S,(R,) constituted of functions with compact supports.
o [} (R,),1 <p < oo, the space of functions f on R, satisfying

oo 1/p
lzw = (/ |f<x>|pdqx) coo, 1<p< oo

—00

| fllLe®y = ess sup |f(x)| < oo, p=o0.
T€Ry

In particular, wa(Rq) denotes the Hilbert space with the inner product

(f:9)aq = : f(2)g() x| dyz.

2.4 Elements of ¢-Dunkl Harmonic Analysis

In this section, we collect some notations and results on g-Dunkl operator and g-Dunkl
transform studied in [5].
For o > 1, the ¢-Dunkl transform is defined on L/, ,(R,) by:

FEUF)(A) = cay / F@) @) e, forall A € R,, (2.6)
- (I+q g -
where ¢, 4 = (e +1) and ¢} ? is the g-Dunkl kernel defined by
YUx) = ja(Ax;¢?) + M—xjaﬂ()\x‘ ) (2.7)
A ’ [2a + 2], T

with j,(z; ¢*) is the normalized third Jackson’s g-Bessel function given by:

. > [p2(a + 1)gn+h) T \2n
N L2 — _1 n q ( > )
Jalw: ) Z( ) Fpn+1)le(a+n+1)\14gq

n=0



Wavelet-multipliers analysis in the framework of the g-Dunkl theory 5t

It was proved in [5] that for all A € C, the function z — ¢5(x) is the unique solution of
the g-differential-difference equation:

Aa,q(f) = iAf
{ s (2.8)

where A, 4 is the g-Dunkl operator defined by
f(@) = f(==)

Raal @) = Bylfe + 1 £) @) + (20 + 1), HEE

(2.9)

with f. and f, are respectively the even and the odd parts of f.
We recall that the g-Dunkl operator A, , lives the spaces D,(R,) and S,(R,) invariant.

Remark 2.1. (i) It is easy to see that in the even case Fpd reduces to the q-Bessel
transform and in the case a = 2, it reduces to the ¢*-analogue Fourier transform.
(i) It is worthy to claim that letting q T 1 subject to the condition

In(1 —q)
In(q)

Fpd tends, at least formally, the classical Dunkl transform. In the remainder of this
paper, we assume that the condition (2.10) holds. (See [5]).

€ 2Z, (2.10)

Some other properties of the g-Dunkl kernel and the ¢-Dunkl transform are given in
the following results (see [5]).

Proposition 2.1. i) For all \,x € R, a € C, we have
V@) = vi(N), dail(x) = ¥y (ax), ¥)(x) = PIN(2).

i) If o = —1, then ¢¥y(z) = e(idw; ¢2).
iii) For o > —%, the g-Dunkl kernel " has the following g-integral representation of
Mehler type

) 1 2.2, .2
Ve eR,, ¢y(r) = S ?)Fq ot 11> / gt st )50
2l (5)Pe(a + 3) Jo1 (t2q 1 4%) oo

i) For all X € Ry, Y37 is bounded on R, and we have

(1 +t)e(izt; ¢*)d t. (2.11)

4
(¢:9)

v) For all A € R, the function ¢\ belongs to S(R,).
vi) The function 37 verifies the following orthogonality relation: For all z, y € R,

V.I'ER(], W ( )’

(2.12)

A1+ q)*Th(a+1)
20+1 q
/ AT = =T e, (2.13)
vii) If f € L, ,(R,) then F5(f) € L*(R,) and
a dcq
IF5 (D, < 7=l f s, (2.14)

(4 9)
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Moreover
Jim FRUHO) =0, ARy Tim FR(NN) = FR(N)0), AER (215)

viii) For f € Ly, (R,), we have
I (Aagf)(A) = iIAFR (). (2.16)

i) For f, g € L} ,(R,), we have

| F Ot = [ f@m @l e @)
Theorem 2.1. For all f € L (R,), we have
Vo € Ry, fa) = coy | FRUHNG @I = FRI D) @) (218)

Theorem 2.2. i) Plancherel’s formula
For o > —3, the q-Dunkl transform Fp? is an isomorphism from S,(R,) onto itself.
Moreover, for all f € S,(R,), we have

IFD(Ollez @) = 1 fllLz, &y)- (2.19)

it) Plancherel’s theorem
The q-Dunkl transform can be uniquely extended to an isometric isomorphism on Liq(Rq).
Its inverse transform (F?) ™! is given by :

FE @) = con [ SO = FR ) 0). (220)

Proposition 2.2. Parseval’s formula for Fp*
For all f in L? (R,), we have

/ STV AR d A = / FoU ) @) Fa @@ e, (221)

By using the Riesz-Thorin theorem and relations (2.14), (2.19), we obtain the following
Young’s inequality:

Proposition 2.3. Let f be in L}, (R,) and p belongs in [1,2]. We have

deaq

I75%(7) (¢ @)o

2-p
<( )7 Nl - (2.22)

“L';fq<Rq>
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2.5 Schatten-von Neumann classes

Notation. We denote by

e [P(N) the set of all infinite sequences of real (or complex) numbers x = (z;);en,
such that
o0 1
lell, = (Dolal?)” <00, if 1<p<oo,
=1
lelle 1= suplas| < oo.
jeN

For p = 2, we provide this space [?(N) with the scalar product
(x,y)e == Zx]y_]
j=1

e B(LE (R,)), 1 < p < oo, the space of bounded operators from L, (R,) into itself.
e CO(L} ,(R,)), 1 < p < oo, the set of all compact operators from L%,  (R,) into itself.

Definition 2.1. (i) The singular values (s,(A))nen of a compact operator A in B(L? ,(R,))

are the eigenvalues of the positive self-adjoint operator |A| = vV A*A.
(ii) For 1 < p < oo, the Schatten class S, is the space of all compact operators whose
singular values lie in [P(N). The space S, is equipped with the norm

1Alls, = (i(snm))p) .

n=1

=

(2.23)

Remark 2.2. We note that Sy is the space of Hilbert-Schmadt operators, whereas Sy is
the space of trace class operators.

Definition 2.2. The trace of an operator A in Si is defined by

[e.e]

tr(A) = Z(Avn, Un)ang (2.24)

n=1
where () is any orthonormal basis of L7, ,(R,).
Remark 2.3. If A is positive, then
tr(A) = [[Alls- (2.25)

Moreover, a compact operator A on the Hilbert space Li’q(]Rq) 1s Hilbert-Schmidt, if the
positive operator A*A is in the space of trace class Sy. Then

1Al[Fs = [1Allg, = [|A"Alls, = tr(A"A) = Y [|Avall72 =z, (2.26)
n=1

for any orthonormal basis (vy)n of L2 ,(Ry,).
Definition 2.3. We define S. := B(L2, (R,)), equipped with the norm,
I|A||s. == sup HAUHLi’q(Rq)- (2.27)

UGLg"q(Rq)ﬂ‘UHL%,{Z(R(])ZI
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3 ¢-Dunkl two-wavelet multipliers

3.1 Introduction

Let 0 € LY (R,), we define the linear operator M, : L? (R,) — L2 (R,) by

Mo (f) = (F5*) (e Fp(f))- (3.1)

This operator is called the g-Dunkl multiplier. Moreover, from Plancherel’s formula (2.19),
it is clair that M, is bounded with

1Mo |50 < llolres,@y)-

Definition 3.1. Let u,v,o0 be measurable functions on R,, we define the q-Dunkl two-
wavelet multiplier operator noted by Pyy(0), on L, (R,), 1 <p < oo, by

o0

Pun(0)(f)(y) = Ca,q/ o (E)Fp (wf) Ve (y)v(y)€** T deg, y € Ry (3.2)
In accordance with the different choices of the symbols ¢ and the different continuities
required, we need to impose different conditions on v and v. And then we obtain an
operator on L2 (R,).
It is often more convenient to interpret the definition of P, (o) in a weak sense, that
is, for f in L2 (R,), p € [1,00], and g in L7 (R,),

[e.e]

(Puw(@)(f); 9)ag = / (&) Fp (wf) () F5 (vg)(§)IE[**dyé. (3.3)

—o0
In this section, we will derive a host of sufficient conditions for the boundedness and
Schatten class of g-Dunkl two-wavelet multiplier operator in terms of properties of the

symbol and the windows u and v. Our main results for the boundedness and compactness,
of Puy(o) on L2 (R,) are summarized in the following table.

Table 1: Boundedness and compactness of Py, () on L2 ,(R,)

Symbol Windows Operator
o U ‘ v Puv(0)
Lg,q(RQ)7 p € [17 OO] Li,q(Rq) N Lgcc:q(Rq) Li q(Rq) N ngoq(Rq) SOO
Lg,q<Rq)7 b € [17 OO] Li,q(Rq> N ng(,)q(]Rq) ng q(Rq) n Lzoq(Rq) Sp
LhRy),pe(lioo) | L2 (R)NLE,Ry) | L2 (Ry) NLE,(Ry) | CO(L ((Ry))

The first line will be proved in Sec. 3.2. The general condition for membership in the
Schatten class S, will be proved in Sec. 3.3, the compactness result also is proved in Sec.
3.3.

Proposition 3.1. Let p € [1,00). The adjoint of linear operator
Puw(o) : L (Rg) = L, o (Rg)
is Puu(0) : LE (Ry) — L¥ (R,).
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Proof. For all fin L? (R,) and g in L%, (R,) it follows immediately from (3.3)

Pucl)(D.G)e = | QT @NOTFTo @I "ot

e8]

B /_OO o(O)F 5 (uf ) F5 (vg)(©)IE** dyg

(e8]

= (Pou(@)(9), Hag = {f; Pou(@)(9)) g

Thus we get
P;,U(U) = Puu(0). (3.4)

[
Proposition 3.2. Let 0 € L; ,(R,) U LY, (R,) and let u,v € L}, ,(Ry) N LY (Ry). Then

<Pu,v(0)(f)> g>a7q = (VMy(uf), 9>0c,q- (3.5)

Proof. For all f,g in L2 (R,) it follows immediately from (3.3), (3.1) and Parseval’s
formula (2.21)

8

(Puw(@)(f); 9)ag = ()5 (uf) (&) F 5 (vg) (§)E[**dyé

/
_ / Fo (Mg (uf)) (6) F5 (wg) €) € dyg
/

88

88

M, (uf)(x)(vg)(@)|a*** dyz = (M (uf), g)aq

8

Thus the proof is complete. ]

3.2 Boundedness for P, ,(c) on S

The main result of this subsection is to prove that the linear operators
Puw(0) : L3 4(Rg) = L7 4 (Ry)

are bounded for all symbol o € L? (R,), 1 < p < co. We first consider this problem for
o in L} (R,) and next in Ly*(R,) and then we conclude by using interpolation theory.
In this subsection, u and v will be any functions in L2 ,(R,) N L, (R,) such that

lullez &y = 1Vll22 &) = 1-

Proposition 3.3. Let o be in Lé,q(Rq), then the g-Dunkl two-wavelet multiplier Py (o)

18 in S~ and we have
2
16¢;, ,

(¢:9)%

Proof. For every functions f and g in L? (R,), from (3.3) we have,

Hpu,v(U)HSoo <

loll s, ry)- (3.6)

o0

|[{(Puw(0)(f): G)aal </_ o (ONFL (wf)(E)Fp* (vg) ()| dvaq(€)

[e.9]

< WFp (wh)llee, @) 1F D (09 e, o oIl L, o) -
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Using relation (2.14) and the Cauchy-Schwarz inequality, we get

4ca, o
= ulla @l fllzz @s  1FD (09l Le, @y <
(¢;9)

)

Ca,qg
(Q;q>ooHUHLg,q(Rq)HgHLa,q(Rq)-

IFD " () e o) <

Hence we deduce that

16¢%
[(Puw(0)(f), 9aal < (q_q);q £l e llgllez o llollzy , @,)-
Thus,
2
[ Puw(0)lls < ( .q‘;’f lorflzy, )

]

Proposition 3.4. Let o be in LY, (R,), then the q-Dunkl two-wavelet multiplier operator
Puw(0) is in Sy and we have

[1Puw(0)lsee < Nuullzgs, o) 0]l s, o) 10| 62, 20

Proof. For all functions f and g in L2 (R,), we have from Cauchy-Schwarz’s inequality

o0

[(Puw(0)(f); 9)aal </ o (ONFE () ENNFp (wg)(NIEP* g

—0o0

< ol e, @ IFD " (whll 2 @) 1 Fp (09) 22,y

Using Plancherel’s formula (2.19) we get

[(Puo(0)(f)s Daal < lullzge, ®pllvllize,®ollolce, @l 22, @ llgll 2, &,)-

Thus,
[ Pup (050 < el e, ®p 10l e, @) ol L2, Ry -

We can now associate a g-Dunkl two-wavelet multiplier
Puw(0) : Lg 4(Rq) = Lo o(Ry)

to every symbol o in L2 (R,), 1 < p < oo and prove that P, ,(0) is in S.. The precise
result is the following theorem.

Theorem 3.1. Let o be in Lf, (R,), 1 < p < oo. Then there exists a unique bounded
linear operator
Pun(0) : Lgy(Rg) = L 4(Ry),
such that
16¢2,, \ =1

P p
(q; q)go) (HuHLgo,q(Rq) |’U||Lg<jq(Rq)) ||O-HLZ,q(Rq)-

1Pun(@)lls < (
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Proof. Let f be in L7, (R,). We consider the following operator
T : Lé,q(Rq) ﬂ ng?q(Rq) - Li,q(RQ)a
given by
T(0) := Puu(o)(f)-
Then by Proposition 3.3 and Proposition 3.4

2

16¢Z,
1T (e, ) < (q,q’f 11122,z llolly ) (3.7)

) )OO

and
1T ()2, o) < lullzee, @ llvll e, @l 1]z, @ o] 2z, 20)- (3.8)
Therefore, by (3.7), (3.8) and the Riesz-Thorin interpolation theorem (see [[27], Theorem

2] and [[28], Theorem 2.11]), T may be uniquely extended to a linear operator on L%, (R,),
1 < p < oo and we have

162 1
Pusl@) ) = 1Tz < () (leypllolizyn) 1 e ol s,

(4 9)%
(3.9)
Since (3.9) is true for arbitrary functions f in L2  (R,), then we obtain the desired result.
[l

3.3 Traces of ¢-Dunkl two-wavelet multipliers
The main result of this subsection is to prove that, the g-Dunkl two-wavelet multiplier
PU,U(U) : Li,q(Rq) — Li,q(Rq)

is in the Schatten class S),.
In this subsection, v and v will be any functions in L2 ,(R,) N LY, (R,) such that

lullzz @) = vllzz @) = 1.

Proposition 3.5. Let o be in L}, ,(R,), then the q-Dunkl two-wavelet multiplier Py (o)
is in Sy and we have

degq \2
IPuc(@ls: < (i) Nolin

Proof. Let {¢;,j = 1,2...} be an orthonormal basis for L2 ,(R,). Then by (3.3), Fubini’s
theorem, Parseval’s identity and (3.4), we have

ZHPM @2 2y = D (Pun(0)(85), Pun(0)(@)))ag

= a2 [ O TP 6) T JE
- Ci,q/_ o(§) Z<P27v(0)(@¢?’q), D) aq(Di, a¢?7(1>a7q’£|2a+1dq£

= &, [ oAOPL ), Wl e
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Thus from (3.6) and (2.12), we get

j{j\szU OBz, < () [ 10@ 1P lsedrant®) < (£22) oy gmy < -

(¢ 0)’ J o (45 9)os
(3.10)
So, by (3.10) and the Proposition 2.8 in the book [28], by Wong,
Puﬂ)(o-) : Li,q(Rq) — Li,q(RQ)
is in the Hilbert-Schmidt class S5 and hence compact. O

Proposition 3.6. Let o be a symbol in qu(Rq), 1 < p <oo. Then the qg-Dunkl two-
wavelet multiplier P, (o) is compact.

Proof. Let o bein L?, (R,) and let (0, )nen be a sequence of functions in L, ,(Ry) ) L2, (Ry)
such that o, — o in L} (R,) as n — oo. Then by Theorem 3.1

160 % p—1
Pualon) = Puslo)ls < (7 550) " Ml e ol 20) 7 Hlom = ol 0

o0

Hence P, ,(0,) = Pup(0o) in So as n — oco. On the other hand as by Proposition 3.5
Puv(0y) is in Sy hence compact, it follows that P, , (o) is compact. O

Theorem 3.2. Let o be in L, (R,). Then Pyy(o) : L2 (Ry) — L2 (R,) is in S and
we have

%oay o]z [Puw(0)s, < fog 2|| I (3.11)
: ally &) S [[Puw s \< ’ ) OllLL  (Ry)s .
HuH2ggq(Rq) + HUH%%(R ) ' (¢:9)oo (e

where o 1s given by

(&) = (Puw(o) Q/)?q% ?ﬁ?’q@a,q: £ €R,.

Proof. Since o is in L}, ,(R,), by Proposition 3.5, Py, (c) is in Ss. Using [28, Theorem 2.2],
there exists an orthonormal basis {¢;, j = 1,2...} for the orthogonal complement of the
kernel of the operator P, ,(¢), consisting of eigenvectors of |P, ()| and {u;, j =1,2...}
an orthonormal set in L2  (R,), such that

Pus(o Zsj F b5, (3.12)

where s;, j = 1,2... are the positive singular values of P, (o) corresponding to ¢;. Then,
we get

[Puo(o)ls, = ZS]_Z o (0)(B5) Wi ag

7=1
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Thus, by Fubini’s theorem, Parseval’s identity, Bessel’s inequality, Cauchy-Schwarz’s in-
equality, (2.12), and [[ul[zz ®,) = l[v[lzz &, = 1, we get

1Puc(@)llss = D (Pun(0)(85): t)ag

j=1
-3 / o (6) F3 (i) (€) Fo oy () [€2 1y
j=17-o0
- 2, / 0(E) 365, WL g TV, s |E12
L2
(Z\ 50 0l ) (NP 1) P

J=1

IA
Ql\')

(VAN
\\

o () atbe Nz, o 109 |2, (o) |61 g

4cq,
< () Iolin, w0
Thus

deag 2
1Pua(@)llsy < (=) ol e

(¢,9)

Now we prove that P, (o) satisfies the first member of (3.11). It is easy to see that &
belongs to L}, ,(R,), and using formula (3.12), we get

FEO] = | (Pun(0) (g 0), V) g

o0
- ‘ D5 U8, 0 ag (5, U8 W) ag
j=1

S

)

Then using Plancherel’s formula given by relation (2.19) and Fubini’s theorem, we obtain

wg qua ¢j>a,q

’( ¢§ U, Uj)ag

oo

OON N 1 o o o

|0l < 53 s ([ Iv o) aa i g

. 2. [

[ e PP ).

Thus
- 0 g + I 2 Il e+ 00
| ©leperia,g < Sy Z 22 1Pl
—00 a,q —

The proof is complete. O
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Corollary 3.1. For o in L;q(Rq), we have the following trace formula

o0

tr(Puw(0)) = cag /_ ()", upe ") a gl dgé. (3.13)

[e.9]

Proof. Let {¢;,j =1,2...} be an orthonormal basis for Liq(Rq). From Theorem 3.2, the
¢-Dunkl two-wavelet multiplier P, , (o) belongs to Sy, then by the definition of the trace
given by the relation (2.24), Fubini’s theorem and Parseval’s identity, we have

o0

tr(Puu(@)) = D (Pun(0)($5), 65)aa

= X [ o€ v TE T P g
=1

= Qg | IO (s VS W (VE0, ), | g

Jj=1
Y G o e

and the proof is complete. O]

In the following we give the main result of this subsection.

Corollary 3.2. Let o be in L} (R,), 1 < p < oo. Then, the g-Dunkl two-wavelet
multiplier
Puw(0) : L3 o(Rg) — L7 ((Ry)

is in S, and we have

4ca % p—1
IPuc(@lls, < (7o) Uizl ) 7 12z

Proof. The result follows from Proposition 3.4, Theorem 3.2 and by interpolation (See
[28, Theorem 2.10 and Theorem 2.11]). O

Remark 3.1. If u = v and if o is a real valued and nonnegative function in Lavq(Rq)
then Pyo(o) : L2 (Ry) — L2, ,(Ry) is a positive operator. So, by (2.25) and Corollary 3.1

[ Puw(o)ls, = Ci,q/ o ()1 ullZz @)l dg. (3.14)
Now we state a result concerning the trace of products of g-Dunkl two-wavelet multi-
pliers.

Corollary 3.3. Let 01 and oy be any real-valued and non-negative functions in La7q(Rq).
We assume that u = v and u is a function in L}, (R,) such that |lul|rz @, = 1. Then,
the q-Dunkl two-wavelet multipliers Py, (01), Puv(02) are positive trace class operators

and
n

(Pt

tr (Pu,v(a 1) Puw(o 2))

tr (Pu,v (01)) ) " (tr (PW, (02)) ) "

’Pu,v(o-l) s PU,U(O-Q) s,

S1

IN

Y

for all natural numbers n.
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Proof. By Theorem 1 in the paper [17] by Liu we know that if A and B are in the trace
class S7 and are positive operators, then

VneN, tr(AB)" < (tr(A))n(tr(B)>n.

So, if we take A = Py, ,(01), B = Py,(02) and we invoke the previous remark, the
proof is complete. O

3.4 The Generalized Landau-Pollak-Slepian Operator

Let R and R; and Ry be positive numbers. We define the linear operators
QR : Li,q(Rq) — Li,qURq)’ PRI : Li,q(Rq) — Lz,q(Rq)7 PR2 : Li,q(Rq) — L(Q)z,q(RCI)?
by

Qrf = X 0.0 f+ Prif = (Fp") " (X8s, 0,80 F 5" ()s Prof = (F5*) ™ (X, 0,80 F 5" (),

where Xp, (0,5) is the characteristic function of the set B, (0, s) := (—=s,s) N R,.
We adapt the proof of Proposition 20.1 in the book [28] by Wong, we prove the
following.

Proposition 3.7. The linear operators Qr, Pr, © = 1,2, are self-adjoint projections.

The bounded linear operator Pr,QrPr, : L? (R,) — L2 ,(R,), that it has appeared
in the context of time and band-limited signals can be called the generalized Landau-
Pollak-Slepian operator. We can show that the generalized Landau-Pollak-Slepian oper-
ator is in fact a ¢-Dunkl two-wavelet multiplier.

Theorem 3.3. Let u and v be the functions on R, defined by

1 1
= XBg,(0,R1); U=
\/:uouq(BRq (0’ Rl)) - \/,uoc,q(B]Rq (07 R2))

u

X Bg, (0,Rz2)>

where

Vs >0, flaq(Br,(0,s)):= / |z[** T d,z.

BRq (075)

Then the generalized Landau-Pollak-Slepian operator

Pr,QrPr, : L2 (R,) — Liq(Rq)

a,q

1s unitary equivalent to a scalar multiple of the q-Dunkl two-wavelet multiplier

v M w: L2 (Ry) — L2 (R,).

XBRq (0,R)
In fact

Pr,QrPr, = Coq(Ry, Ro)(F?) oM Fi, (3.15)

XBRq (0,R) u)

where

Cog(R, Ry) = \/,ua,q(BRq<0> Ri)taq(Br,(0, Ry)).
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Proof. It is easy to see that u and v belong to L7, (R,) N Ly (R,) and

lullez &y = lvllc2 @y = 1.

On the other hand we have
(PasCt ) () ) = (M (1) G = [ M, 07 TG
By simple calculations we find

<,Pu,v(XBRq(OaR))(f)7g>a,q = <UMXBRq(o,R) (wf), 9y

— i | P (R NPl TGN g
-R

— ot | QePa (T O PrlT ) G g

m<QRPR1((J:M) Y5 Pry((Fp*)71(9))) ana
m(PRQQRPRl((fgq) Y (FDD)H9)) e
et ) o ProQrPr, (F*) 71 (f)), 9)asg

for all f, ¢ in S(R,) and hence the proof is complete. O

The next result gives a formula for the trace of the generalized Landau-Pollak-Slepian
operator Pr,QrPr, : L? (R;) — L2 (R,).

Corollary 3.4. We have
(P Qerr) =, [ f OO P dyy e d, .
Br, (0,R) v B, (0,min(R1,Rz2))

Proof. The result is an immediate consequence of Theorem 3.3 and Corollary 3.1. O

4  LP-boundedness and LP-compactness of P, (o)

4.1 Boundedness for symbols in L}, (R,)

For 1 <p<oo,let o€ Ll (R,), ve L, (R,) and u € L7 (R,) .
We are going to show that P, ,(c) is a bounded operator on Lf (R,). Let us start
with the following propositions.

Proposition 4.1. Let o be in L, ,(R,), u € LY (R,) and v € L}, ,(R,), then the q-Dunkl
two-wavelet multiplier
Pup(0) : Lo g(Rg) — Lo o(Ry)

18 a bounded linear operator and we have

16¢2

a,q

| Puw(0)l 5Ly ) < 0.4 el e, 10l g oy ol 2 -
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Proof. For every function f in L}, ,(R,), we have from the relations (3.2), (2.14) and (2.12)

1P (@) llzg o 0) < o / / ONFE O 15 (Ov)IE+ dyglyPdyy

16¢2
a,q
(q)q) Hf||L Rq)||U|’Lg?q(Rq)||U||L(g,q(Rq)||U||Lg,q(Rq)

Thus,

16020

[P (@) By, ke < 0.0 ullzge, @) V]| &) lo |22, (RY)-

]

Proposition 4.2. Let o be in L, (R,), u € L} (R,) and v € LY (R,), then the q-Dunkl
two-wavelet multipliers
Puv(o) : LZf’q(Rq) — Lqu(Rq)

1 a bounded linear operator and we have

16¢2

\|7’u,v(0)!|B<Lg°,q<Rq>><ﬁ\lulhg,qmmlv!h @ llollcy, @)

Proof. Let f in LY (R,). As above from the relations (3.2), (2.14) and (2.12)

[e.9]

7Y E Ry, [Pun()(H)W)] < g / o (@F (/) 15 (Eu)IE* dyé

—00

16ca
( )q||f||L q)||U||Lg,q(Rq)||U||Lg<;q(Rq)||ff||Lg,q(Rq)

Thus,
16¢2

oq

[ Puw(0)||B(Le,®y) < 0.0)° ullzs @ l[V]|zee, @) ol L1, y)-

]

Remark 4.1. Proposition 4.2 is also a corollary of Proposition 4.1, since the adjoint of

Pou(@) : Lt

a,q(Rq) — Ltll,q(Rq)
is Pup(0) : Ly, (Ry) — L, (Ry).
Using an interpolation of Propositions 4.1 and 4.2, we get the following result.

Theorem 4.1. Let u and v be functions in L, ,(Rg)NLY, (Ry). Then for allo in L}, ,(R,),
there exists a unique bounded linear operator

Puw(o) : Lg,q(Rq) — Lg,q(Rq)7 1 <p<o,

such that

16¢2 1 s

Puw(@) B2 ,0) < (Q,qjiH ullfy Rq)l\vllp (Rq) IIUIILoo ez, @plloliy @
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We can give another version of the L? -boundedness. Firstly we generalize and we
improve Proposition 4.2.

Proposition 4.3. Let o be in L. (R,), v € L% (R,) and u € LP, (R,), for 1 < p < oo,
then the q-Dunkl two-wavelet multiplier

Pu,v(g) : Lg,q(Rq) — Lg,q(RQ)
1s a bounded linear operator, and we have

16¢%

‘|Pu,v<0)HB(Lg,q(Rq)) < (—gH ”LP o(Rg) H Hqu RQ)HUHLaqRq)

q,q)%

Proof. For any f € LE, (R,), consider the linear functional

I : LF (R,) — C
g = (9, Puw(0)(f))ag
From the relation (3.3)
[(Puw(0)(f); Pagl < /_ o (ONFE (wf) O Fp (vg) (E)NIE[** g€

< llollzy,, @ 17D (wh)ll e, ) 1FD (09) | e, o) -
Using the relation (2.6), (2.12) and Hélder’s inequality, we get

16¢2

|<Pu,v(0>(f)7g>a,q| < (q qo){g ||0-||Lé’q(Rq)”uHLz&’,q(Rq)||U||Lg,q(Rq)||f||L£,q(Rq)||g’|Lg"q(Rq)'
» 4/ 00

Thus, the operator Z; is a continuous linear functional on Lg’q(]Rq), and the operator
norm

16c
1Zs1l quRq))\(q,q)"’ lall gy 1ol e £ Lz sz ol o).

As Z¢(g) = (9, Puw(0)(f))a,q by the Riesz representation theorem, we have

160
[P (@) (D Bz = il pr e,y < (q)q)’q lell o e 12122 g @) | F Nl 22 oy ol 2,y s

which establishes the proposition. O]
Combining Proposition 4.1 and Proposition 4.3, we have the following theorem.

Theorem 4.2. Let o be in L, ,(R,), v € L% (R,) and u € LZ, (R,), for 1 < p < oo, then
the q-Dunkl two-wavelet multiplier

PU,U(O) : Lg,q(Rq) — Lﬁ,q(Rq)
1s a bounded linear operator, and we have

16c

@,q

P (@)l B2z ) < 0.4 el oy 19l 2 s lol 2 o)
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With a Schur technique, we can obtain an LP-boundedness result as in the previous
Theorem, but the estimate for the norm [P, (o) 51z (=) 18 cruder.

Theorem 4.3. Let o be in L, ,(R,), u and v in L}, ,(Ry) L, (R,). Then there exists a
unique bounded linear operator

PU,U(O-) : Lg,q(Rq) — qu(Rq), 1 S p S &8

such that
1603,(1
[ Puw(@) Bz, ry) < 7.0 max(|lully @y 1Vl Le, @) lUulloe, @IVl iy @) oLy, @y)-

Proof. Let N be the function defined on R, x R, by

[e.e]

N2 =2, / (€€ o eI (E)ul2) € P+ dy . (4.1)
We have -
Pul@) N = [ N2 F e

By simple calculations, it is easy to see that

o 16¢%
/ N (y, )yl ey < —SEllullg,@pllvlley @pllolioy &, 2 € Ry,

o (¢, 9)%

and

o0 16¢%
/ Ny, 221 dgz < Ml o) [Vl o) 9]l ¥ € Ry

o (¢, 9)%

Thus by Schur Lemma (cf. [12]), we can conclude that
Pup(@) L g(Rg) — L7 ,(Ry)

is a bounded linear operator for 1 < p < oo, and we have

2
Puw(@) B2 42, < ( C;’f max([[ul Ly @) V]l g, mo)s [0l e, R 101 100) ]| 22,y o)
) oo

]

Remark 4.2. The previous Theorem tells us that the unique bounded linear operator on
Lg,q(Rq), 1 < p < o0, obtained by interpolation in Theorem 4.1 is in fact the integral
operator on L? (Ry) with kernel N given by (4.1).

We can now state and prove the main result in this subsection.

Theorem 4.4. Let o be in L], (R,), r € [1,2], and u,v € L} ,(Ry) L2, (R,) such that
lullzz &y = llvllr2 &, = 1. Then there exists a unique bounded linear operator

Puwlo) : LE (Ry) — LE (R,), forall p € [r, '],
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and we have

Pua @ (a2 om0y < G N0l Nl o 10122 (42)
where
4c, 2 21 %
C, = ((q qjq) <HU“Lg<jq(Rq)HUHL Rq)) (HUHLZ?q(Rq)”Uyng?q(Rq)) ,
4,%00 2 2 L
Cr = (o) (g ol e0) " (ol clivlliz, m)
9 [ee]
and
t 1-t 1
r o

Proof. Consider the linear functional

T: (LL,(R) NE2,(Ry)) x (L1, (R) N I2,(Ry)) = Lk, (R,)NIZ,(R,)
(0, f) = Puw(o)(f)-
Then by Proposition 4.1 and Theorem 3.1

16¢%
1 Z (o, s, ) < v q)q lulle, ®pllvllzy @l 1Ly @ lolly ey (4.3)
and
deaq
1 Z(o, Pz ) < ) \/HuHLgo,q(Rq>HUHL%(R(,)IIH|La,q<Rq>H0’HLg,q(Rq)- (4.4)

Therefore, by (4.3), (4.4) and the the multi-linear interpolation theory, see Section 10.1
in [6] for reference, we get a unique bounded linear operator

Z(0, f) : Lg(Rg) X Ly o(Rg) = L, 4 (Ry)

such that
| Z(o, Nz, ®y < Cillflls @ llolls @y (4.5)

where

1-6

4Ca q 2

0+1 0
= () (lelszmalivln, ) (lelliz, izl e)

0 1-60 1
.

and

1 2
By the definition of Z, we have

As the adjoint of P, ,(0) is P, .(7), s0 Pyw(0) is a bounded linear map on Lg:q(Rq) with
its operator norm

1Pu 52z @y = P @m0 < Callolig, 2o (4.6)
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where

1-6

deoq \0H 0 -
Co= (i) (el ool ) (el ol en) ©

Using an interpolation of (4.5) and (4.6), we have that, for any p € [r, '],
Hpu,v(U)HB(LZ,q(Rq)) < CfCQPtHUHLQ,q(Rq)’\U\|Lgfq(Rq)HUHLg’q(Rq),

with
t o 1—-t 1

T r! P

]

Theorem 4.5. Let o be in Ly, (R,), r € [1,2), and u,v € L], (Ry) (L, (Ry). Then
there exists a unique bounded linear operator

Puw(o) : LE, (Ry) — LE (R,), forall p € [r,r'],

and we have

4c, 2 _
[ Puo () B2z, ') < (<q- ;jq )7 (g @) 1ol ae, ) (1l e, @ N0l s @) ol )
(4.7)
where
t=— P
p(r—2)

Proof. For every functions f in Lg',q(]Rq) and g in L], ,(R,), from (3.3) we have,

(Pun(@)(F) iz | < / 1)1 () O T 09 )|

o0

< N Fp (Wbl e, @ IFD (09 |y @plloll e, eo)-

Using relation (2.14), Holder’s inequality and relation (2.22), we get

Oy Ca’
I Dl < o=l @l 2w

and

o 40017 2=r
175 @l g e < (i)™ Moz gl e,

Hence we deduce that

4Ca7 2
[(Puw(0)(f): 9)1z )| < ((q;q)io)T||U||Lz;,q(Rq)HUHLgfq(Rq)||f\|L;;Qq(Rq)||9|\Lg,q(Rq)||0'\|Lg,q(Rq)-
Thus,
4ca,q 2
Puw(0)l By, ) S <(q;q)oo)r ullry, @) 1Vl L, @) lo Nl 2, Ry)- (4.8)

As the adjoint of P, () is Pyu(7), 50 Puy(0) is a bounded linear map on L], (R,) with
its operator norm

dea g
(43 @)
Using an interpolation of (4.8) and (4.9), we deduce the result. O

2
1P ()2, 4R < ( )il e, @0l g o) ol g o) (4.9)



22 Hatem Mejjaoli and Nadia Sraieb

Theorem 4.6. Let o be in L, [(R,), 7 € [1,00], and u,v € L;, ,(Ry) (L, (R,y) such that

ullze &y = lIV]l22 @y = 1- Then there exists a unique bounded linear operator
Puolo) : L7 (R 7 (R,), forallpe[—— 2
U,U(U)‘ a,q( q)—> a,q( q)» orall p [T,_i_l?r_l]?

and we have

Pu(0)l B2z 20 <o, ||“||L°° (Ry) ||U||L°<> wpllollzy @), (4.10)
where
16(:
Cs = @)% =l ||L°° q)“u”Lqu(Rq),
Cy = |vlley @ llullre, @)
and
r+1
== >

For prove this theorem we need the following lemmas.

Lemma 4.1. Let o be in L}, (R,), r € [1,00], u € L7, ,(Ry) N LY (R,), and v belongs
in L, ,(Ry) L2, (Ry) such that ullzz &y = lIVllz2 &) = 1. Then there exists a unique
bounded linear operator

and we have

16¢2 . 1 1 1 1
||7Du,v(0->||B(L£2+;"1 ) < <(q;qa)§o>T||u||£3?q(Rq)||U|’£éyq(Rq)||U’H£3°,q(]Rq)||U||£g<:q(]R{q)||O-||Lg’q(Rq)‘

(4.11)
Proof. Consider the linear functional
I : Li,q(Rq) N Lcofq(]Rq) — B(Lé,q(Rq) N B(Li,q(Rq»
o — Puv(0).
Then by Proposition 4.1 and Theorem 3.1
16¢2,,
Wl 5Ly ,@o).Bs ;o) S o llullzee, @ vl ey (4.12)
(¢: 9%
and
2] Bree, Rg). B2 R < lUllLe, @ IV]lLe, ®y)s (4.13)

where || |[ gz, (r,),B(L4.,(R,)) denotes the norm in the Banach space of the bounded linear
operators from L, (R,) into B(LZ (R,), 1 < p,q < oo. Using an interpolation of (4.12)
and (4.13) we get the result. O
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Lemma 4.2. Let o be in L}, (R,), r € [1,00], v € L2 (R,) N LY, (R,), and u belongs
in L, ,(Ry) L33, (Ry) such that |ullzz wy) = 0]z @, = 1. Then there exists a unique
bounded linear operator

and we have

IPus(@)l, 2 < (st ol il o Wl e 91 o 520

(4.14)

Proof. As the adjoint of P, ,(0) is Py (7), so the result follows from duality and previous
lemma. ]

Proof. of Theorem 4.6. Using an interpolation of (4.11) and (4.14), we have that, for any

p € 25,25,

1—t
T

t 1 1
[[Puv(0)B22 ,Re)) < C3 Cy HUHZg?q(Rq)”UHgg?q(Rq)HUHLS,q(Rq)’

with
r+1

_ r
2 D

[]

Proposition 4.4. Let p,r € [1,00] be such that p € [%,2]. Let o be in Ly, (R,), u
belongs to L7, (Ry) (LS, (Ry), and v € L, ,(Ry) LS, (Ry). Then there exists a unique
bounded linear operator

PU,U(O-) : LZ,qGRq) — ng,q(Rq)a

and we have

HPUW(O-)HB(Lg,q(Rq)) < CécéitHa Ly, ((Rg)s (415)
where
1 1
Cs = (llullz ,@yllvllrz @) * vl Le, @) 1VllLe, @) s Cs = llullrge, @ 1vllLy &)
and ) ) 5
P Gl N i) L
(s —1r p—(2—p)r

Proof. The proof follows from Theorem 4.1 and Theorem 3.1 with p = 1, s instead of p,
and interpolation theory. O

4.2  L[P-compactness of P, (o)

Proposition 4.5. Under the same hypothesis of Theorem 4.1, the q-Dunkl two-wavelet
multiplier
PU,U(U) : Ltlx,q(Rq) — L;,q(RQ)

18 compact.
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Proof. Let (fn)nen € LY, ,(Ry) such that f, — 0 weakly in L (R,) as n — oo. It is
enough to prove that

Tim [Py (@) (fo)llza, () = 0-

We have
IPu) it < e [ [ 0@t bl QNI P
(4.16)
Now using the fact that f, — 0 weakly in L/, ,(R,), we deduce that
Vey Ry lim jo(©)]|(Fan U8 )l K5E0(0)] = O (1.17)

On the other hand as f, — 0 weakly in L}x’q(Rq) as n — 00, then there exists a positive
constant C' such that || fu||zs &, < C. Hence by simple calculations we get

o o 4 2
VEy e Ry, [o(E)](fur Ve Wagl U5 (E)v(y)| < (J<(q D ) |7 ()] [l ge, =y [0(W)]-
(4.18)
Moreover, from Fubini’s theorem and relation (2.12), we have
I N e SR e
< () Mllizge [ 1) [~ @l tdalgriae (@19
< (=) Ml ol o ol <

Thus from the relations (4.16), (4.17), (4.18), (4.19) and the Lebesgue dominated conver-
gence theorem we deduce that

Tim ([P (0) (s, ) = 0
and the proof is complete. O]

In the following we give three results for compactness of the ¢g-Dunkl two-wavelet
multiplier operators.

Theorem 4.7. Under the hypothesis of Theorem 4.1, the bounded linear operator
Puw(o) : L7, o (Ry) — L7, (Ry)
15 compact for 1 < p < oo.

Proof. From the previous proposition, we only need to show that the conclusion holds for
p = oo. In fact, the operator

Puu(o): Ly ,(Ry) — L (R,)

is the adjoint of the operator P, () : L, ,(R;) — L ,(R,), which is compact by the
previous Proposition. Thus by the duality property, Py.(0) : Ly, (R,) — L (R,) is
compact. Finally, by an interpolation of the compactness on L/ ,(R,) and on L (R,)
such as the one given on pages 202 and 203 of the book [4] by Bennett and Sharpley, the
proof is complete. O
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The following result is an analogue of Theorem 4.4 for compact operators.

Theorem 4.8. Under the hypotheses of Theorem 4.4, the bounded linear operator
PU,U(O-) : Lg,q(Rq> — Lg,q(Rq)
is compact for all p € [r,1'].

Proof. The result is an immediate consequence of an interpolation of Corollary 3.2 and
Proposition 4.5. See again pages 202 and 203 of the book [4] by Bennett and Sharpley
for the interpolation used. O

Remark 4.3. Using Remark 2.1, we obtain all results of this paper, for the two-wavelet
multipliers associated with the q-Bessel transform, ¢*-analogue Fourier transform and, at
least formally, the classical Dunkl transform.

5 Open Problem

As perspective, involving the e-concentration of the ¢g-Dunkl two-wavelet multipliers, we
will prove an uncertainty principle of Donoho-Stark type for the g-Dunkl transform. More-
over, we will study functions whose time-frequency content are concentrated in a region
with finite measure in phase space using the phase space restriction operators as a main
tool. We claim to obtain approximation inequalities for such functions using a finite linear
combination of eigenfunctions of these operators.
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